V23990-P544-*2*-PM flow PIM 0 600V/15A Features flow PIM 0 housing ● Vincotech clip-in housing ● Trench Fieldstop IGBT's for low saturation losses ● Optional w/o BRC Target Applications ● Industrial drives 12mm housing ● Embedded drives 17mm housing Schematic Types ● V23990-P544-A28-PM ● V23990-P544-A29-PM ● V23990-P544-C28-PM w/o BRC ● V23990-P544-C29-PM w/o BRC Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V Input Rectifier Diode Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax tp=10ms 50 Hz half sine wave Tj=Tjmax Th=80°C 28 Tc=80°C 37 A 200 A 200 A 2s Tj=25°C Th=80°C 33 Tc=80°C 50 W Tjmax 150 °C VCE 600 V Inverter Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C 20 Tc=80°C 25 A tp limited by Tjmax 45 A VCE ≤ 1200V, Tj ≤ Top max 45 A Tj=Tjmax Th=80°C 45 Tc=80°C 69 W ±20 V tSC Tj≤150°C 6 µs VCC VGE=15V 360 V 175 °C Tjmax 1 Revision: 5 V23990-P544-*2*-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C 18 Tc=80°C 23 30 Th=80°C 35 Tc=80°C 52 Tjmax A A W 175 °C 600 V Brake Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpuls Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings Maximum Junction Temperature Tj=Tjmax Th=80°C 14 Tc=80°C 18 A tp limited by Tjmax 30 A VCE ≤ 1200V, Tj ≤ Top max 30 A Tj=Tjmax Th=80°C 36 Tc=80°C 55 W ±20 V tSC Tj≤150°C 10 µs VCC VGE=15V 360 V Tjmax 175 °C VRRM 600 V Brake Diode Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Th=80°C 14 Tc=80°C 19 20 Th=80°C 27 Tc=80°C 41 A A W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 5 V23990-P544-*2*-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=145°C 0,8 1,26 1,24 0,92 0,82 11 14 1,45 Input Rectifier Diode Forward voltage VF 30 Threshold voltage (for power loss calc. only) Vto 30 Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink per chip 30 1500 RthJH Thermal grease thickness≤50µm λ = 1 W/mK VGE(th) VCE=VGE V V mΩ 1,1 2,10 mA K/W Inverter Transistor Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) 0,00021 15 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 5 5,8 6,5 1,1 1,61 1,81 1,9 0,00085 300 Rgoff=8 Ω Rgon=16 Ω ±15 300 15 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none td(on) td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 14 13 11 13 127 146 86 86 0,19 0,26 0,31 0,39 ns mWs 860 f=1MHz 25 0 55 Tj=25°C pF 24 ±15 480 15 Tj=25°C Thermal grease thickness≤50µm λ = 1 W/mK 87 nC 2,10 K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Rgon=16 Ω ±15 300 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH copyright Vincotech 15 Thermal grease thickness≤50µm λ = 1 W/mK 15 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,25 1,79 1,67 15 17 100 184 0,52 1,01 1448 773 0,10 0,21 2,75 3 1,95 V A ns µC A/µs mWs K/W Revision: 5 V23990-P544-*2*-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,1 1,66 1,87 1,9 Brake Transistor Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) VCE=VGE VCE(sat) 0,00015 15 10 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,0006 300 none tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Rgoff=16 Ω Rgon=32 Ω ±15 300 10 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 15 15 11 14 147 163 101 97 0,16 0,22 0,23 0,27 ns mWs 551 f=1MHz 0 25 Tj=25°C pF 40 17 ±15 480 10 Tj=25°C Thermal grease thickness≤50µm λ = 1 W/mK 62 nC 2,61 K/W Brake Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir trr Reverse recovered charge Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip Rgon=32 Ω 600 IRRM Reverse recovery time Peak rate of fall of recovery current 10 Rgon=32 Ω Rgon=32 Ω 300 ±15 di(rec)max /dt Erec RthJH 10 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,25 1,67 1,61 1,95 27 10 10 149 208 0,46 0,46 620 340 0,09 0,16 Thermal grease thickness≤50µm λ = 1 W/mK V µA A ns µC A/µs mWs 3,53 K/W 22000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P Tj=25°C R100=1486 Ω Tc=100°C Power dissipation constant B-value B(25/50) Tol. ±3% B-value B(25/100) Tol. ±3% 5 210 mW Tj=25°C 3,5 mW/K Tj=25°C Tj=25°C 4 % Tc=100°C Tj=25°C Vincotech NTC Reference copyright Vincotech -5 K 4000 K A Revision: 5 V23990-P544-*2*-PM Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 40 IC (A) IC (A) 40 30 30 20 20 10 10 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 60 IF (A) IC (A) 18 4 15 50 12 40 9 30 Tj = Tjmax-25°C 6 20 3 10 Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 0,0 12 0,5 1,0 1,5 2,0 2,5 3,0 3,5 V F (V) At tp = µs V 5 250 µs Revision: 5 V23990-P544-*2*-PM Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 1,0 E (mWs) E (mWs) 0,8 0,8 Eoff High T 0,6 Eon High T Eon High T Eon Low T Eoff Low T 0,6 0,4 Eon Low T Eoff High T 0,4 Eoff Low T 0,2 0,2 0,0 0,0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V Rgon = 16 Ω Rgoff = 8 Ω 30 60 90 120 R G( Ω ) 150 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V IC = 15 A Output inverter FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,4 E (mWs) E (mWs) 0,4 0,3 0,3 Erec Tj = Tjmax -25°C Tj = Tjmax -25°C 0,2 0,2 Erec Erec Tj = 25°C 0,1 0,1 Tj = 25°C Erec 0,0 0,0 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V Rgon = 16 Ω copyright Vincotech 30 60 90 120 R G( Ω ) 150 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V IC = 15 A 6 Revision: 5 V23990-P544-*2*-PM Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff 0,10 tdoff t ( µs) t ( µs) 1,00 0,10 tf tf tdon tr tdon 0,01 0,01 tr 0,00 0,00 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 125 °C VCE = 300 V VGE = 15 V Rgon = 16 Ω Rgoff = 8 Ω 20 40 60 80 100 120 R ( Ω ) 140 G With an inductive load at Tj = 125 °C VCE = 300 V VGE = 15 V IC = 15 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,4 t rr( µs) t rr( µs) 0,4 trr 0,3 0,3 Tj = Tjmax -25°C trr Tj = Tjmax -25°C 0,2 0,2 trr Tj = 25°C 0,1 0,1 Tj = 25°C trr 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 5 25/125 300 15 16 copyright Vincotech 10 15 20 25 I C (A) 30 °C V V Ω 7 0 30 At Tj = VR = IF = VGE = 25/125 300 15 15 60 90 120 R g on ( Ω ) 150 °C V A V Revision: 5 V23990-P544-*2*-PM Output Inverter Output inverter FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Tj = Tjmax -25°C Qrr( µC) 1,5 Qrr( µC) 1,5 Qrr 1,2 1,2 Tj = Tjmax -25°C Qrr 0,9 0,9 Qrr Tj = 25°C 0,6 0,6 Tj = 25°C 0,3 0,3 Qrr 0,0 0,0 0 At At Tj = VCE = VGE = Rgon = 5 25/125 300 15 16 10 15 20 25 I C (A) 0 30 At Tj = VR = IF = VGE = °C V V Ω Output inverter FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 30 25/125 300 15 15 60 90 R g on ( Ω) 150 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 25 IrrM (A) 18 120 IrrM (A) Tj = Tjmax -25°C IRRM 15 IRRM 20 Tj = 25°C IRRM IRRM Tj = Tjmax - 25°C 12 15 9 Tj = 25°C 10 6 5 3 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 300 15 16 copyright Vincotech 10 15 20 25 I C (A) 30 °C V V Ω 8 0 30 At Tj = VR = IF = VGE = 25/125 300 15 15 60 90 120 R gon ( Ω ) 150 °C V A V Revision: 5 V23990-P544-*2*-PM Output Inverter Output inverter FWD Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 2000 2000 dI0/dt direc / dt (A/ µs) direc / dt (A/µ s) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) dIrec/dt 1600 dIrec/dt dI0/dt 1600 1200 1200 800 800 400 400 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 300 15 16 10 15 20 25 I C (A) 0 30 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 30 25/125 300 15 15 60 90 120 150 °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 R gon ( Ω ) 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 10-2 10-1 100 t p (s) 10110 10-5 At D= RthJH = tp / T 2,10 Thermal grease R (C/W) 0,07 0,25 0,98 0,42 0,19 0,19 10-3 K/W IGBT thermal model values Phase change interface Tau (s) 3,4E+00 3,7E-01 7,6E-02 1,4E-02 2,5E-03 3,0E-04 copyright Vincotech R (C/W) 0,06 0,20 0,79 0,34 0,16 0,15 10-4 R (C/W) 0,05 0,17 0,78 0,74 0,48 0,24 9 10-2 10-1 100 t p (s) 10110 tp / T 2,75 Thermal grease Tau (s) 2,8E+00 3,0E-01 6,2E-02 1,1E-02 2,1E-03 2,4E-04 10-3 K/W FWD thermal model values Phase change interface Tau (s) 8,2E+00 7,4E-01 1,1E-01 3,1E-02 5,4E-03 8,5E-04 R (C/W) 0,04 0,14 0,64 0,60 0,39 0,19 Tau (s) 6,6E+00 6,0E-01 8,7E-02 2,5E-02 4,4E-03 6,9E-04 Revision: 5 V23990-P544-*2*-PM Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 30 Ptot (W) IC (A) 100 25 80 20 60 15 40 10 20 5 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 30 IF (A) Ptot (W) 70 150 60 25 50 20 40 15 30 10 20 5 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 175 100 150 T h ( o C) 200 °C Revision: 5 V23990-P544-*2*-PM Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(QGE) IC (A) VGE (V) 103 10 Output inverter IGBT Figure 26 Gate voltage vs Gate charge 18 16 120V 2 14 480V 10uS 100uS 1mS 101 12 10 DC 100mS 10 8 10mS 0 6 4 10-1 2 0 100 102 101 At D= Th = VGE = single pulse 80 ºC 15 V Tj = Tjmax V CE (V) 0 103 At IC = 20 40 15 60 80 100 Q g (nC) 120 A ºC Output inverter IGBT Figure 27 Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 14 Ic(sc) tsc (µS) 250 12 200 10 150 8 6 100 4 50 2 0 0 10 11 12 13 14 V GE (V) 15 12 14 16 At VCE = 600 V At VCE ≤ 600 V Tj ≤ 175 ºC Tj = 175 ºC copyright Vincotech 11 18 V GE (V) 20 Revision: 5 V23990-P544-*2*-PM IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) 35 IC (A) IC MAX 30 25 VCE MAX 15 Ic CHIP Ic MODULE 20 10 5 0 0 100 200 300 400 500 600 700 V CE (V) At Tjmax-25 Tj = Uccminus=Uccplus ºC Switching mode : 3 level switching copyright Vincotech 12 Revision: 5 V23990-P544-*2*-PM Brake Brake IGBT Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) 30 IC (A) IC (A) 30 25 25 20 20 15 15 10 10 5 5 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Brake IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Brake FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 40 IF (A) IC (A) 12 V CE (V) 10 30 8 20 6 4 10 2 Tj = 25°C Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VCE = 3 250 10 copyright Vincotech 6 9 V GE (V) 0 12 At tp = µs V 13 1 250 2 3 V F (V) 4 µs Revision: 5 V23990-P544-*2*-PM Brake Brake IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,8 Eon E (mWs) E (mWs) 0,6 0,5 Eon Eon 0,6 Eoff 0,4 Eon Eoff Eoff 0,3 0,4 Tj = Tjmax -25°C Tj = Tjmax -25°C Eoff 0,2 Tj = 25°C 0,2 Tj = 25°C 0,1 0,0 0,0 0 0 5 10 15 50 100 150 200 250 RG (Ω) 20 I C (A) With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V Rgon = 32 Ω Rgoff = 16 Ω 300 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V IC = 10 A Brake FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,25 E (mWs) E (mWs) 0,20 Erec 0,20 0,15 Tj = Tjmax - 25°C 0,15 Erec Tj = Tjmax -25°C 0,10 Erec 0,10 Tj = 25°C Tj = 25°C Erec 0,05 0,05 0,00 0,00 0 5 10 15 I C (A) 0 20 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V Rgon = 32 Ω copyright Vincotech 50 100 150 200 250 RG (Ω) 300 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V IC = 10 A 14 Revision: 5 V23990-P544-*2*-PM Brake Brake IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( µs) t ( µs) 1,00 tdoff tdoff tf 0,10 tf 0,10 tdon tr tdon 0,01 0,01 tr 0,00 0,00 0 5 10 I C (A) 15 0 50 100 150 200 250 RG (Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V Rgon = 32 Ω Rgoff = 16 Ω 300 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V IC = 10 A Brake IGBT Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) Brake FWD Figure 12 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-4 10-3 At Thermal grease RthJH = 2,61 D= 10-5 copyright Vincotech K/W 10-2 10-1 100 t p (s) 101 10 10-4 10-3 At Thermal grease RthJH = 3,53 D= 10-5 tp / T Phase change interface RthJH = 0,60 K/W 15 K/W 10-2 10-1 100 t p (s) 101 10 tp / T Phase change interface RthJH = 1,27 K/W Revision: 5 V23990-P544-*2*-PM Brake Brake IGBT Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake IGBT Figure 14 Collector current as a function of heatsink temperature IC = f(Th) 25 IC (A) Ptot (W) 70 60 20 50 15 40 30 10 20 5 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = VGE = ºC Brake FWD Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 200 ºC V Brake FWD Figure 16 Forward current as a function of heatsink temperature IF = f(Th) 25 IF (A) Ptot (W) 50 T h ( o C) 40 20 30 15 20 10 10 5 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 16 50 175 100 150 Th ( o C) 200 ºC Revision: 5 V23990-P544-*2*-PM Input Rectifier Bridge Rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 IF (A) ZthJC (K/W) 100 80 100 60 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 Tj = Tjmax-25°C 20 Tj = 25°C 0 0,0 At tp = 0,5 1,0 1,5 V F (V) 2,0 10-2 µs 250 10-4 10-5 At D= RthJH = Rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 t p (s) 10110 tp / T 2,1 K/W Rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 50 Ptot (W) IF (A) 80 100 40 60 30 40 20 20 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T h ( o C) 0 150 At Tj = ºC 17 30 150 60 90 120 T h ( o C) 150 ºC Revision: 5 V23990-P544-*2*-PM Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic 24000 Thermistor Figure 2 Typical NTC resistance values R/Ω R(T ) = R25 ⋅ e B25/100⋅ 1 − 1 T T 25 [Ω] 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 18 Revision: 5 V23990-P544-*2*-PM Switching Definitions Output Inverter General conditions = 125 °C Tj = 32 Ω Rgon Rgoff = 16 Ω Output inverter IGBT Figure 1 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Output inverter IGBT Figure 2 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 200 tdoff % % IC 100 VGE 90% 160 VCE 90% 75 VGE IC 120 VCE 50 tEoff 80 25 VGE tdon VCE IC 1% 0 40 VGE 10% -50 -0,1 VCE 3% IC 10% 0 -25 tEon -40 0 0,1 0,2 0,3 0,4 0,5 2,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 15 300 15 0,21 0,44 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 Turn-off Switching Waveforms & definition of tf 3,1 0 15 300 15 0,02 0,20 3,2 time(us) 3,3 V V V A µs µs Output inverter IGBT Figure 4 Turn-on Switching Waveforms & definition of tr 150 200 % % fitted IC 100 VCE 150 IC 90% VCE 100 IC 90% IC 60% 50 tr IC 40% 50 IC10% tf 0 Ic IC 10% 0 -50 -50 0,1 0,15 0,2 0,25 0,3 0,35 0,4 3 3,05 3,1 time (us) VC (100%) = IC (100%) = tf = copyright Vincotech 300 15 0,09 3,15 3,2 time(us) VC (100%) = IC (100%) = tr = V A µs 19 300 15 0,02 V A µs Revision: 5 V23990-P544-*2*-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Turn-off Switching Waveforms & definition of tEoff Output inverter IGBT Figure 6 Turn-on Switching Waveforms & definition of tEon 125 200 % IC 1% % Poff 100 Pon 150 Eoff 75 Eon 100 50 50 25 VGE 10% VGE 90% VCE 3% 0 0 tEon tEoff -25 -0,1 0 0,1 0,2 0,3 0,4 -50 0,5 2,9 time (us) Poff (100%) = Eoff (100%) = tEoff = 4,47 0,40 0,44 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs Output inverter FWD Figure 7 Gate voltage vs Gate charge (measured) 3,1 4,47 0,34 0,20 3,2 time(us) 3,3 kW mJ µs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 120 VGE (V) Id 80 15 trr 40 10 % Vd fitted 0 IRRM 10% 5 -40 0 -80 IRRM 90% IRRM 100% -120 -5 -40 -20 0 20 40 60 80 100 2,9 120 3 3,1 3,2 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech 0 15 300 15 105,74 3,3 3,4 3,5 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 20 300 15 14 0,21 V A A µs Revision: 5 V23990-P544-*2*-PM Switching Definitions Output Inverter Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 150 Erec % % Id 100 100 tErec 75 tQrr 50 50 Qrr 0 25 Prec -50 0 -25 -100 2,9 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 3,1 3,3 15 1,01 0,49 3,5 time(us) 2,9 3,7 3,1 3,3 3,5 3,7 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 21 4,47 0,20 0,49 kW mJ µs Revision: 5 V23990-P544-*2*-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as without thermal paste 12mm housing V23990-P544-A28-PM P544-A28 in packaging barcode as P544-A28 without thermal paste 17mm housing V23990-P544-A29-PM P544-A29 P544-A29 without thermal paste, w/o brake,12mm housing without thermal paste, w/o brake, 17mm housing V23990-P544-C28-PM V23990-P544-C29-PM P544-C28 P544-C29 P544-C28 P544-C29 Outline Pin Pin table X Y 1 25,5 2,7 2 25,5 0 3 22,8 0 4 20,1 0 5 16,2 0 6 13,5 0 7 10,8 0 8 8,1 0 9 5,4 0 10 2,7 0 11 0 0 12 0 19,8 13 0 22,5 14 7,5 19,8 15 7,5 22,5 16 15 19,8 17 15 22,5 18 22,8 22,5 19 25,5 22,5 20 33,5 22,5 21 33,5 15 22 23 33,5 33,5 7,5 0 Pinout copyright Vincotech 22 Revision: 5 V23990-P544-*2*-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 23 Revision: 5