V23990-P545-*3*-PM flowPIM 0 600V/20A Features flowPIM 0 housing ● Vincotech clip-in housing ● Trench Fieldstop IGBT's for low saturation losses ● Optional w/o BRC 12mm housing Target Applications 17mm housing Schematic ● Industrial drives ● Embedded drives Types ● V23990-P545-A38-PM ● V23990-P545-A39-PM ● V23990-P545-B138-PM ● V23990-P545-B139-PM ● V23990-P545-C38-PM ● V23990-P545-C39-PM ● V23990-P545-D138-PM ● V23990-P545-D139-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V Input Rectifier Diode Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2 t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax tp=10ms 50Hz half sine wave Tj=Tjmax Th=80°C 33 Tc=80°C 46 A 250 A 310 A 2s Tj=25°C Th=80°C 37 Tc=80°C 59 W Tjmax 150 °C VCE 600 V Inverter Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C 23 Tc=80°C 30 A tp limited by Tjmax 60 A VCE ≤ 600V, Tj ≤ Top max 60 A Tj=Tjmax Th=80°C 47 Tc=80°C 72 W ±20 V tSC Tj≤150°C 6 µs VCC VGE=15V 360 V 175 °C Tjmax 1 Revision: 3 V23990-P545-*3*-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C 27 Tc=80°C 35 40 Th=80°C 36 Tc=80°C 55 Tjmax A A W 175 °C 600 V Brake Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpuls Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings Maximum Junction Temperature Tj=Tjmax Th=80°C 17 Tc=80°C 22 A tp limited by Tjmax 45 A VCE ≤ 600V, Tj ≤ Top max 45 A Tj=Tjmax Th=80°C 37 Tc=80°C 56 W ±20 V tSC Tj≤150°C 6 µs VCC VGE=15V 360 V Tjmax 175 °C VRRM 600 V Brake Diode Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Th=80°C 16 Tc=80°C 21 30 Th=80°C 28 Tc=80°C 43 A A W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 3 V23990-P545-*3*-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=150°C 0,8 1,16 1,13 0,90 0,78 8 11 1,6 Input Rectifier Diode Forward voltage VF 30 Threshold voltage (for power loss calc. only) Vto 30 Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink per chip 30 1500 RthJH Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE V V mΩ 2 1,89 mA K/W Inverter Transistor Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) 0,00029 20 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 5 5,8 6,5 1 1,55 1,75 2,2 0,0011 300 Rgoff=8 Ω Rgon=16 Ω 300 ±15 20 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none td(on) td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 15 14 12 16 198 212 100 104 0,31 0,43 0,55 0,65 ns mWs 1100 f=1MHz 0 Tj=25°C 25 pF 71 32 ±15 480 20 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 120 nC 2,01 K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Rgon=16 Ω 300 ±15 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH copyright Vincotech 20 Thermal grease thickness≤50um λ = 1 W/mK 20 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,25 1,81 1,76 19 21 33 192 0,45 1,35 1454 1052 0,06 0,27 2,63 3 1,95 V A ns µC A/µs mWs K/W Revision: 3 V23990-P545-*3*-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,1 1,64 1,86 1,9 Brake Transistor Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) VCE=VGE VCE(sat) 0,00021 15 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,00085 300 none tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Rgoff=8 Ω Rgon=16 Ω ±15 300 15 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 15 14 11 14 128 145 91 94 0,20 0,28 0,32 0,40 ns mWs 860 f=1MHz 0 Tj=25°C 25 55 pF 24 ±15 480 15 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 87 nC 2,55 K/W Brake Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir Reverse recovery time Reverse recovered charge Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip Rgon=16 Ω 600 IRRM trr Peak rate of fall of recovery current 15 Rgon=16 Ω 300 ±15 di(rec)max /dt Erec RthJH 15 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,25 1,86 1,75 1,95 27 14 15 128 201 0,52 0,52 1307 657 0,10 0,21 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 3,35 K/W 22000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P Tj=25°C R100=1486 Ω Tc=100°C Power dissipation constant B-value B(25/50) Tol. ±3% B-value B(25/100) Tol. ±3% 5 210 mW Tj=25°C 3,5 mW/K Tj=25°C Tj=25°C 4 % Tc=100°C Tj=25°C Vincotech NTC Reference copyright Vincotech -5 K 4000 K A Revision: 3 V23990-P545-*3*-PM Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 50 IC (A) IC (A) 50 40 40 30 30 20 20 10 10 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 60 IC (A) IF (A) 25 4 50 20 40 15 30 10 20 5 10 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 2 4 At tp = VCE = 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 0 12 At tp = 5 1 250 2 3 V F (V) 4 µs Revision: 3 V23990-P545-*3*-PM Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 1,5 E (mWs) E (mWs) 1,5 1,2 Eon High T 1,2 Eon High T Eon Low T Eoff High T 0,9 0,9 Eoff Low T Eoff High T Eon Low T 0,6 0,6 Eoff Low T 0,3 0,3 0,0 0,0 0 10 20 30 I C (A) 40 0 With an inductive load at Tj = °C 25/125 VCE = V 300 VGE = 15 V Rgon = 16 Ω Rgoff = 8 Ω 30 60 90 120 R G( Ω ) 150 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V IC = 20 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter FWD Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 0,4 E (mWs) 0,4 Erec Tj = Tjmax -25°C 0,3 0,3 Tj = Tjmax -25°C 0,2 0,2 Erec Erec Tj = 25°C 0,1 0,1 Tj = 25°C Erec 0,0 0,0 0 10 20 30 I C (A) 0 40 With an inductive load at Tj = 25/125 °C VCE = V 300 VGE = 15 V Rgon = 16 Ω copyright Vincotech 30 60 90 120 R G( Ω ) 150 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V IC = 20 A 6 Revision: 3 V23990-P545-*3*-PM Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t ( µs) t ( µs) 1,00 tdoff tf 0,10 0,10 tf tdon tr tr tdon 0,01 0,01 0,00 0,00 0 10 20 30 I C (A) 0 40 With an inductive load at Tj = °C 125 VCE = 300 V VGE = 15 V Rgon = 16 Ω Rgoff = 8 Ω 30 60 90 120 R G( Ω ) 150 With an inductive load at Tj = 125 °C VCE = 300 V VGE = 15 V IC = 20 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,4 t rr( µs) t rr( µs) 0,4 0,3 0,3 trr 0,2 trr Tj = Tjmax -25°C Tj = Tjmax -25°C 0,2 trr 0,1 0,1 Tj = 25°C trr Tj = 25°C 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 10 25/125 300 15 16 copyright Vincotech 20 30 I C (A) 40 °C V V Ω 7 0 30 At Tj = VR = IF = VGE = 25/125 300 20 15 60 90 120 R g on ( Ω ) 150 °C V A V Revision: 3 V23990-P545-*3*-PM Output Inverter Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr( µC) 2,0 Qrr( µC) 2,0 Qrr Tj = Tjmax -25°C 1,5 1,5 Qrr 1,0 1,0 Tj = Tjmax -25°C Qrr Tj = 25°C 0,5 0,5 Tj = 25°C Qrr 0,0 0,0 0 At At Tj = VCE = VGE = Rgon = 10 25/125 300 15 16 20 30 I C (A) °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 30 At Tj = VR = IF = VGE = 25/125 300 20 15 40 Output inverter FWD 60 90 R g on ( Ω) 150 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 30 IrrM (A) IrrM (A) 30 120 IRRM 25 25 IRRM Tj = Tjmax -25°C 20 20 IRRM Tj = 25°C Tj = Tjmax - 25°C Tj = 25°C IRRM 15 15 10 10 5 5 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 300 15 16 copyright Vincotech 20 30 I C (A) 40 °C V V Ω 8 0 30 At Tj = VR = IF = VGE = 25/125 300 20 15 60 90 120 R gon ( Ω ) 150 °C V A V Revision: 3 V23990-P545-*3*-PM Output Inverter Output inverter FWD Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 2000 2000 dI0/dt direc / dt (A/ µs) direc / dt (A/µ s) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) dIrec/dt 1600 dIrec/dt dI0/dt 1600 1200 1200 800 800 400 400 0 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 300 15 16 20 I C (A) 30 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 30 60 90 120 R gon ( Ω ) 40 25/125 300 20 15 °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 150 ZthJH (K/W) Zth-JH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 10-2 10-1 100 t p (s) 10-5 1 1010 At D= RthJH = tp / T 2,01 Thermal grease R (C/W) 0,09 0,31 0,94 0,38 0,14 0,14 10-3 K/W IGBT thermal model values Phase change interface Tau (s) 2,9E+00 3,5E-01 8,8E-02 1,6E-02 2,9E-03 3,3E-04 copyright Vincotech R (C/W) 0,07 0,25 0,76 0,31 0,11 0,12 10-4 R (C/W) 0,10 0,31 1,14 0,52 0,31 0,26 9 10-2 10-1 100 t p (s) 10110 tp / T 2,63 Thermal grease Tau (s) 2,4E+00 2,9E-01 7,1E-02 1,3E-02 2,4E-03 2,7E-04 10-3 K/W FWD thermal model values Phase change interface Tau (s) 3,6E+00 3,6E-01 8,0E-02 1,7E-02 2,9E-03 3,3E-04 R (C/W) 0,08 0,25 0,92 0,42 0,25 0,21 Tau (s) 2,9E+00 3,0E-01 6,5E-02 1,4E-02 2,3E-03 2,7E-04 Revision: 3 V23990-P545-*3*-PM Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 40 Ptot (W) IC (A) 100 80 30 60 20 40 10 20 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 40 IF (A) Ptot (W) 70 150 35 60 30 50 25 40 20 30 15 20 10 10 5 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 175 100 150 T h ( o C) 200 °C Revision: 3 V23990-P545-*3*-PM Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) VGE (V) IC (A) 102 10uS 18 16 100uS 120V 14 101 480V 12 1mS 10 10mS 100 8 100mS 6 DC 4 10-1 2 0 0 10 0 102 101 At D= Th = VGE = V CE (V) At IC = single pulse 80 ºC 15 V Tjmax ºC Tj = Output inverter IGBT Figure 27 20 40 60 80 100 103 20 120 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Q g (nC) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 250 Ic(sc) tsc (µS) 14 12 200 10 150 8 6 100 4 50 2 0 10 11 12 13 14 0 15 12 V GE (V) 14 16 At VCE = 600 V At VCE ≤ 600 V Tj ≤ 175 ºC Tj = 175 ºC copyright Vincotech 11 18 V GE (V) 20 Revision: 3 V23990-P545-*3*-PM IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 50 40 ICMAX Ic CHIP Ic MODULE 30 VCE MAX 20 10 0 0 100 200 300 400 500 600 700 V CE (V) At Tjmax-25 Tj = Uccminus=Uccplus ºC Switching mode : 3 level switching copyright Vincotech 12 Revision: 3 V23990-P545-*3*-PM Brake Brake IGBT Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) 30 IC (A) IC (A) 30 25 25 20 20 15 15 10 10 5 5 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Brake IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Brake FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 50 IF (A) IC (A) 20 V CE (V) 40 15 30 10 20 Tj = Tjmax-25°C 5 10 Tj = 25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 2 4 At tp = VCE = 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 0 12 At tp = 13 1 250 2 3 V F (V) 4 µs Revision: 3 V23990-P545-*3*-PM Brake Brake IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 1,0 E (mWs) E (mWs) 0,8 Eon Eon 0,8 Eoff Tj = Tjmax -25°C 0,6 Eon Eon 0,6 Eoff 0,4 Eoff 0,4 Tj = Tjmax -25°C Tj = 25°C Eoff Tj = 25°C 0,2 0,2 0,0 0,0 0 10 20 0 I C (A) 30 With an inductive load at Tj = 25/125 °C VCE = V 300 VGE = 15 V Rgon = 16 Ω Rgoff = 8 Ω 30 60 90 120 RG (Ω) 150 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V IC = 15 A Brake FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,30 E (mWs) E (mWs) 0,30 Erec 0,25 0,25 Tj = Tjmax - 25°C 0,20 0,20 Tj = Tjmax -25°C Erec 0,15 0,15 Erec 0,10 0,10 Tj = 25°C Tj = 25°C 0,05 0,05 Erec 0,00 0,00 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 25/125 °C VCE = V 300 VGE = 15 V Rgon = 16 Ω copyright Vincotech 30 60 90 120 RG (Ω) 150 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V IC = 15 A 14 Revision: 3 V23990-P545-*3*-PM Brake Brake IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( µs) t ( µs) 1,00 tdoff tf 0,10 tdoff tf 0,10 tdon tr tdon 0,01 0,01 tr 0,00 0,00 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 25/125 °C VCE = V 300 VGE = 15 V Rgon = 16 Ω Rgoff = 8 Ω 30 60 90 120 RG (Ω) 150 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V IC = 15 A Brake IGBT 101 101 ZthJH (K/W) 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 Brake FWD Figure 12 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 10-4 At Thermal grease RthJH = 2,553 copyright Vincotech 10-3 D= K/W 10-2 10-1 100 t p (s) 10-4 10-3 At Thermal grease RthJH = 3,35 D= 10-5 101 10 tp / T Phase change interface RthJH = 0,60 K/W 15 K/W 10-2 10-1 100 t p (s) 10110 tp / T Phase change interface RthJH = 1,27 K/W Revision: 3 V23990-P545-*3*-PM Brake Brake IGBT Brake IGBT Figure 14 Collector current as a function of heatsink temperature IC = f(Th) 70 25 IC (A) Ptot (W) Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) 60 20 50 15 40 30 10 20 5 10 0 0 0 50 At Tj = 100 150 T h ( o C) 0 200 At Tj = VGE = ºC 175 Brake FWD Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 200 ºC V Brake FWD Figure 16 Forward current as a function of heatsink temperature IF = f(Th) 25 IF (A) Ptot (W) 60 T h ( o C) 50 20 40 15 30 10 20 5 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 16 50 175 100 150 Th ( o C) 200 ºC Revision: 3 V23990-P545-*3*-PM Input Rectifier Bridge Rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 IF (A) ZthJC (K/W) 101 80 100 60 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 20 Tj = Tjmax-25°C Tj = 25°C 0 0,0 At tp = 0,5 250 1,0 1,5 V F (V) 2,0 10-2 10-5 10-4 At D= RthJH = µs Rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 t p (s) 10110 tp / T 1,89 K/W Rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 60 Ptot (W) IF (A) 100 100 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 T h ( o C) 150 0 At Tj = ºC 17 50 150 100 T h ( o C) 150 ºC Revision: 3 V23990-P545-*3*-PM Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic 24000 Thermistor Figure 2 Typical NTC resistance values R/Ω R(T ) = R25 ⋅ e B25/100⋅ 1 − 1 T T 25 [Ω] 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 18 Revision: 3 V23990-P545-*3*-PM Switching Definitions Output Inverter General conditions = 125 °C Tj = 16 Ω Rgon Rgoff = 8Ω Output inverter IGBT Figure 1 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Output inverter IGBT Figure 2 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 250 % % IC tdoff 200 100 VGE 90% VCE 90% 150 IC 50 VCE 100 tEoff VGE tdon 50 IC 1% VCE 0 VGE -50 -0,2 0 0,2 0,4 0 15 300 20 0,21 0,51 tEon -50 0,6 2,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = VCE 3% IC 10% VGE 10% 0 3 3,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 Turn-off Switching Waveforms & definition of tf 0 15 300 20 0,01 0,19 3,2 time(us) 3,3 V V V A µs µs Output inverter IGBT Figure 4 Turn-on Switching Waveforms & definition of tr 150 205 Ic % % 175 fitted IC VCE 100 145 IC 90% 115 IC 60% VCE 50 IC 40% IC 90% 85 IC10% tf 0 tr 55 25 IC 10% -50 -5 0,1 0,15 0,2 0,25 0,3 0,35 0,4 3 3,05 3,1 VC (100%) = IC (100%) = tf = copyright Vincotech 300 20 0,10 3,15 3,2 time(us) time (us) VC (100%) = IC (100%) = tr = V A µs 19 300 20 0,02 V A µs Revision: 3 V23990-P545-*3*-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Turn-off Switching Waveforms & definition of tEoff Output inverter IGBT Figure 6 Turn-on Switching Waveforms & definition of tEon 175 120 IC 1% % Pon % 150 100 Poff Eoff 125 80 Eon 100 60 75 40 50 20 25 VGE 90% VGE 10% 0 -20 -0,1 0 Poff (100%) = Eoff (100%) = tEoff = 0,1 0,2 5,99 0,65 0,51 0,3 0,4 time (us) tEon -25 0,5 2,9 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs Figure 7 Gate voltage vs Gate charge (measured) VCE 3% 0 tEoff Output inverter FWD 3,1 5,99 0,43 0,19 3,2 time(us) 3,3 kW mJ µs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 VGE (V) 120 Id % 80 15 trr 40 10 Vd fitted 0 IRRM 10% 5 -40 0 -80 IRRM 90% IRRM 100% -120 -5 -50 0 50 100 150 3 200 3,1 3,2 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech 0 15 300 20 174,72 3,3 3,4 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 20 300 20 21 0,19 V A A µs Revision: 3 V23990-P545-*3*-PM Switching Definitions Output Inverter Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 150 % % Erec Id 100 100 tErec 75 tQrr 50 50 Qrr 0 25 Prec -50 0 -25 -100 2,9 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 3,1 3,3 20 1,35 0,41 3,5 time(us) 3 3,7 3,2 3,4 3,6 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 21 5,99 0,27 0,41 kW mJ µs Revision: 3 V23990-P545-*3*-PM Ordering Code and Marking - Features - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as without thermal paste 12mm 2 clips housing without thermal paste 17mm 2 clips housing V23990-P545-A38-PM V23990-P545-A39-PM V23990-P545-B138-PM V23990-P545-B139-PM V23990-P545-C38-PM V23990-P545-C39-PM V23990-P545-D138-PM V23990-P545-D139-PM P545-A38 P545-A39 P545-B138 P545-B139 P545-C38 P545-C39 P545-D138 P545-D139 P545-A38 P545-A39 P545-B138 P545-B139 P545-C38 P545-C39 P545-D138 P545-D139 without thermal paste 12mm 2 clips housing without thermal paste 17mm 2 clips housing without thermal paste 12mm 2 clips housing without thermal paste 17mm 2 clips housing without thermal paste 12mm 2 clips housing without thermal paste 17mm 2 clips housing Features Rectifier Break IGBT Break FWD Inverter IGBT Inverter FWD A version 3-leg B version 2-leg w/o pin 23 C version 3-leg D version 2-leg w/o pin 23 w/o pin 4,5,20 w/o pin 4,5,20 Outline Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Pin Table X 25,5 25,5 22,8 20,1 16,2 13,5 10,8 8,1 5,4 2,7 0 0 0 7,5 7,5 15 15 22,8 25,5 33,5 33,5 33,5 33,5 Y 2,7 0 0 0 0 0 0 0 0 0 0 19,8 22,5 19,8 22,5 19,8 22,5 22,5 22,5 22,5 15 7,5 0 Pinout copyright Vincotech 22 Revision: 3 V23990-P545-*3*-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 23 Revision: 3