30-F206NBA200SA-M295L33 preliminary datasheet flowBOOST2 600V/200A Features flowBOOST2 ● High power flow2 housing ● Thyristors for inrush current limitation ● Low inductive layout Target Applications Schematic ● UPS Types ● 30-F206NBA200SA-M295L33 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 137 189 A 5400 A 145000 A2s 178 270 W Tjmax 130 °C VCE 600 V 147 164 A tp limited by Tjmax 600 A VCE ≤ 1200V, Tj ≤ Top max 600 A 314 476 W ±20 V 6 360 μs V 175 °C Input Rectifier Thyristor Repetitive peak reverse voltage VRRM Forward average current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Thyristor Ptot Maximum Junction Temperature sine,d=0.5 Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C Tc=80°C Input Boost IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Input Boost Inverse Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Th=80°C 100 Tc=80°C 133 A 200 A 161 244 W 175 °C 600 V 160 200 A 900 A 213 323 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Th=80°C Tc=80°C Tjmax Input Boost Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Comparative tracking index Copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=130°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=130°C Tj=25°C Tj=110°C 0,8 1,39 1,36 1,13 1,04 1,56 1,97 2 Input Rectifier Thyristor Forward voltage VF Threshold voltage (for power loss calc. only) Vto 165 Slope resistance (for power loss calc. only) rt 165 Reverse current Ir Vd=2V; Igt=100mA 1200 Gate controlled delay time tGD Ig=1A; dig/dt=1A/μ Gate controlled rise time tGR Vd=0,67*Vdrm Critical rate of rise of off-state voltage (dv/dt)cr Critical rate of rise of on-state current (di/dt)cr Circuit commutated turn-off time tq Holding current IH Latching current IL Gate trigger voltage 100 VGT Gate trigger current IGT Gate non-trigger voltage VGD Gate non-trigger current IGD Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC V mΩ 200 mA 1 μs 2 μs 1000 200 V/μs A/μs μs 150 220 550 1,98 100 mA mA V mA V 0,25 mA 6 Thermal grease thickness≤50um λ = 1 W/mK V 0,25 K/W 0,17 Input Boost IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 0,0032 200 tf Turn-on energy loss per pulse Eon Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5 5,8 6,5 1 1,67 1,88 2,2 0,0102 1200 1 tr td(off) Turn-off energy loss per pulse Copyright by Vincotech Vce=Vge Rgoff=2 Ω Rgon=2 Ω 15 350 200 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 52 51 29 32 457 499 30 49 3,93 5,14 7,22 9,16 V V mA nA Ω ns mWs 6160 f=1MHz 0 25 Tj=25°C 384 pF 183 ±15 480 Thermal grease thickness≤50um λ = 1 W/mK 100 Tj=25°C 600 nC 0,30 K/W 0,20 3 Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value Unit IC [A] or IF [A] or ID [A] Tj Min Typ Max 100 Tj=25°C Tj=125°C 1,2 1,65 1,62 2,2 Input Boost Inverse Diode Diode forward voltage VF Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal grease thickness≤50um λ = 1 W/mK V 0,59 K/W 0,39 Input Boost Diode Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Erec Peak rate of fall of recovery current 150 15 Rgon=2 Ω 350 15 350 di(rec)max /dt Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 200 200 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,2 1,71 1,74 1,9 1920 192 252 122 171 10,52 19,34 2,42 4,65 5599 4375 Thermal grease thickness≤50um λ = 1 W/mK V μA A ns μC mWs A/μs 0,45 K/W 0,29 Thermistor Rated resistance R Deviation of R100 ΔR/R Power dissipation P R100=1486 Ω T=100°C Power dissipation constant Ω 22000 T=25°C -5 5 % T=25°C 200 mW T=25°C 2 mW/K B-value B(25/50) Tol. ±3% T=25°C 3950 K B-value B(25/100) Tol. ±3% T=25°C 3996 K Vincotech NTC Reference Copyright by Vincotech B 4 Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet INPUT BOOST INPUT BOOST IGBT Figure 1 Typical output characteristics ID = f(VDS) INPUT BOOST IGBT Figure 2 Typical output characteristics ID = f(VDS) 650 ID (A) ID (A) 650 600 600 550 550 500 500 450 450 400 400 350 350 300 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGS from 1 1 2 2 3 3 4 4 V DS5 (V) 0 5 At tp = Tj = VGS from 250 μs 25 °C 7 V to 17 V in steps of 1 V INPUT BOOST IGBT Figure 3 Typical transfer characteristics 1 2 3 225 V DS (V) 5 250 μs 126 °C 7 V to 17 V in steps of 1 V INPUT BOOST FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) ID = f(VGS) 4 IF (A) ID (A) 250 200 200 175 150 150 125 100 100 75 50 50 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C 25 Tj = 25°C 0 0 0 At tp = VDS = 2 250 0 4 6 8 V GS (V) 10 0,0 At tp = μs V Copyright by Vincotech 5 0,5 250 1,0 1,5 V F (V) 2,0 μs Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet INPUT BOOST INPUT BOOST IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(ID) INPUT BOOST IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 20 E (mWs) E (mWs) 20 16 16 Eoff Tj = Tjmax -25°C Eoff Eoff Eoff 12 12 Eon Tj = Tjmax -25°C Eon Eon 8 8 Eon Tj =25°C 4 4 Tj =25°C 0 0 0 100 200 300 I C (A) 400 0 With an inductive load at Tj = 25/126 °C VDS = 350 V VGS = 15 V Rgon = 2 Ω Rgoff = 2 Ω 4 6 8 RG (Ω ) 10 With an inductive load at Tj = 25/126 °C VDS = 350 V VGS = 15 V ID = 200 A INPUT BOOST IGBT Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) INPUT BOOST IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 7 E (mWs) E (mWs) 2 Erec 6 7 6 Erec Tj = Tjmax -25°C 5 5 Tj = Tjmax - 25°C 4 4 Erec 3 Erec 3 Tj = 25°C Tj = 25°C 2 2 1 1 0 0 0 100 200 300 I C (A) 400 0 With an inductive load at Tj = 25/126 °C VDS = 350 V VGS = 15 V Rgon = 2 Ω Rgoff = 2 Ω Copyright by Vincotech 2 4 6 8 RG (Ω ) 10 With an inductive load at Tj = 25/126 °C VDS = 350 V VGS = 15 V ID = 200 A 6 Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet INPUT BOOST INPUT BOOST IGBT Figure 9 Typical switching times as a function of collector current t = f(ID) INPUT BOOST IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( μs) 10,00 t ( μs) tdoff tdoff 1,00 tf 0,10 tdon tdon 0,10 tr tr 0,01 tf 0,01 0,00 0,00 0 100 200 300 I D (A) 400 0 With an inductive load at Tj = 126 °C VDS = 350 V VGS = 15 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 RG (Ω ) 8 10 With an inductive load at Tj = 126 °C VDS = 350 V VGS = 15 V IC = 200 A INPUT BOOST FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) INPUT BOOST FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,35 t rr( μs) t rr( μs) 0,30 trr 0,30 0,25 Tj = Tjmax-25°C trr 0,25 trr 0,20 0,20 Tj = 25°C 0,15 trr 0,15 0,10 0,10 0,05 0,05 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 100 25/126 350 15 2 200 300 I C (A) 0 400 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 7 2 25/126 350 200 15 4 6 8 R gon ( Ω ) 10 °C V A V Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet INPUT BOOST Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) INPUT BOOST FWD INPUT BOOST FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 30 Qrr ( μC) 25 Qrr ( μC) Qrr Tj = Tjmax - 25°C 25 20 Qrr Tj = Tjmax - 25°C 20 15 Qrr 15 Tj = 25°C Tj = 25°C 10 Qrr 10 5 5 0 0 0 100 At At Tj = VCE = VGE = Rgon = 25/126 350 15 2 200 300 I C (A) 0 400 2 At Tj = °C V V Ω 25/126 350 200 15 VR = IF = VGS = Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) INPUT BOOST FWD 6 IrrM (A) IRRM R gon ( Ω) 8 10 °C V A V INPUT BOOST FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 350 IrrM (A) 4 350 300 300 Tj = Tjmax - 25°C 250 250 Tj = Tjmax -25°C IRRM 200 200 IRRM Tj = 25°C 150 150 IRRM Tj = 25°C 100 100 50 50 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/126 350 15 2 200 300 I C (A) 0 400 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 8 2 25/126 350 200 15 4 6 8 R go n ( Ω ) 10 °C V A V Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet INPUT BOOST INPUT BOOST FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) INPUT BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 12000 direc / dt (A/ μs) direc / dt (A/ μs) 12000 dI0/dt dIrec/dt dI0/dt Tj = 25°C dIrec/dt 10000 10000 Tj = 25°C 8000 8000 6000 6000 4000 4000 Tj = Tjmax - 25°C Tj = Tjmax - 25°C 2000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/126 350 15 2 200 300 I C (A) 400 0 At Tj = VR = IF = VGS = °C V V Ω INPUT BOOST IGBT Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/126 350 200 15 4 6 R g on ( Ω) 8 10 °C V A V INPUT BOOST FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) ZthJH (K/W) 100 10 2 -1 -1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -2 10 -3 10-3 10 10-5 10-4 At D= RthJH = 10-3 10-2 10-1 100 t p (s) 10-5 1011 At D= RthJH = tp / T 0,30 K/W IGBT thermal model values Thermal grease Phase change interface R (C/W) 0,02 0,06 0,07 0,11 0,03 0,02 R (C/W) 0,018 0,056 0,065 0,110 0,027 0,018 Tau (s) 7,9310 1,7520 0,2844 0,0467 0,0098 0,0005 Copyright by Vincotech Tau (s) 7,6931 1,6994 0,2759 0,0453 0,0095 0,0005 9 10-4 10-3 10-2 10-1 100 t p (s) 1011 tp / T 0,45 K/W FWD thermal model values Thermal grease Phase change interface R (C/W) 0,02 0,10 0,10 0,16 0,04 0,03 R (C/W) 0,023 0,094 0,101 0,153 0,037 0,024 Tau (s) 8,2790 1,4930 0,3128 0,0526 0,0100 0,0005 Tau (s) 8,0306 1,4482 0,3034 0,0510 0,0097 0,0005 Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet INPUT BOOST INPUT BOOST IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) INPUT BOOST IGBT Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 175 IC (A) Ptot (W) 600 150 500 125 400 100 300 75 200 50 100 25 0 0 0 At Tj = 50 175 100 T h ( o C) 0 200 At Tj = VGS = ºC INPUT BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 10 100 T h ( o C) 200 ºC V INPUT BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 400 150 250 IF (A) Ptot (W) 150 350 200 300 250 150 200 100 150 100 50 50 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 ºC Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet INPUT BOOST INPUT BOOST IGBT Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) INPUT BOOST IGBT Figure 26 Gate voltage vs Gate charge VGS = f(Qg) 3 18 VGS (V) ID (A) 10 10uS 16 120V 100uS 480V 1mS 10mS 14 2 10 12 100mS 10 DC 1 10 8 6 0 10 4 2 0 10-1 100 At D= Th = VGS = 101 102 V DS (V) 0 103 At ID = single pulse 80 ºC V 15 Tjmax ºC Tj = INPUT BOOST IGBT Figure 27 250 500 #REF! 750 1000 Qg (nC) 1500 A INPUT BOOST IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) 1250 Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 14 IC(sc) tsc (μS) 3500 12 3000 10 2500 8 2000 6 1500 4 1000 2 500 0 0 10 11 12 13 14 V GE (V) 12 15 13 14 15 At VCE = 360 V At VCE ≤ 360 V Tj ≤ 175 ºC Tj = 175 ºC Copyright by Vincotech 11 16 17 18 19 V GE (V) 20 Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet INPUT BOOST IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 500 450 IC MAX 400 300 250 VCE MAX 200 Ic CHIP Ic MODULE 350 150 100 50 0 0 100 200 300 At Tjmax-25 Tj = Uccminus=Uccplus ºC Switching mode : 3phase SPWM Copyright by Vincotech 400 500 600 700 V CE (V) 12 Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet INPUT BOOST Inverse.FWD INPUT BOOST Inverse.FWD Figure 1 Typical FWD forward current as a function of forward voltage IF = f(VF) Figure 2 Thyristor transient thermal impedance as a function of pulse width ZthJH = f(tp) INPUT BOOST Inverse.FWD 101 IF (A) ZthJC (K/W) 350 300 0 10 250 10-1 200 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 150 10-2 100 Tj = Tjmax-25°C 10 -3 50 Tj = 25°C 0 -4 10 0,0 At tp = 0,5 1,0 1,5 2,0 2,5 V F (V) 3,0 10-5 10-3 D= At Thermal grease RthJH = 0,59 μs 250 10-4 INPUT BOOST Inverse.FWD Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) K/W 10-2 10-1 100 t p (s) 1011 tp / T Phase change interface RthJH = 0,00 K/W INPUT BOOST Inverse.FWD Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 100 IF (A) Ptot (W) 300 250 80 200 60 150 40 100 20 50 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = ºC Copyright by Vincotech 13 50 175 100 150 T h ( o C) 200 ºC Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet Thyristor Thyristor Figure 1 Typical thyristor forward current as a function of forward voltage IF= f(VF) Thyristor Figure 2 Thyristor transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJC (K/W) IF (A) 350 300 0 10 250 -1 10 200 150 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 Tj = Tjmax-25°C 100 Tj = 25°C -3 10 50 0 0,0 At tp = 0,3 0,5 0,8 1,0 1,3 1,5 V F (V ) 10-4 2,0 10-5 10-4 At D= RthJH = μs 250 Thyristor Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 100 1011 tp / T 0,25 K/W Thyristor Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 300 t p (s) 300 IF (A) Ptot (W) 1,8 250 250 200 200 150 150 100 100 50 50 0 0 0 At Tj = 50 125 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 14 50 125 100 150 T h ( o C) 200 ºC Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 24000 Thermistor Figure 2 Typical NTC resistance values R/Ω R(T ) = R25 ⋅ e [Ω] 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 15 Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet Switching Definitions PFC General conditions = 125 °C Tj = 2Ω Rgon Rgoff = 2Ω PFC IGBT Figure 1 PFC IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 240 % % 120 IC tdoff 200 100 VGE 90% VCE 90% 160 80 IC 120 60 40 VCE IC 1% tEoff VGE 80 tdon 20 40 VCE 0 VGE 10% VGE -40 -0,2 VCE 3% IC 10% 0 -20 tEon -40 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 0,4 0 15 350 200 0,50 0,87 0,6 0,8 time (us) 1 3,9 4 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs PFC IGBT Figure 3 4,1 0 15 350 200 0,05 0,27 4,2 4,3 4,4 V V V A μs μs PFC IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 250 140 % % 120 fitted 200 IC 100 Ic 90% 150 80 VCE 60 100 Ic 60% tr 40 Ic 40% IC 90% 50 20 VCE Ic Ic 10% IC 10% 0 tf 0 -20 -50 0,2 0,3 0,4 0,5 0,6 0,7 0,8 3,9 time (us) VC (100%) = IC (100%) = tf = 350 200 0,05 Copyright by Vincotech VC (100%) = IC (100%) = tr = V A μs 16 4 4,1 350 200 0,03 4,2 4,3 time(us) 4,4 V A μs Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet Switching Definitions PFC PFC IGBT Figure 5 PFC IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 120 % Ic 1% Poff 100 % Eon Pon Eoff 100 80 80 60 60 40 40 20 20 U ge 90% Uce 3% U ge 10% 0 0 tEon tEoff -20 -0,2 -20 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 0,4 69,84 9,16 0,87 kW mJ μs 0,6 0,8 time (us) 3,9 1 4 Pon (100%) = Eon (100%) = tEon = PFC IGBT Figure 7 4,1 69,8369 5,14 0,266 4,2 4,3 4,4 kW mJ μs PFC FWD Figure 8 Gate voltage vs Gate charge (measured) time(us) Turn-off Switching Waveforms & definition of trr 120 Uge (V) 20 Id % 80 15 trr 40 Ud 10 fitted 0 IRRM 10% -40 5 -80 0 IRRM 90% -120 IRRM 100% -5 -200 -160 0 200 400 600 800 4 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 15 350 200 773,08 Copyright by Vincotech Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 17 4,1 4,2 350 200 -252 0,17 4,3 4,4 time(us) 4,5 V A A μs Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet Switching Definitions PFC PFC FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) PFC FWD Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 % % Id 100 Qrr Erec 100 Prec 80 tQint tErec 50 60 0 40 -50 20 -100 0 -150 -20 4 Id (100%) = Qrr (100%) = tQint = 4,1 4,2 200 19,34 0,40 Copyright by Vincotech 4,3 4,4 4,5 time(us) 4,6 4 Prec (100%) = Erec (100%) = tErec = A μC μs 18 4,1 4,2 4,3 69,84 4,65 0,40 kW mJ μs 4,4 4,5 time(us) 4,6 Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 30-F206NBA200SA-M295L33 in DataMatrix as M295-L33 in packaging barcode as M295-L33 Outline Pinout Copyright by Vincotech 19 Revision: 1 30-F206NBA200SA-M295L33 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 20 Revision: 1