V23990-P623-L82-PM flow BOOST 0 650V/50A Features flow 0 12mm housing ● High efficiency dual boost ● Ultra fast switching frequency ● Low Inductance Layout ● 650V IGBT and 650V Stealth Si boost diode ● Antiparallel IGBT protection diode with high current Target Applications ● solar inverter Schematic Types ● V23990-P623-L82-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 32 43 A 220 A 200 A2s 42 64 W Tjmax 150 °C VCES 650 V 43 57 A tp limited by Tjmax 150 A Tj≤ 175°C, VCE≤ 650 150 A 84 128 W Bypass Diode ( D7 , D8 ) Repetitive peak reverse voltage VRRM Forward average current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C Tc=80°C Boost IGBT ( T1 , T2 ) Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Turn off safe operating area Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE ±20 V Tjmax 175 °C Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax 1 Revision: 2.1 V23990-P623-L82-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 650 V 51 64 A 225 A 250 As 100 A 88 134 W 175 °C 650 V 21 27 A 50 A 12,5 A2s 20 A Boost FWD ( D1, D4 ) Peak Repetitive Reverse Voltage VRRM Forward average current IFAV Surge forward current IFSM Th=80°C Tj=Tjmax Tc=80°C tp=10ms Tj=25°C 2 I2t-value It Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Tjmax 2 Boost Inverse Diode ( D9 , D10 ) VRRM Tc=25°C Forward average current IFAV Tj=Tjmax Th=80°C Tc=80°C Surge forward current IFSM tp=10ms Tj=25°C Peak Repetitive Reverse Voltage I2t I2t-value Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 42 W 63 Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech t=2s DC voltage 2 Revision: 2.1 V23990-P623-L82-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,21 1,19 0,92 0,80 0,012 0,015 1,9 Bypass Diode ( D7 , D8 ) Forward voltage VF 25 Threshold voltage (for power loss calc. only) Vto 25 Slope resistance (for power loss calc. only) rt 25 Reverse current Ir Thermal resistance chip to heatsink per chip 1500 RthJH Phase-Change Material VGE(th) VGE=VCE V V Ω 0,05 1,67 mA K/W Boost IGBT ( T1 , T2 ) Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) 0,0005 15 50 Collector-emitter cut-off ICES 0 650 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Turn-on delay time Rise time Turn-off delay time 3,3 4 4,7 1 1,82 2,00 2,5 0,04 200 none Rgint td(on) tr td(off) tf Fall time Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Rgoff=8 Ω Rgon=8 Ω 400 15 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 23 22 5 7 142 168 3 7 0,370 0,598 0,147 0,285 ns mWs 3000 f=1MHz 0 25 Tj=25°C 50 pF 11 15 520 50 Tj=25°C Phase-Change Material 120 nC 1,13 K/W Boost FWD ( D1, D4 ) Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Erec Peak rate of fall of recovery current Thermal resistance chip to heatsink per chip Copyright by Vincotech 50 650 Rgon=8 Ω 400 15 di(rec)max /dt RthJH Phase-Change Material 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 2,27 1,90 15 40 56 19 56 0,477 1,458 0,053 0,281 8359 3588 1,08 3 2,8 V µA A ns µC mWs A/µs K/W Revision: 2.1 V23990-P623-L82-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value Unit IC [A] or IF [A] or ID [A] Tj Min Typ Max 20 Tj=25°C Tj=125°C 1,00 1,67 1,54 2,00 Boost Inverse Diode ( D9 , D10 ) Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH Phase-Change Material 2,28 V K/W Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P T=25°C R100=1486 Ω T=100°C Power dissipation constant +4,5 T=25°C 210 mW 3,5 mW/K K B(25/50) T=25°C 3884 B-value B(25/100) T=25°C 3964 Copyright by Vincotech % T=25°C B-value Vincotech NTC Reference Ω 21511 -4,5 K F 4 Revision: 2.1 V23990-P623-L82-PM Boost Inverse Diode ( D9 , D10 ) Boost Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) Boost Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 40 1 ZthJC (K/W) IF (A) 10 30 100 20 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 Tj = Tjmax-25°C Tj = 25°C 0 0 At tp = 1 2 3 V F (V) 10-2 4 10 At D= RthJH = µs 250 -5 Boost Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10 -4 10 tp / T 2,28 -3 10 -2 -1 10 0 t p (s) 1 10 10 K/W Boost Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 30 Ptot (W) IF (A) 80 10 25 60 20 40 15 10 20 5 0 0 0 At Tj = 50 175 100 150 Th ( o C) 200 0 At Tj = ºC Copyright by Vincotech 5 50 175 100 150 Th ( o C) 200 ºC Revision: 2.1 V23990-P623-L82-PM INPUT BOOST ( T1 , T2 / D1 , D4 ) BOOST IGBT Figure 1 Typical output characteristics ID = f(VDS) BOOST IGBT Figure 2 Typical output characteristics ID = f(VDS) 180 IC(A) IC (A) 180 150 150 120 120 90 90 60 60 30 30 0 0 0 At tp = Tj = VGS from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGS from µs 250 25 °C 8 V to 18 V in steps of 1 V BOOST IGBT Figure 3 Typical transfer characteristics ID = f(VGS) 1 2 3 4 5 µs 250 125 °C 8 V to 18 V in steps of 1 V BOOST FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 200 IF (A) ID (A) 50 V CE (V) 40 150 30 100 20 50 10 Tj = Tjmax-25°C Tj = 25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VDS = 2 100 10 4 6 V GS (V) 8 0 At tp = µs V Copyright by Vincotech 6 1 250 2 3 4 V F (V) 5 µs Revision: 2.1 V23990-P623-L82-PM INPUT BOOST ( T1 , T2 / D1 , D4 ) BOOST IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(ID) BOOST IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 1,2 E (mWs) E (mWs) 1,2 Eon High T Eon High T 1 1 Eon Low T 0,8 0,8 Eon Low T 0,6 0,6 Eoff High T 0,4 0,4 Eoff High T Eoff Low T Eoff Low T 0,2 0,2 0 0 0 0 10 20 30 40 50 I C (A) 8 16 24 32 60 With an inductive load at Tj = °C 25/126 VDS = 400 V VGS = 15 V Rgon = 8 Ω Rgoff = 8 Ω RG (Ω ) 40 With an inductive load at Tj = 25/126 °C VDS = 400 V VGS = 15 V ID = 30 A BOOST FWD Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) BOOST FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,4 E (mWs) E (mWs) 0,5 Erec High T 0,4 0,3 0,3 Erec High T 0,2 0,2 0,1 Erec Low T 0,1 Erec Low T 0 0 0 10 20 30 40 50 I C (A) 60 0 With an inductive load at Tj = °C 25/126 VDS = 400 V VGS = 15 V Rgon = 8 Ω Rgoff = 8 Ω Copyright by Vincotech 8 16 24 32 RG(Ω ) 40 With an inductive load at Tj = 25/126 °C VDS = 400 V VGS = 15 V ID = 30 A 7 Revision: 2.1 V23990-P623-L82-PM INPUT BOOST ( T1 , T2 / D1 , D4 ) BOOST IGBT Figure 9 Typical switching times as a function of collector current t = f(ID) BOOST IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( ms) t ( ms) 1 tdoff tdoff 0,1 0,1 tdon tdon tr tr 0,01 0,01 tf 0,001 0,001 0 10 20 30 40 50 I D (A) 0 60 With an inductive load at Tj = 126 °C VDS = 400 V VGS = 15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 R G (Ω) 40 With an inductive load at Tj = 126 °C VDS = 400 V VGS = 15 V IC = 30 A BOOST FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) BOOST FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,1 t rr( ms) t rr( ms) 0,1 trr High T trr High T 0,08 0,08 0,06 0,06 0,04 0,04 trr Low T trr Low T 0,02 0,02 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/126 400 15 8 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 8 8 25/126 400 30 15 16 24 32 R Gon (Ω) 40 °C V A V Revision: 2.1 V23990-P623-L82-PM INPUT BOOST ( T1 , T2 / D1 , D4 ) BOOST FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) BOOST FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 1,8 Qrr ( µC) Qrr ( µC) 2,5 Qrr High T 1,5 2 Qrr High T 1,2 1,5 0,9 1 0,6 Qrr Low T Qrr Low T 0,5 0,3 0 0 0 At At Tj = VCE = VGE = Rgon = 10 25/126 400 15 8 20 30 40 50 I C (A) 0 60 At Tj = VR = IF = VGS = °C V V Ω BOOST FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 8 25/126 400 30 15 16 24 32 R Gon ( Ω) 40 °C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 80 IrrM (A) IrrM (A) 75 IRRM High T 60 60 45 IRRM Low T 40 IRRM High T 30 IRRM Low T 20 15 0 0 0 10 At Tj = VCE = VGE = Rgon = 25/126 400 15 8 20 30 40 50 I C (A) 60 °C V V Ω Copyright by Vincotech 9 0 8 At Tj = VR = IF = VGS = 25/126 400 30 15 16 24 32 R Gon (Ω) 40 °C V A V Revision: 2.1 V23990-P623-L82-PM INPUT BOOST ( T1 , T2 / D1 , D4 ) BOOST FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 15000 direc / dt (A/ µs) direc / dt (A/ µs) 15000 dIrec/dt dI0/dt 12000 dI0/dt dIrec/dt 12000 9000 9000 6000 6000 3000 3000 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/126 400 15 8 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGS = °C V V Ω BOOST IGBT Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 8 25/126 400 30 15 16 24 32 R Gon ( Ω) 40 °C V A V BOOST FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 -2 10-5 10-4 At D= RthJH = 10-3 10-2 10-1 100 t p (s) 10110 10-5 At D= RthJH = tp / T 1,13 K/W IGBT thermal model values R (C/W) 7,12E-02 1,29E-01 4,31E-01 3,15E-01 1,31E-01 5,02E-02 10-3 10-2 10-1 100 t p (s) 10110 tp / T 1,08 K/W FWD thermal model values Tau (s) 8,15E+00 6,00E-01 9,13E-02 2,59E-02 5,80E-03 8,53E-04 Copyright by Vincotech 10-4 R (C/W) 5,58E-02 1,01E-01 4,35E-01 2,93E-01 1,10E-01 8,25E-02 10 Tau (s) 4,07E+00 6,75E-01 9,24E-02 2,59E-02 4,04E-03 8,42E-04 Revision: 2.1 V23990-P623-L82-PM INPUT BOOST ( T1 , T2 / D1 , D4 ) BOOST IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) BOOST IGBT Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 75 IC (A) Ptot (W) 175 150 60 125 45 100 75 30 50 15 25 0 0 0 At Tj = 50 100 150 Th ( o C) 200 0 At Tj = VGS = ºC 175 BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 200 ºC V BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 75 IF (A) Ptot (W) 175 Th ( o C) 150 60 125 45 100 75 30 50 15 25 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 11 50 175 100 150 T h ( o C) 200 ºC Revision: 2.1 V23990-P623-L82-PM INPUT BOOST ( T1 , T2 / D1 , D4 ) BOOST IGBT Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) VGS = f(Qg) 3 UGS (V) 15 ID (A) 10 10 BOOST IGBT Figure 26 Gate voltage vs Gate charge 2 12 1 100uS 130V 520V 9 100mS 10mS 1mS 101 6 DC 100 3 10-1 0 100 At D= Th = VGS = 101 10 2 10 3 0 V DS (V) At IC = single pulse ºC 80 V 15 Tjmax ºC Tj = 20 50 40 60 80 100 Qg (nC) 120 A IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 125 IC MAX Ic CHIP 100 Ic MODULE 75 VCE MAX 50 25 0 0 100 200 300 400 500 600 700 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching Copyright by Vincotech Rgon = Rgoff = 8 8 Ω Ω 12 Revision: 2.1 V23990-P623-L82-PM Bypass Diode ( D7 , D8 ) Bypass diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Bypass diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 1 ZthJC (K/W) IF (A) 10 80 100 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 40 10-1 20 Tj = Tjmax-25°C Tj = 25°C 0 10 0 0,5 At tp = 1 1,5 2 V F (V) 2,5 10 -5 10 At D= RthJH = µs 250 -2 Bypass diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) -4 10 -3 10 -2 10 -1 10 t p (s) 1 10 10 tp / T 1,67 K/W Bypass diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 50 Ptot (W) IF (A) 100 0 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 13 50 150 100 150 T h ( o C) 200 ºC Revision: 2.1 V23990-P623-L82-PM Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 14 Revision: 2.1 V23990-P623-L82-PM Switching Definitions INPUT BOOST General conditions = 125 °C Tj = 8Ω Rgon Rgoff = 8Ω Input Boost IGBT Figure 1 Input Boost IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 300 tdoff % % VCE 250 100 VGE 90% VCE 90% 200 75 IC IC 150 VGE 50 tEoff VCE 100 VGE tdon 25 50 IC 1% 0 -25 -0,1 -0,05 0 0,05 0,1 0,15 -50 2,95 0,2 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 15 400 30 0,168 0,215 IC 10% VGE 10% 0 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Input Boost IGBT Figure 3 VCE 3% tEon 3,05 0 15 400 30 0,022 0,113 3,1 3,15 V V V A µs µs Input Boost IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 125 300 fitted % % VCE IC 100 IC 250 IC 90% 200 75 150 IC 60% 50 IC 40% VCE 100 IC 90% tr 25 50 IC10% 0 tf -25 0,08 -50 0,1 0,12 0,14 0,16 0,18 3 time (us) VC (100%) = IC (100%) = tf = IC 10% 0 400 30 0,007 Copyright by Vincotech VC (100%) = IC (100%) = tr = V A µs 15 3,02 3,04 400 30 0,007 3,06 time(us) 3,08 V A µs Revision: 2.1 V23990-P623-L82-PM Switching Definitions INPUT BOOST Input Boost IGBT Figure 5 Input Boost IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 200 % % IC 1% Eon Eoff 100 150 75 Pon 100 50 50 25 VGE 90% VCE 3% VGE 10% Poff 0 0 tEon tEoff -25 -0,1 0 Poff (100%) = Eoff (100%) = tEoff = 0,1 12,00 0,29 0,22 0,2 time (us) -50 2,95 0,3 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs Input Boost IGBT Figure 7 Gate voltage vs Gate charge (measured) 3,05 12,00 0,60 0,11 3,1 time(us) 3,15 kW mJ µs Input Boost FWD Figure 8 Turn-off Switching Waveforms & definition of trr 150 VGE (V) 20 % Id 100 15 trr 50 Vd 10 fitted 0 IRRM 10% -50 5 -100 0 -150 IRRM 90% IRRM 100% -200 -5 -20 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 20 0 15 400 30 101 Copyright by Vincotech 40 60 80 100 3 120 Qg (nC) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 16 3,02 3,04 400 30 -56 0,056 3,06 3,08 time(us) 3,1 V A A µs Revision: 2.1 V23990-P623-L82-PM Switching Definitions INPUT BOOST Input Boost FWD Figure 9 Input Boost FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 150 Id % % Qrr 100 Erec 100 Prec tQrr 50 tErec 75 0 50 -50 25 -100 0 -150 -200 2,98 Id (100%) = Qrr (100%) = tQrr = -25 3,01 3,04 3,07 30 1,46 0,11 A µC µs Copyright by Vincotech 3,1 3,13 time(us) 3,16 3 Prec (100%) = Erec (100%) = tErec = 17 3,03 3,06 12,00 0,28 0,11 3,09 3,12 time(us) 3,15 kW mJ µs Revision: 2.1 V23990-P623-L82-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing with thermal paste 12mm housing Ordering Code V23990-P623-L82-PM V23990-P623-L82-/3/-PM in DataMatrix as P623L82 P623L82 in packaging barcode as P623L82 P623L82 Outline Pinout Copyright by Vincotech 18 Revision: 2.1 V23990-P623-L82-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 19 Revision: 2.1