V23990 P544 x2x D5 14

V23990-P544-*2*-PM
flow PIM 0
600V/15A
Features
flow PIM 0 housing
● Vincotech clip-in housing
● Trench Fieldstop IGBT's for low saturation losses
● Optional w/o BRC
Target Applications
● Industrial drives
12mm housing
● Embedded drives
17mm housing
Schematic
Types
● V23990-P544-A28-PM
● V23990-P544-A29-PM
● V23990-P544-C28-PM w/o BRC
● V23990-P544-C29-PM w/o BRC
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
tp=10ms
50 Hz half sine wave
Tj=Tjmax
Th=80°C
28
Tc=80°C
37
A
200
A
200
A 2s
Tj=25°C
Th=80°C
33
Tc=80°C
50
W
Tjmax
150
°C
VCE
600
V
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
20
Tc=80°C
25
A
tp limited by Tjmax
45
A
VCE ≤ 1200V, Tj ≤ Top max
45
A
Tj=Tjmax
Th=80°C
45
Tc=80°C
69
W
±20
V
tSC
Tj≤150°C
6
µs
VCC
VGE=15V
360
V
175
°C
Tjmax
1
Revision: 5
V23990-P544-*2*-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
18
Tc=80°C
23
30
Th=80°C
35
Tc=80°C
52
Tjmax
A
A
W
175
°C
600
V
Brake Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpuls
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
14
Tc=80°C
18
A
tp limited by Tjmax
30
A
VCE ≤ 1200V, Tj ≤ Top max
30
A
Tj=Tjmax
Th=80°C
36
Tc=80°C
55
W
±20
V
tSC
Tj≤150°C
10
µs
VCC
VGE=15V
360
V
Tjmax
175
°C
VRRM
600
V
Brake Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
14
Tc=80°C
19
20
Th=80°C
27
Tc=80°C
41
A
A
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 5
V23990-P544-*2*-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=145°C
0,8
1,26
1,24
0,92
0,82
11
14
1,45
Input Rectifier Diode
Forward voltage
VF
30
Threshold voltage (for power loss calc. only)
Vto
30
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink per chip
30
1500
RthJH
Thermal grease
thickness≤50µm
λ = 1 W/mK
VGE(th)
VCE=VGE
V
V
mΩ
1,1
2,10
mA
K/W
Inverter Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
0,00021
15
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
5
5,8
6,5
1,1
1,61
1,81
1,9
0,00085
300
Rgoff=8 Ω
Rgon=16 Ω
±15
300
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
14
13
11
13
127
146
86
86
0,19
0,26
0,31
0,39
ns
mWs
860
f=1MHz
25
0
55
Tj=25°C
pF
24
±15
480
15
Tj=25°C
Thermal grease
thickness≤50µm
λ = 1 W/mK
87
nC
2,10
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Rgon=16 Ω
±15
300
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
copyright Vincotech
15
Thermal grease
thickness≤50µm
λ = 1 W/mK
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,25
1,79
1,67
15
17
100
184
0,52
1,01
1448
773
0,10
0,21
2,75
3
1,95
V
A
ns
µC
A/µs
mWs
K/W
Revision: 5
V23990-P544-*2*-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,1
1,66
1,87
1,9
Brake Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
VCE=VGE
VCE(sat)
0,00015
15
10
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,0006
300
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=16 Ω
Rgon=32 Ω
±15
300
10
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
15
15
11
14
147
163
101
97
0,16
0,22
0,23
0,27
ns
mWs
551
f=1MHz
0
25
Tj=25°C
pF
40
17
±15
480
10
Tj=25°C
Thermal grease
thickness≤50µm
λ = 1 W/mK
62
nC
2,61
K/W
Brake Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
trr
Reverse recovered charge
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
Rgon=32 Ω
600
IRRM
Reverse recovery time
Peak rate of fall of recovery current
10
Rgon=32 Ω
Rgon=32 Ω
300
±15
di(rec)max
/dt
Erec
RthJH
10
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,25
1,67
1,61
1,95
27
10
10
149
208
0,46
0,46
620
340
0,09
0,16
Thermal grease
thickness≤50µm
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
3,53
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tc=100°C
Power dissipation constant
B-value
B(25/50)
Tol. ±3%
B-value
B(25/100)
Tol. ±3%
5
210
mW
Tj=25°C
3,5
mW/K
Tj=25°C
Tj=25°C
4
%
Tc=100°C
Tj=25°C
Vincotech NTC Reference
copyright Vincotech
-5
K
4000
K
A
Revision: 5
V23990-P544-*2*-PM
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
40
IC (A)
IC (A)
40
30
30
20
20
10
10
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
60
IF (A)
IC (A)
18
4
15
50
12
40
9
30
Tj = Tjmax-25°C
6
20
3
10
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V)
0,0
12
0,5
1,0
1,5
2,0
2,5
3,0
3,5
V F (V)
At
tp =
µs
V
5
250
µs
Revision: 5
V23990-P544-*2*-PM
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,0
E (mWs)
E (mWs)
0,8
0,8
Eoff High T
0,6
Eon High T
Eon High T
Eon Low T
Eoff Low T
0,6
0,4
Eon Low T
Eoff High T
0,4
Eoff Low T
0,2
0,2
0,0
0,0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
Rgon =
16
Ω
Rgoff =
8
Ω
30
60
90
120
R G( Ω )
150
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
IC =
15
A
Output inverter FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,4
E (mWs)
E (mWs)
0,4
0,3
0,3
Erec
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,2
0,2
Erec
Erec
Tj = 25°C
0,1
0,1
Tj = 25°C
Erec
0,0
0,0
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
Rgon =
16
Ω
copyright Vincotech
30
60
90
120
R G( Ω )
150
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
IC =
15
A
6
Revision: 5
V23990-P544-*2*-PM
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
0,10
tdoff
t ( µs)
t ( µs)
1,00
0,10
tf
tf
tdon
tr
tdon
0,01
0,01
tr
0,00
0,00
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
Rgon =
16
Ω
Rgoff =
8
Ω
20
40
60
80
100
120 R ( Ω ) 140
G
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
IC =
15
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,4
t rr( µs)
t rr( µs)
0,4
trr
0,3
0,3
Tj = Tjmax -25°C
trr
Tj = Tjmax -25°C
0,2
0,2
trr
Tj = 25°C
0,1
0,1
Tj = 25°C
trr
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
300
15
16
copyright Vincotech
10
15
20
25
I C (A)
30
°C
V
V
Ω
7
0
30
At
Tj =
VR =
IF =
VGE =
25/125
300
15
15
60
90
120
R g on ( Ω )
150
°C
V
A
V
Revision: 5
V23990-P544-*2*-PM
Output Inverter
Output inverter FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Tj = Tjmax -25°C
Qrr( µC)
1,5
Qrr( µC)
1,5
Qrr
1,2
1,2
Tj = Tjmax -25°C
Qrr
0,9
0,9
Qrr
Tj = 25°C
0,6
0,6
Tj = 25°C
0,3
0,3
Qrr
0,0
0,0
0
At
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
300
15
16
10
15
20
25
I C (A)
0
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
30
25/125
300
15
15
60
90
R g on ( Ω)
150
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
25
IrrM (A)
18
120
IrrM (A)
Tj = Tjmax -25°C
IRRM
15
IRRM
20
Tj = 25°C
IRRM
IRRM
Tj = Tjmax - 25°C
12
15
9
Tj = 25°C
10
6
5
3
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
300
15
16
copyright Vincotech
10
15
20
25
I C (A)
30
°C
V
V
Ω
8
0
30
At
Tj =
VR =
IF =
VGE =
25/125
300
15
15
60
90
120
R gon ( Ω )
150
°C
V
A
V
Revision: 5
V23990-P544-*2*-PM
Output Inverter
Output inverter FWD
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
2000
2000
dI0/dt
direc / dt (A/ µs)
direc / dt (A/µ s)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
dIrec/dt
1600
dIrec/dt
dI0/dt
1600
1200
1200
800
800
400
400
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
300
15
16
10
15
20
25
I C (A)
0
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
30
25/125
300
15
15
60
90
120
150
°C
V
A
V
Output inverter FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
R gon ( Ω )
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
10-2
10-1
100
t p (s)
10110
10-5
At
D=
RthJH =
tp / T
2,10
Thermal grease
R (C/W)
0,07
0,25
0,98
0,42
0,19
0,19
10-3
K/W
IGBT thermal model values
Phase change interface
Tau (s)
3,4E+00
3,7E-01
7,6E-02
1,4E-02
2,5E-03
3,0E-04
copyright Vincotech
R (C/W)
0,06
0,20
0,79
0,34
0,16
0,15
10-4
R (C/W)
0,05
0,17
0,78
0,74
0,48
0,24
9
10-2
10-1
100
t p (s)
10110
tp / T
2,75
Thermal grease
Tau (s)
2,8E+00
3,0E-01
6,2E-02
1,1E-02
2,1E-03
2,4E-04
10-3
K/W
FWD thermal model values
Phase change interface
Tau (s)
8,2E+00
7,4E-01
1,1E-01
3,1E-02
5,4E-03
8,5E-04
R (C/W)
0,04
0,14
0,64
0,60
0,39
0,19
Tau (s)
6,6E+00
6,0E-01
8,7E-02
2,5E-02
4,4E-03
6,9E-04
Revision: 5
V23990-P544-*2*-PM
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
30
Ptot (W)
IC (A)
100
25
80
20
60
15
40
10
20
5
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
30
IF (A)
Ptot (W)
70
150
60
25
50
20
40
15
30
10
20
5
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T h ( o C)
200
°C
Revision: 5
V23990-P544-*2*-PM
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(QGE)
IC (A)
VGE (V)
103
10
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
18
16
120V
2
14
480V
10uS
100uS
1mS
101
12
10
DC
100mS
10
8
10mS
0
6
4
10-1
2
0
100
102
101
At
D=
Th =
VGE =
single pulse
80
ºC
15
V
Tj =
Tjmax
V CE (V)
0
103
At
IC =
20
40
15
60
80
100
Q g (nC)
120
A
ºC
Output inverter IGBT
Figure 27
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
14
Ic(sc)
tsc (µS)
250
12
200
10
150
8
6
100
4
50
2
0
0
10
11
12
13
14
V GE (V)
15
12
14
16
At
VCE =
600
V
At
VCE ≤
600
V
Tj ≤
175
ºC
Tj =
175
ºC
copyright Vincotech
11
18
V GE (V)
20
Revision: 5
V23990-P544-*2*-PM
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
35
IC (A)
IC MAX
30
25
VCE MAX
15
Ic CHIP
Ic MODULE
20
10
5
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tjmax-25
Tj =
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright Vincotech
12
Revision: 5
V23990-P544-*2*-PM
Brake
Brake IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
30
IC (A)
IC (A)
30
25
25
20
20
15
15
10
10
5
5
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Brake IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Brake FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
40
IF (A)
IC (A)
12
V CE (V)
10
30
8
20
6
4
10
2
Tj = 25°C
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
3
250
10
copyright Vincotech
6
9
V GE (V)
0
12
At
tp =
µs
V
13
1
250
2
3
V F (V)
4
µs
Revision: 5
V23990-P544-*2*-PM
Brake
Brake IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,8
Eon
E (mWs)
E (mWs)
0,6
0,5
Eon
Eon
0,6
Eoff
0,4
Eon
Eoff
Eoff
0,3
0,4
Tj = Tjmax -25°C
Tj = Tjmax -25°C
Eoff
0,2
Tj = 25°C
0,2
Tj = 25°C
0,1
0,0
0,0
0
0
5
10
15
50
100
150
200
250
RG (Ω)
20
I C (A)
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
Rgon =
32
Ω
Rgoff =
16
Ω
300
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
IC =
10
A
Brake FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,25
E (mWs)
E (mWs)
0,20
Erec
0,20
0,15
Tj = Tjmax - 25°C
0,15
Erec
Tj = Tjmax -25°C
0,10
Erec
0,10
Tj = 25°C
Tj = 25°C
Erec
0,05
0,05
0,00
0,00
0
5
10
15
I C (A)
0
20
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
Rgon =
32
Ω
copyright Vincotech
50
100
150
200
250
RG (Ω)
300
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
IC =
10
A
14
Revision: 5
V23990-P544-*2*-PM
Brake
Brake IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( µs)
t ( µs)
1,00
tdoff
tdoff
tf
0,10
tf
0,10
tdon
tr
tdon
0,01
0,01
tr
0,00
0,00
0
5
10
I C (A)
15
0
50
100
150
200
250
RG (Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
Rgon =
32
Ω
Rgoff =
16
Ω
300
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
IC =
10
A
Brake IGBT
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Brake FWD
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-4
10-3
At
Thermal grease
RthJH =
2,61
D=
10-5
copyright Vincotech
K/W
10-2
10-1
100
t p (s)
101 10
10-4
10-3
At
Thermal grease
RthJH =
3,53
D=
10-5
tp / T
Phase change interface
RthJH =
0,60
K/W
15
K/W
10-2
10-1
100
t p (s)
101 10
tp / T
Phase change interface
RthJH =
1,27
K/W
Revision: 5
V23990-P544-*2*-PM
Brake
Brake IGBT
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
25
IC (A)
Ptot (W)
70
60
20
50
15
40
30
10
20
5
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
VGE =
ºC
Brake FWD
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
200
ºC
V
Brake FWD
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
25
IF (A)
Ptot (W)
50
T h ( o C)
40
20
30
15
20
10
10
5
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
16
50
175
100
150
Th ( o C)
200
ºC
Revision: 5
V23990-P544-*2*-PM
Input Rectifier Bridge
Rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
IF (A)
ZthJC (K/W)
100
80
100
60
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
Tj = Tjmax-25°C
20
Tj = 25°C
0
0,0
At
tp =
0,5
1,0
1,5
V F (V)
2,0
10-2
µs
250
10-4
10-5
At
D=
RthJH =
Rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
t p (s)
10110
tp / T
2,1
K/W
Rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
50
Ptot (W)
IF (A)
80
100
40
60
30
40
20
20
10
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T h ( o C)
0
150
At
Tj =
ºC
17
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 5
V23990-P544-*2*-PM
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
24000
Thermistor
Figure 2
Typical NTC resistance values
R/Ω
R(T ) = R25 ⋅ e



 B25/100⋅ 1 − 1  
 T T 

25  


[Ω]
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
18
Revision: 5
V23990-P544-*2*-PM
Switching Definitions Output Inverter
General conditions
= 125 °C
Tj
= 32 Ω
Rgon
Rgoff
= 16 Ω
Output inverter IGBT
Figure 1
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Output inverter IGBT
Figure 2
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
200
tdoff
%
%
IC
100
VGE 90%
160
VCE 90%
75
VGE
IC
120
VCE
50
tEoff
80
25
VGE
tdon
VCE
IC 1%
0
40
VGE 10%
-50
-0,1
VCE 3%
IC 10%
0
-25
tEon
-40
0
0,1
0,2
0,3
0,4
0,5
2,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
15
300
15
0,21
0,44
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
Turn-off Switching Waveforms & definition of tf
3,1
0
15
300
15
0,02
0,20
3,2
time(us)
3,3
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-on Switching Waveforms & definition of tr
150
200
%
%
fitted
IC
100
VCE
150
IC 90%
VCE
100
IC 90%
IC 60%
50
tr
IC 40%
50
IC10%
tf
0
Ic
IC 10%
0
-50
-50
0,1
0,15
0,2
0,25
0,3
0,35
0,4
3
3,05
3,1
time (us)
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
300
15
0,09
3,15
3,2
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
19
300
15
0,02
V
A
µs
Revision: 5
V23990-P544-*2*-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Turn-off Switching Waveforms & definition of tEoff
Output inverter IGBT
Figure 6
Turn-on Switching Waveforms & definition of tEon
125
200
%
IC 1%
%
Poff
100
Pon
150
Eoff
75
Eon
100
50
50
25
VGE 10%
VGE 90%
VCE 3%
0
0
tEon
tEoff
-25
-0,1
0
0,1
0,2
0,3
0,4
-50
0,5
2,9
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
4,47
0,40
0,44
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Output inverter FWD
Figure 7
Gate voltage vs Gate charge (measured)
3,1
4,47
0,34
0,20
3,2
time(us)
3,3
kW
mJ
µs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
120
VGE (V)
Id
80
15
trr
40
10
%
Vd
fitted
0
IRRM 10%
5
-40
0
-80
IRRM 90%
IRRM 100%
-120
-5
-40
-20
0
20
40
60
80
100
2,9
120
3
3,1
3,2
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
0
15
300
15
105,74
3,3
3,4
3,5
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
20
300
15
14
0,21
V
A
A
µs
Revision: 5
V23990-P544-*2*-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
150
Erec
%
%
Id
100
100
tErec
75
tQrr
50
50
Qrr
0
25
Prec
-50
0
-25
-100
2,9
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
3,1
3,3
15
1,01
0,49
3,5
time(us)
2,9
3,7
3,1
3,3
3,5
3,7
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
21
4,47
0,20
0,49
kW
mJ
µs
Revision: 5
V23990-P544-*2*-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
without thermal paste 12mm housing
V23990-P544-A28-PM
P544-A28
in packaging barcode as
P544-A28
without thermal paste 17mm housing
V23990-P544-A29-PM
P544-A29
P544-A29
without thermal paste, w/o brake,12mm housing
without thermal paste, w/o brake, 17mm housing
V23990-P544-C28-PM
V23990-P544-C29-PM
P544-C28
P544-C29
P544-C28
P544-C29
Outline
Pin
Pin table
X
Y
1
25,5
2,7
2
25,5
0
3
22,8
0
4
20,1
0
5
16,2
0
6
13,5
0
7
10,8
0
8
8,1
0
9
5,4
0
10
2,7
0
11
0
0
12
0
19,8
13
0
22,5
14
7,5
19,8
15
7,5
22,5
16
15
19,8
17
15
22,5
18
22,8
22,5
19
25,5
22,5
20
33,5
22,5
21
33,5
15
22
23
33,5
33,5
7,5
0
Pinout
copyright Vincotech
22
Revision: 5
V23990-P544-*2*-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause
the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
23
Revision: 5