V23990-P623-L82-PM Maximum Ratings

V23990-P623-L82-PM
flow BOOST 0
650V/50A
Features
flow 0 12mm housing
● High efficiency dual boost
● Ultra fast switching frequency
● Low Inductance Layout
● 650V IGBT and 650V Stealth Si boost diode
● Antiparallel IGBT protection diode with high current
Target Applications
● solar inverter
Schematic
Types
● V23990-P623-L82-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
32
43
A
220
A
200
A2s
42
64
W
Tjmax
150
°C
VCES
650
V
43
57
A
tp limited by Tjmax
150
A
Tj≤ 175°C, VCE≤ 650
150
A
84
128
W
Bypass Diode ( D7 , D8 )
Repetitive peak reverse voltage
VRRM
Forward average current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Boost IGBT ( T1 , T2 )
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Turn off safe operating area
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
±20
V
Tjmax
175
°C
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
1
Revision: 2.1
V23990-P623-L82-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
650
V
51
64
A
225
A
250
As
100
A
88
134
W
175
°C
650
V
21
27
A
50
A
12,5
A2s
20
A
Boost FWD ( D1, D4 )
Peak Repetitive Reverse Voltage
VRRM
Forward average current
IFAV
Surge forward current
IFSM
Th=80°C
Tj=Tjmax
Tc=80°C
tp=10ms
Tj=25°C
2
I2t-value
It
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
2
Boost Inverse Diode ( D9 , D10 )
VRRM
Tc=25°C
Forward average current
IFAV
Tj=Tjmax
Th=80°C
Tc=80°C
Surge forward current
IFSM
tp=10ms
Tj=25°C
Peak Repetitive Reverse Voltage
I2t
I2t-value
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
42
W
63
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
t=2s
DC voltage
2
Revision: 2.1
V23990-P623-L82-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,21
1,19
0,92
0,80
0,012
0,015
1,9
Bypass Diode ( D7 , D8 )
Forward voltage
VF
25
Threshold voltage (for power loss calc. only)
Vto
25
Slope resistance (for power loss calc. only)
rt
25
Reverse current
Ir
Thermal resistance chip to heatsink per chip
1500
RthJH
Phase-Change
Material
VGE(th)
VGE=VCE
V
V
Ω
0,05
1,67
mA
K/W
Boost IGBT ( T1 , T2 )
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
0,0005
15
50
Collector-emitter cut-off
ICES
0
650
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Turn-on delay time
Rise time
Turn-off delay time
3,3
4
4,7
1
1,82
2,00
2,5
0,04
200
none
Rgint
td(on)
tr
td(off)
tf
Fall time
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Rgoff=8 Ω
Rgon=8 Ω
400
15
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
23
22
5
7
142
168
3
7
0,370
0,598
0,147
0,285
ns
mWs
3000
f=1MHz
0
25
Tj=25°C
50
pF
11
15
520
50
Tj=25°C
Phase-Change
Material
120
nC
1,13
K/W
Boost FWD ( D1, D4 )
Forward voltage
Reverse leakage current
VF
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Peak rate of fall of recovery current
Thermal resistance chip to heatsink per chip
Copyright by Vincotech
50
650
Rgon=8 Ω
400
15
di(rec)max
/dt
RthJH
Phase-Change
Material
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
2,27
1,90
15
40
56
19
56
0,477
1,458
0,053
0,281
8359
3588
1,08
3
2,8
V
µA
A
ns
µC
mWs
A/µs
K/W
Revision: 2.1
V23990-P623-L82-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
Unit
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Max
20
Tj=25°C
Tj=125°C
1,00
1,67
1,54
2,00
Boost Inverse Diode ( D9 , D10 )
Diode forward voltage
Thermal resistance chip to heatsink per chip
VF
RthJH
Phase-Change
Material
2,28
V
K/W
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=100°C
Power dissipation constant
+4,5
T=25°C
210
mW
3,5
mW/K
K
B(25/50)
T=25°C
3884
B-value
B(25/100)
T=25°C
3964
Copyright by Vincotech
%
T=25°C
B-value
Vincotech NTC Reference
Ω
21511
-4,5
K
F
4
Revision: 2.1
V23990-P623-L82-PM
Boost Inverse Diode ( D9 , D10 )
Boost Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Boost Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
40
1
ZthJC (K/W)
IF (A)
10
30
100
20
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
Tj = Tjmax-25°C
Tj = 25°C
0
0
At
tp =
1
2
3
V F (V)
10-2
4
10
At
D=
RthJH =
µs
250
-5
Boost Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10
-4
10
tp / T
2,28
-3
10
-2
-1
10
0
t p (s)
1
10 10
K/W
Boost Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
30
Ptot (W)
IF (A)
80
10
25
60
20
40
15
10
20
5
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
5
50
175
100
150
Th ( o C)
200
ºC
Revision: 2.1
V23990-P623-L82-PM
INPUT BOOST ( T1 , T2 / D1 , D4 )
BOOST IGBT
Figure 1
Typical output characteristics
ID = f(VDS)
BOOST IGBT
Figure 2
Typical output characteristics
ID = f(VDS)
180
IC(A)
IC (A)
180
150
150
120
120
90
90
60
60
30
30
0
0
0
At
tp =
Tj =
VGS from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGS from
µs
250
25
°C
8 V to 18 V in steps of 1 V
BOOST IGBT
Figure 3
Typical transfer characteristics
ID = f(VGS)
1
2
3
4
5
µs
250
125
°C
8 V to 18 V in steps of 1 V
BOOST FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
200
IF (A)
ID (A)
50
V CE (V)
40
150
30
100
20
50
10
Tj = Tjmax-25°C
Tj = 25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VDS =
2
100
10
4
6
V GS (V)
8
0
At
tp =
µs
V
Copyright by Vincotech
6
1
250
2
3
4
V F (V)
5
µs
Revision: 2.1
V23990-P623-L82-PM
INPUT BOOST ( T1 , T2 / D1 , D4 )
BOOST IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
BOOST IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,2
E (mWs)
E (mWs)
1,2
Eon High T
Eon High T
1
1
Eon Low T
0,8
0,8
Eon Low T
0,6
0,6
Eoff High T
0,4
0,4
Eoff High T
Eoff Low T
Eoff Low T
0,2
0,2
0
0
0
0
10
20
30
40
50
I C (A)
8
16
24
32
60
With an inductive load at
Tj =
°C
25/126
VDS =
400
V
VGS =
15
V
Rgon =
8
Ω
Rgoff =
8
Ω
RG (Ω )
40
With an inductive load at
Tj =
25/126
°C
VDS =
400
V
VGS =
15
V
ID =
30
A
BOOST FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
BOOST FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,4
E (mWs)
E (mWs)
0,5
Erec High T
0,4
0,3
0,3
Erec High T
0,2
0,2
0,1
Erec Low T
0,1
Erec Low T
0
0
0
10
20
30
40
50
I C (A)
60
0
With an inductive load at
Tj =
°C
25/126
VDS =
400
V
VGS =
15
V
Rgon =
8
Ω
Rgoff =
8
Ω
Copyright by Vincotech
8
16
24
32
RG(Ω )
40
With an inductive load at
Tj =
25/126
°C
VDS =
400
V
VGS =
15
V
ID =
30
A
7
Revision: 2.1
V23990-P623-L82-PM
INPUT BOOST ( T1 , T2 / D1 , D4 )
BOOST IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
BOOST IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( ms)
t ( ms)
1
tdoff
tdoff
0,1
0,1
tdon
tdon
tr
tr
0,01
0,01
tf
0,001
0,001
0
10
20
30
40
50
I D (A)
0
60
With an inductive load at
Tj =
126
°C
VDS =
400
V
VGS =
15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
R G (Ω)
40
With an inductive load at
Tj =
126
°C
VDS =
400
V
VGS =
15
V
IC =
30
A
BOOST FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,1
t rr( ms)
t rr( ms)
0,1
trr High T
trr High T
0,08
0,08
0,06
0,06
0,04
0,04
trr Low T
trr Low T
0,02
0,02
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/126
400
15
8
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
8
8
25/126
400
30
15
16
24
32
R Gon (Ω)
40
°C
V
A
V
Revision: 2.1
V23990-P623-L82-PM
INPUT BOOST ( T1 , T2 / D1 , D4 )
BOOST FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
1,8
Qrr ( µC)
Qrr ( µC)
2,5
Qrr High T
1,5
2
Qrr High T
1,2
1,5
0,9
1
0,6
Qrr Low T
Qrr Low T
0,5
0,3
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
10
25/126
400
15
8
20
30
40
50
I C (A)
0
60
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
8
25/126
400
30
15
16
24
32
R Gon ( Ω)
40
°C
V
A
V
BOOST FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
80
IrrM (A)
IrrM (A)
75
IRRM High T
60
60
45
IRRM Low T
40
IRRM High T
30
IRRM Low T
20
15
0
0
0
10
At
Tj =
VCE =
VGE =
Rgon =
25/126
400
15
8
20
30
40
50
I C (A)
60
°C
V
V
Ω
Copyright by Vincotech
9
0
8
At
Tj =
VR =
IF =
VGS =
25/126
400
30
15
16
24
32
R Gon (Ω)
40
°C
V
A
V
Revision: 2.1
V23990-P623-L82-PM
INPUT BOOST ( T1 , T2 / D1 , D4 )
BOOST FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
15000
direc / dt (A/ µs)
direc / dt (A/ µs)
15000
dIrec/dt
dI0/dt
12000
dI0/dt
dIrec/dt
12000
9000
9000
6000
6000
3000
3000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/126
400
15
8
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST IGBT
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
8
25/126
400
30
15
16
24
32
R Gon ( Ω)
40
°C
V
A
V
BOOST FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
BOOST FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
-2
10-5
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
t p (s)
10110
10-5
At
D=
RthJH =
tp / T
1,13
K/W
IGBT thermal model values
R (C/W)
7,12E-02
1,29E-01
4,31E-01
3,15E-01
1,31E-01
5,02E-02
10-3
10-2
10-1
100
t p (s)
10110
tp / T
1,08
K/W
FWD thermal model values
Tau (s)
8,15E+00
6,00E-01
9,13E-02
2,59E-02
5,80E-03
8,53E-04
Copyright by Vincotech
10-4
R (C/W)
5,58E-02
1,01E-01
4,35E-01
2,93E-01
1,10E-01
8,25E-02
10
Tau (s)
4,07E+00
6,75E-01
9,24E-02
2,59E-02
4,04E-03
8,42E-04
Revision: 2.1
V23990-P623-L82-PM
INPUT BOOST ( T1 , T2 / D1 , D4 )
BOOST IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
BOOST IGBT
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
75
IC (A)
Ptot (W)
175
150
60
125
45
100
75
30
50
15
25
0
0
0
At
Tj =
50
100
150
Th ( o C)
200
0
At
Tj =
VGS =
ºC
175
BOOST FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
200
ºC
V
BOOST FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
75
IF (A)
Ptot (W)
175
Th ( o C)
150
60
125
45
100
75
30
50
15
25
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
11
50
175
100
150
T h ( o C)
200
ºC
Revision: 2.1
V23990-P623-L82-PM
INPUT BOOST ( T1 , T2 / D1 , D4 )
BOOST IGBT
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
VGS = f(Qg)
3
UGS (V)
15
ID (A)
10
10
BOOST IGBT
Figure 26
Gate voltage vs Gate charge
2
12
1
100uS
130V
520V
9
100mS
10mS
1mS
101
6
DC
100
3
10-1
0
100
At
D=
Th =
VGS =
101
10
2
10
3
0
V DS (V)
At
IC =
single pulse
ºC
80
V
15
Tjmax
ºC
Tj =
20
50
40
60
80
100 Qg (nC) 120
A
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
125
IC MAX
Ic CHIP
100
Ic MODULE
75
VCE MAX
50
25
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
Copyright by Vincotech
Rgon =
Rgoff =
8
8
Ω
Ω
12
Revision: 2.1
V23990-P623-L82-PM
Bypass Diode ( D7 , D8 )
Bypass diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Bypass diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
1
ZthJC (K/W)
IF (A)
10
80
100
60
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
40
10-1
20
Tj = Tjmax-25°C
Tj = 25°C
0
10
0
0,5
At
tp =
1
1,5
2
V F (V)
2,5
10
-5
10
At
D=
RthJH =
µs
250
-2
Bypass diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
-4
10
-3
10
-2
10
-1
10
t p (s)
1
10 10
tp / T
1,67
K/W
Bypass diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
50
Ptot (W)
IF (A)
100
0
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
13
50
150
100
150
T h ( o C)
200
ºC
Revision: 2.1
V23990-P623-L82-PM
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
14
Revision: 2.1
V23990-P623-L82-PM
Switching Definitions INPUT BOOST
General conditions
= 125 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
Input Boost IGBT
Figure 1
Input Boost IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
300
tdoff
%
%
VCE
250
100
VGE 90%
VCE 90%
200
75
IC
IC
150
VGE
50
tEoff
VCE
100
VGE
tdon
25
50
IC 1%
0
-25
-0,1
-0,05
0
0,05
0,1
0,15
-50
2,95
0,2
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
15
400
30
0,168
0,215
IC 10%
VGE 10%
0
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Input Boost IGBT
Figure 3
VCE 3%
tEon
3,05
0
15
400
30
0,022
0,113
3,1
3,15
V
V
V
A
µs
µs
Input Boost IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
125
300
fitted
%
%
VCE
IC
100
IC
250
IC 90%
200
75
150
IC 60%
50
IC 40%
VCE
100
IC 90%
tr
25
50
IC10%
0
tf
-25
0,08
-50
0,1
0,12
0,14
0,16
0,18
3
time (us)
VC (100%) =
IC (100%) =
tf =
IC 10%
0
400
30
0,007
Copyright by Vincotech
VC (100%) =
IC (100%) =
tr =
V
A
µs
15
3,02
3,04
400
30
0,007
3,06
time(us)
3,08
V
A
µs
Revision: 2.1
V23990-P623-L82-PM
Switching Definitions INPUT BOOST
Input Boost IGBT
Figure 5
Input Boost IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
200
%
%
IC 1%
Eon
Eoff
100
150
75
Pon
100
50
50
25
VGE 90%
VCE 3%
VGE 10%
Poff
0
0
tEon
tEoff
-25
-0,1
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
12,00
0,29
0,22
0,2
time (us)
-50
2,95
0,3
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Input Boost IGBT
Figure 7
Gate voltage vs Gate charge (measured)
3,05
12,00
0,60
0,11
3,1
time(us)
3,15
kW
mJ
µs
Input Boost FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
150
VGE (V)
20
%
Id
100
15
trr
50
Vd
10
fitted
0
IRRM 10%
-50
5
-100
0
-150
IRRM 90%
IRRM 100%
-200
-5
-20
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
20
0
15
400
30
101
Copyright by Vincotech
40
60
80
100
3
120
Qg (nC)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
16
3,02
3,04
400
30
-56
0,056
3,06
3,08
time(us)
3,1
V
A
A
µs
Revision: 2.1
V23990-P623-L82-PM
Switching Definitions INPUT BOOST
Input Boost FWD
Figure 9
Input Boost FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
150
Id
%
%
Qrr
100
Erec
100
Prec
tQrr
50
tErec
75
0
50
-50
25
-100
0
-150
-200
2,98
Id (100%) =
Qrr (100%) =
tQrr =
-25
3,01
3,04
3,07
30
1,46
0,11
A
µC
µs
Copyright by Vincotech
3,1
3,13
time(us)
3,16
3
Prec (100%) =
Erec (100%) =
tErec =
17
3,03
3,06
12,00
0,28
0,11
3,09
3,12
time(us)
3,15
kW
mJ
µs
Revision: 2.1
V23990-P623-L82-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
with thermal paste 12mm housing
Ordering Code
V23990-P623-L82-PM
V23990-P623-L82-/3/-PM
in DataMatrix as
P623L82
P623L82
in packaging barcode as
P623L82
P623L82
Outline
Pinout
Copyright by Vincotech
18
Revision: 2.1
V23990-P623-L82-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
19
Revision: 2.1