Maximum Ratings

V23990-P545-*3*-PM
flowPIM 0
600V/20A
Features
flowPIM 0 housing
● Vincotech clip-in housing
● Trench Fieldstop IGBT's for low saturation losses
● Optional w/o BRC
12mm housing
Target Applications
17mm housing
Schematic
● Industrial drives
● Embedded drives
Types
● V23990-P545-A38-PM
● V23990-P545-A39-PM
● V23990-P545-B138-PM
● V23990-P545-B139-PM
● V23990-P545-C38-PM
● V23990-P545-C39-PM
● V23990-P545-D138-PM
● V23990-P545-D139-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2 t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
tp=10ms
50Hz half sine wave
Tj=Tjmax
Th=80°C
33
Tc=80°C
46
A
250
A
310
A 2s
Tj=25°C
Th=80°C
37
Tc=80°C
59
W
Tjmax
150
°C
VCE
600
V
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
23
Tc=80°C
30
A
tp limited by Tjmax
60
A
VCE ≤ 600V, Tj ≤ Top max
60
A
Tj=Tjmax
Th=80°C
47
Tc=80°C
72
W
±20
V
tSC
Tj≤150°C
6
µs
VCC
VGE=15V
360
V
175
°C
Tjmax
1
Revision: 3
V23990-P545-*3*-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
27
Tc=80°C
35
40
Th=80°C
36
Tc=80°C
55
Tjmax
A
A
W
175
°C
600
V
Brake Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpuls
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
17
Tc=80°C
22
A
tp limited by Tjmax
45
A
VCE ≤ 600V, Tj ≤ Top max
45
A
Tj=Tjmax
Th=80°C
37
Tc=80°C
56
W
±20
V
tSC
Tj≤150°C
6
µs
VCC
VGE=15V
360
V
Tjmax
175
°C
VRRM
600
V
Brake Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
16
Tc=80°C
21
30
Th=80°C
28
Tc=80°C
43
A
A
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 3
V23990-P545-*3*-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
0,8
1,16
1,13
0,90
0,78
8
11
1,6
Input Rectifier Diode
Forward voltage
VF
30
Threshold voltage (for power loss calc. only)
Vto
30
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink per chip
30
1500
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
V
V
mΩ
2
1,89
mA
K/W
Inverter Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
0,00029
20
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
5
5,8
6,5
1
1,55
1,75
2,2
0,0011
300
Rgoff=8 Ω
Rgon=16 Ω
300
±15
20
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
15
14
12
16
198
212
100
104
0,31
0,43
0,55
0,65
ns
mWs
1100
f=1MHz
0
Tj=25°C
25
pF
71
32
±15
480
20
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
120
nC
2,01
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Rgon=16 Ω
300
±15
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
copyright Vincotech
20
Thermal grease
thickness≤50um
λ = 1 W/mK
20
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,25
1,81
1,76
19
21
33
192
0,45
1,35
1454
1052
0,06
0,27
2,63
3
1,95
V
A
ns
µC
A/µs
mWs
K/W
Revision: 3
V23990-P545-*3*-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,1
1,64
1,86
1,9
Brake Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
VCE=VGE
VCE(sat)
0,00021
15
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,00085
300
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=8 Ω
Rgon=16 Ω
±15
300
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
15
14
11
14
128
145
91
94
0,20
0,28
0,32
0,40
ns
mWs
860
f=1MHz
0
Tj=25°C
25
55
pF
24
±15
480
15
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
87
nC
2,55
K/W
Brake Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
Reverse recovery time
Reverse recovered charge
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
Rgon=16 Ω
600
IRRM
trr
Peak rate of fall of recovery current
15
Rgon=16 Ω
300
±15
di(rec)max
/dt
Erec
RthJH
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,25
1,86
1,75
1,95
27
14
15
128
201
0,52
0,52
1307
657
0,10
0,21
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
3,35
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tc=100°C
Power dissipation constant
B-value
B(25/50)
Tol. ±3%
B-value
B(25/100)
Tol. ±3%
5
210
mW
Tj=25°C
3,5
mW/K
Tj=25°C
Tj=25°C
4
%
Tc=100°C
Tj=25°C
Vincotech NTC Reference
copyright Vincotech
-5
K
4000
K
A
Revision: 3
V23990-P545-*3*-PM
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
50
IC (A)
IC (A)
50
40
40
30
30
20
20
10
10
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
60
IC (A)
IF (A)
25
4
50
20
40
15
30
10
20
5
10
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
2
4
At
tp =
VCE =
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
0
12
At
tp =
5
1
250
2
3
V F (V)
4
µs
Revision: 3
V23990-P545-*3*-PM
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,5
E (mWs)
E (mWs)
1,5
1,2
Eon High T
1,2
Eon High T
Eon Low T
Eoff High T
0,9
0,9
Eoff Low T
Eoff High T
Eon Low T
0,6
0,6
Eoff Low T
0,3
0,3
0,0
0,0
0
10
20
30
I C (A)
40
0
With an inductive load at
Tj =
°C
25/125
VCE =
V
300
VGE =
15
V
Rgon =
16
Ω
Rgoff =
8
Ω
30
60
90
120
R G( Ω )
150
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
IC =
20
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter FWD
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
0,4
E (mWs)
0,4
Erec
Tj = Tjmax -25°C
0,3
0,3
Tj = Tjmax -25°C
0,2
0,2
Erec
Erec
Tj = 25°C
0,1
0,1
Tj = 25°C
Erec
0,0
0,0
0
10
20
30
I C (A)
0
40
With an inductive load at
Tj =
25/125
°C
VCE =
V
300
VGE =
15
V
Rgon =
16
Ω
copyright Vincotech
30
60
90
120
R G( Ω )
150
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
IC =
20
A
6
Revision: 3
V23990-P545-*3*-PM
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t ( µs)
t ( µs)
1,00
tdoff
tf
0,10
0,10
tf
tdon
tr
tr
tdon
0,01
0,01
0,00
0,00
0
10
20
30
I C (A)
0
40
With an inductive load at
Tj =
°C
125
VCE =
300
V
VGE =
15
V
Rgon =
16
Ω
Rgoff =
8
Ω
30
60
90
120
R G( Ω )
150
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
IC =
20
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,4
t rr( µs)
t rr( µs)
0,4
0,3
0,3
trr
0,2
trr
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,2
trr
0,1
0,1
Tj = 25°C
trr
Tj = 25°C
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
300
15
16
copyright Vincotech
20
30
I C (A)
40
°C
V
V
Ω
7
0
30
At
Tj =
VR =
IF =
VGE =
25/125
300
20
15
60
90
120
R g on ( Ω )
150
°C
V
A
V
Revision: 3
V23990-P545-*3*-PM
Output Inverter
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr( µC)
2,0
Qrr( µC)
2,0
Qrr
Tj = Tjmax -25°C
1,5
1,5
Qrr
1,0
1,0
Tj = Tjmax -25°C
Qrr
Tj = 25°C
0,5
0,5
Tj = 25°C
Qrr
0,0
0,0
0
At
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
300
15
16
20
30
I C (A)
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
30
At
Tj =
VR =
IF =
VGE =
25/125
300
20
15
40
Output inverter FWD
60
90
R g on ( Ω)
150
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
30
IrrM (A)
IrrM (A)
30
120
IRRM
25
25
IRRM
Tj = Tjmax -25°C
20
20
IRRM
Tj = 25°C
Tj = Tjmax - 25°C
Tj = 25°C
IRRM
15
15
10
10
5
5
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
300
15
16
copyright Vincotech
20
30
I C (A)
40
°C
V
V
Ω
8
0
30
At
Tj =
VR =
IF =
VGE =
25/125
300
20
15
60
90
120
R gon ( Ω )
150
°C
V
A
V
Revision: 3
V23990-P545-*3*-PM
Output Inverter
Output inverter FWD
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
2000
2000
dI0/dt
direc / dt (A/ µs)
direc / dt (A/µ s)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
dIrec/dt
1600
dIrec/dt
dI0/dt
1600
1200
1200
800
800
400
400
0
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
300
15
16
20
I C (A)
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
30
60
90
120
R gon ( Ω )
40
25/125
300
20
15
°C
V
A
V
Output inverter FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
150
ZthJH (K/W)
Zth-JH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
10-2
10-1
100
t p (s)
10-5
1
1010
At
D=
RthJH =
tp / T
2,01
Thermal grease
R (C/W)
0,09
0,31
0,94
0,38
0,14
0,14
10-3
K/W
IGBT thermal model values
Phase change interface
Tau (s)
2,9E+00
3,5E-01
8,8E-02
1,6E-02
2,9E-03
3,3E-04
copyright Vincotech
R (C/W)
0,07
0,25
0,76
0,31
0,11
0,12
10-4
R (C/W)
0,10
0,31
1,14
0,52
0,31
0,26
9
10-2
10-1
100
t p (s)
10110
tp / T
2,63
Thermal grease
Tau (s)
2,4E+00
2,9E-01
7,1E-02
1,3E-02
2,4E-03
2,7E-04
10-3
K/W
FWD thermal model values
Phase change interface
Tau (s)
3,6E+00
3,6E-01
8,0E-02
1,7E-02
2,9E-03
3,3E-04
R (C/W)
0,08
0,25
0,92
0,42
0,25
0,21
Tau (s)
2,9E+00
3,0E-01
6,5E-02
1,4E-02
2,3E-03
2,7E-04
Revision: 3
V23990-P545-*3*-PM
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
40
Ptot (W)
IC (A)
100
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
40
IF (A)
Ptot (W)
70
150
35
60
30
50
25
40
20
30
15
20
10
10
5
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T h ( o C)
200
°C
Revision: 3
V23990-P545-*3*-PM
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
VGE (V)
IC (A)
102
10uS
18
16
100uS
120V
14
101
480V
12
1mS
10
10mS
100
8
100mS
6
DC
4
10-1
2
0
0
10
0
102
101
At
D=
Th =
VGE =
V CE (V)
At
IC =
single pulse
80
ºC
15
V
Tjmax
ºC
Tj =
Output inverter IGBT
Figure 27
20
40
60
80
100
103
20
120
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Q g (nC)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
250
Ic(sc)
tsc (µS)
14
12
200
10
150
8
6
100
4
50
2
0
10
11
12
13
14
0
15
12
V GE (V)
14
16
At
VCE =
600
V
At
VCE ≤
600
V
Tj ≤
175
ºC
Tj =
175
ºC
copyright Vincotech
11
18
V GE (V)
20
Revision: 3
V23990-P545-*3*-PM
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
50
40
ICMAX
Ic CHIP
Ic MODULE
30
VCE MAX
20
10
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tjmax-25
Tj =
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright Vincotech
12
Revision: 3
V23990-P545-*3*-PM
Brake
Brake IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
30
IC (A)
IC (A)
30
25
25
20
20
15
15
10
10
5
5
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Brake IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Brake FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
IF (A)
IC (A)
20
V CE (V)
40
15
30
10
20
Tj = Tjmax-25°C
5
10
Tj = 25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
2
4
At
tp =
VCE =
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
0
12
At
tp =
13
1
250
2
3
V F (V)
4
µs
Revision: 3
V23990-P545-*3*-PM
Brake
Brake IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,0
E (mWs)
E (mWs)
0,8
Eon
Eon
0,8
Eoff
Tj = Tjmax -25°C
0,6
Eon
Eon
0,6
Eoff
0,4
Eoff
0,4
Tj = Tjmax -25°C
Tj = 25°C
Eoff
Tj = 25°C
0,2
0,2
0,0
0,0
0
10
20
0
I C (A) 30
With an inductive load at
Tj =
25/125
°C
VCE =
V
300
VGE =
15
V
Rgon =
16
Ω
Rgoff =
8
Ω
30
60
90
120
RG (Ω)
150
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
IC =
15
A
Brake FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,30
E (mWs)
E (mWs)
0,30
Erec
0,25
0,25
Tj = Tjmax - 25°C
0,20
0,20
Tj = Tjmax -25°C
Erec
0,15
0,15
Erec
0,10
0,10
Tj = 25°C
Tj = 25°C
0,05
0,05
Erec
0,00
0,00
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
25/125
°C
VCE =
V
300
VGE =
15
V
Rgon =
16
Ω
copyright Vincotech
30
60
90
120
RG (Ω)
150
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
IC =
15
A
14
Revision: 3
V23990-P545-*3*-PM
Brake
Brake IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( µs)
t ( µs)
1,00
tdoff
tf
0,10
tdoff
tf
0,10
tdon
tr
tdon
0,01
0,01
tr
0,00
0,00
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
25/125
°C
VCE =
V
300
VGE =
15
V
Rgon =
16
Ω
Rgoff =
8
Ω
30
60
90
120
RG (Ω)
150
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
IC =
15
A
Brake IGBT
101
101
ZthJH (K/W)
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
Brake FWD
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
10-4
At
Thermal grease
RthJH =
2,553
copyright Vincotech
10-3
D=
K/W
10-2
10-1
100
t p (s)
10-4
10-3
At
Thermal grease
RthJH =
3,35
D=
10-5
101 10
tp / T
Phase change interface
RthJH =
0,60
K/W
15
K/W
10-2
10-1
100
t p (s)
10110
tp / T
Phase change interface
RthJH =
1,27
K/W
Revision: 3
V23990-P545-*3*-PM
Brake
Brake IGBT
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
70
25
IC (A)
Ptot (W)
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
60
20
50
15
40
30
10
20
5
10
0
0
0
50
At
Tj =
100
150
T h ( o C)
0
200
At
Tj =
VGE =
ºC
175
Brake FWD
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
200
ºC
V
Brake FWD
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
25
IF (A)
Ptot (W)
60
T h ( o C)
50
20
40
15
30
10
20
5
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
16
50
175
100
150
Th ( o C)
200
ºC
Revision: 3
V23990-P545-*3*-PM
Input Rectifier Bridge
Rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
IF (A)
ZthJC (K/W)
101
80
100
60
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
20
Tj = Tjmax-25°C
Tj = 25°C
0
0,0
At
tp =
0,5
250
1,0
1,5
V F (V)
2,0
10-2
10-5
10-4
At
D=
RthJH =
µs
Rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
t p (s)
10110
tp / T
1,89
K/W
Rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
60
Ptot (W)
IF (A)
100
100
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
copyright Vincotech
100
T h ( o C)
150
0
At
Tj =
ºC
17
50
150
100
T h ( o C)
150
ºC
Revision: 3
V23990-P545-*3*-PM
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
24000
Thermistor
Figure 2
Typical NTC resistance values
R/Ω
R(T ) = R25 ⋅ e



 B25/100⋅ 1 − 1  
 T T 

25  


[Ω]
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
18
Revision: 3
V23990-P545-*3*-PM
Switching Definitions Output Inverter
General conditions
= 125 °C
Tj
= 16 Ω
Rgon
Rgoff
=
8Ω
Output inverter IGBT
Figure 1
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Output inverter IGBT
Figure 2
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
250
%
%
IC
tdoff
200
100
VGE 90%
VCE 90%
150
IC
50
VCE
100
tEoff
VGE
tdon
50
IC 1%
VCE
0
VGE
-50
-0,2
0
0,2
0,4
0
15
300
20
0,21
0,51
tEon
-50
0,6
2,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
VCE 3%
IC 10%
VGE 10%
0
3
3,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
Turn-off Switching Waveforms & definition of tf
0
15
300
20
0,01
0,19
3,2
time(us)
3,3
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-on Switching Waveforms & definition of tr
150
205
Ic
%
%
175
fitted
IC
VCE
100
145
IC 90%
115
IC 60%
VCE
50
IC 40%
IC 90%
85
IC10%
tf
0
tr
55
25
IC 10%
-50
-5
0,1
0,15
0,2
0,25
0,3
0,35
0,4
3
3,05
3,1
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
300
20
0,10
3,15
3,2
time(us)
time (us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
19
300
20
0,02
V
A
µs
Revision: 3
V23990-P545-*3*-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Turn-off Switching Waveforms & definition of tEoff
Output inverter IGBT
Figure 6
Turn-on Switching Waveforms & definition of tEon
175
120
IC 1%
%
Pon
%
150
100
Poff
Eoff
125
80
Eon
100
60
75
40
50
20
25
VGE 90%
VGE 10%
0
-20
-0,1
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
0,2
5,99
0,65
0,51
0,3
0,4
time (us)
tEon
-25
0,5
2,9
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Figure 7
Gate voltage vs Gate charge (measured)
VCE 3%
0
tEoff
Output inverter FWD
3,1
5,99
0,43
0,19
3,2
time(us)
3,3
kW
mJ
µs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
VGE (V)
120
Id
%
80
15
trr
40
10
Vd
fitted
0
IRRM 10%
5
-40
0
-80
IRRM 90%
IRRM 100%
-120
-5
-50
0
50
100
150
3
200
3,1
3,2
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
0
15
300
20
174,72
3,3
3,4
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
20
300
20
21
0,19
V
A
A
µs
Revision: 3
V23990-P545-*3*-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
150
%
%
Erec
Id
100
100
tErec
75
tQrr
50
50
Qrr
0
25
Prec
-50
0
-25
-100
2,9
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
3,1
3,3
20
1,35
0,41
3,5
time(us)
3
3,7
3,2
3,4
3,6
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
21
5,99
0,27
0,41
kW
mJ
µs
Revision: 3
V23990-P545-*3*-PM
Ordering Code and Marking - Features - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
in packaging barcode as
without thermal paste 12mm 2 clips housing
without thermal paste 17mm 2 clips housing
V23990-P545-A38-PM
V23990-P545-A39-PM
V23990-P545-B138-PM
V23990-P545-B139-PM
V23990-P545-C38-PM
V23990-P545-C39-PM
V23990-P545-D138-PM
V23990-P545-D139-PM
P545-A38
P545-A39
P545-B138
P545-B139
P545-C38
P545-C39
P545-D138
P545-D139
P545-A38
P545-A39
P545-B138
P545-B139
P545-C38
P545-C39
P545-D138
P545-D139
without thermal paste 12mm 2 clips housing
without thermal paste 17mm 2 clips housing
without thermal paste 12mm 2 clips housing
without thermal paste 17mm 2 clips housing
without thermal paste 12mm 2 clips housing
without thermal paste 17mm 2 clips housing
Features
Rectifier
Break IGBT
Break FWD
Inverter IGBT
Inverter FWD
A version
3-leg
B version
2-leg w/o pin 23
C version
3-leg
D version
2-leg w/o pin 23
w/o pin 4,5,20
w/o pin 4,5,20
Outline
Pin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Pin Table
X
25,5
25,5
22,8
20,1
16,2
13,5
10,8
8,1
5,4
2,7
0
0
0
7,5
7,5
15
15
22,8
25,5
33,5
33,5
33,5
33,5
Y
2,7
0
0
0
0
0
0
0
0
0
0
19,8
22,5
19,8
22,5
19,8
22,5
22,5
22,5
22,5
15
7,5
0
Pinout
copyright Vincotech
22
Revision: 3
V23990-P545-*3*-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause
the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
23
Revision: 3