30 F206NBA200SA M295L33 P1 14

30-F206NBA200SA-M295L33
preliminary datasheet
flowBOOST2
600V/200A
Features
flowBOOST2
● High power flow2 housing
● Thyristors for inrush current limitation
● Low inductive layout
Target Applications
Schematic
● UPS
Types
● 30-F206NBA200SA-M295L33
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
137
189
A
5400
A
145000
A2s
178
270
W
Tjmax
130
°C
VCE
600
V
147
164
A
tp limited by Tjmax
600
A
VCE ≤ 1200V, Tj ≤ Top max
600
A
314
476
W
±20
V
6
360
μs
V
175
°C
Input Rectifier Thyristor
Repetitive peak reverse voltage
VRRM
Forward average current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Thyristor
Ptot
Maximum Junction Temperature
sine,d=0.5
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Input Boost IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Input Boost Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
100
Tc=80°C
133
A
200
A
161
244
W
175
°C
600
V
160
200
A
900
A
213
323
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
Input Boost Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
Copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=130°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=130°C
Tj=25°C
Tj=110°C
0,8
1,39
1,36
1,13
1,04
1,56
1,97
2
Input Rectifier Thyristor
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
165
Slope resistance (for power loss calc. only)
rt
165
Reverse current
Ir
Vd=2V; Igt=100mA
1200
Gate controlled delay time
tGD
Ig=1A; dig/dt=1A/μ
Gate controlled rise time
tGR
Vd=0,67*Vdrm
Critical rate of rise of off-state voltage
(dv/dt)cr
Critical rate of rise of on-state current
(di/dt)cr
Circuit commutated turn-off time
tq
Holding current
IH
Latching current
IL
Gate trigger voltage
100
VGT
Gate trigger current
IGT
Gate non-trigger voltage
VGD
Gate non-trigger current
IGD
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
V
mΩ
200
mA
1
μs
2
μs
1000
200
V/μs
A/μs
μs
150
220
550
1,98
100
mA
mA
V
mA
V
0,25
mA
6
Thermal grease
thickness≤50um
λ = 1 W/mK
V
0,25
K/W
0,17
Input Boost IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
0,0032
200
tf
Turn-on energy loss per pulse
Eon
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5
5,8
6,5
1
1,67
1,88
2,2
0,0102
1200
1
tr
td(off)
Turn-off energy loss per pulse
Copyright by Vincotech
Vce=Vge
Rgoff=2 Ω
Rgon=2 Ω
15
350
200
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
52
51
29
32
457
499
30
49
3,93
5,14
7,22
9,16
V
V
mA
nA
Ω
ns
mWs
6160
f=1MHz
0
25
Tj=25°C
384
pF
183
±15
480
Thermal grease
thickness≤50um
λ = 1 W/mK
100
Tj=25°C
600
nC
0,30
K/W
0,20
3
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
Unit
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Max
100
Tj=25°C
Tj=125°C
1,2
1,65
1,62
2,2
Input Boost Inverse Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal grease
thickness≤50um
λ = 1 W/mK
V
0,59
K/W
0,39
Input Boost Diode
Forward voltage
Reverse leakage current
VF
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Peak rate of fall of recovery current
150
15
Rgon=2 Ω
350
15
350
di(rec)max
/dt
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
200
200
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,2
1,71
1,74
1,9
1920
192
252
122
171
10,52
19,34
2,42
4,65
5599
4375
Thermal grease
thickness≤50um
λ = 1 W/mK
V
μA
A
ns
μC
mWs
A/μs
0,45
K/W
0,29
Thermistor
Rated resistance
R
Deviation of R100
ΔR/R
Power dissipation
P
R100=1486 Ω
T=100°C
Power dissipation constant
Ω
22000
T=25°C
-5
5
%
T=25°C
200
mW
T=25°C
2
mW/K
B-value
B(25/50)
Tol. ±3%
T=25°C
3950
K
B-value
B(25/100)
Tol. ±3%
T=25°C
3996
K
Vincotech NTC Reference
Copyright by Vincotech
B
4
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
INPUT BOOST
INPUT BOOST IGBT
Figure 1
Typical output characteristics
ID = f(VDS)
INPUT BOOST IGBT
Figure 2
Typical output characteristics
ID = f(VDS)
650
ID (A)
ID (A)
650
600
600
550
550
500
500
450
450
400
400
350
350
300
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGS from
1
1
2
2
3
3
4
4
V DS5 (V)
0
5
At
tp =
Tj =
VGS from
250
μs
25
°C
7 V to 17 V in steps of 1 V
INPUT BOOST IGBT
Figure 3
Typical transfer characteristics
1
2
3
225
V DS (V)
5
250
μs
126
°C
7 V to 17 V in steps of 1 V
INPUT BOOST FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
ID = f(VGS)
4
IF (A)
ID (A)
250
200
200
175
150
150
125
100
100
75
50
50
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
25
Tj = 25°C
0
0
0
At
tp =
VDS =
2
250
0
4
6
8
V GS (V)
10
0,0
At
tp =
μs
V
Copyright by Vincotech
5
0,5
250
1,0
1,5
V F (V)
2,0
μs
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
INPUT BOOST
INPUT BOOST IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
INPUT BOOST IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
20
E (mWs)
E (mWs)
20
16
16
Eoff
Tj = Tjmax -25°C
Eoff
Eoff
Eoff
12
12
Eon
Tj = Tjmax -25°C
Eon
Eon
8
8
Eon
Tj =25°C
4
4
Tj =25°C
0
0
0
100
200
300
I C (A)
400
0
With an inductive load at
Tj =
25/126
°C
VDS =
350
V
VGS =
15
V
Rgon =
2
Ω
Rgoff =
2
Ω
4
6
8
RG (Ω )
10
With an inductive load at
Tj =
25/126
°C
VDS =
350
V
VGS =
15
V
ID =
200
A
INPUT BOOST IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
INPUT BOOST IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
7
E (mWs)
E (mWs)
2
Erec
6
7
6
Erec
Tj = Tjmax -25°C
5
5
Tj = Tjmax - 25°C
4
4
Erec
3
Erec
3
Tj = 25°C
Tj = 25°C
2
2
1
1
0
0
0
100
200
300
I C (A)
400
0
With an inductive load at
Tj =
25/126
°C
VDS =
350
V
VGS =
15
V
Rgon =
2
Ω
Rgoff =
2
Ω
Copyright by Vincotech
2
4
6
8
RG (Ω )
10
With an inductive load at
Tj =
25/126
°C
VDS =
350
V
VGS =
15
V
ID =
200
A
6
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
INPUT BOOST
INPUT BOOST IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
INPUT BOOST IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( μs)
10,00
t ( μs)
tdoff
tdoff
1,00
tf
0,10
tdon
tdon
0,10
tr
tr
0,01
tf
0,01
0,00
0,00
0
100
200
300
I D (A)
400
0
With an inductive load at
Tj =
126
°C
VDS =
350
V
VGS =
15
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
RG (Ω )
8
10
With an inductive load at
Tj =
126
°C
VDS =
350
V
VGS =
15
V
IC =
200
A
INPUT BOOST FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
INPUT BOOST FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,35
t rr( μs)
t rr( μs)
0,30
trr
0,30
0,25
Tj = Tjmax-25°C
trr
0,25
trr
0,20
0,20
Tj = 25°C
0,15
trr
0,15
0,10
0,10
0,05
0,05
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/126
350
15
2
200
300
I C (A)
0
400
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
7
2
25/126
350
200
15
4
6
8
R gon ( Ω )
10
°C
V
A
V
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
INPUT BOOST
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
INPUT BOOST FWD
INPUT BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
30
Qrr ( μC)
25
Qrr ( μC)
Qrr
Tj = Tjmax - 25°C
25
20
Qrr
Tj = Tjmax - 25°C
20
15
Qrr
15
Tj = 25°C
Tj = 25°C
10
Qrr
10
5
5
0
0
0
100
At
At
Tj =
VCE =
VGE =
Rgon =
25/126
350
15
2
200
300
I C (A)
0
400
2
At
Tj =
°C
V
V
Ω
25/126
350
200
15
VR =
IF =
VGS =
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
INPUT BOOST FWD
6
IrrM (A)
IRRM
R gon ( Ω)
8
10
°C
V
A
V
INPUT BOOST FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
350
IrrM (A)
4
350
300
300
Tj = Tjmax - 25°C
250
250
Tj = Tjmax -25°C
IRRM
200
200
IRRM
Tj = 25°C
150
150
IRRM
Tj = 25°C
100
100
50
50
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/126
350
15
2
200
300
I C (A)
0
400
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
8
2
25/126
350
200
15
4
6
8
R go n ( Ω )
10
°C
V
A
V
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
INPUT BOOST
INPUT BOOST FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
INPUT BOOST FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
12000
direc / dt (A/ μs)
direc / dt (A/ μs)
12000
dI0/dt
dIrec/dt
dI0/dt
Tj = 25°C
dIrec/dt
10000
10000
Tj = 25°C
8000
8000
6000
6000
4000
4000
Tj = Tjmax - 25°C
Tj = Tjmax - 25°C
2000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/126
350
15
2
200
300
I C (A)
400
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
INPUT BOOST IGBT
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/126
350
200
15
4
6
R g on ( Ω)
8
10
°C
V
A
V
INPUT BOOST FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
ZthJH (K/W)
100
10
2
-1
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-2
10
-3
10-3
10
10-5
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
t p (s)
10-5
1011
At
D=
RthJH =
tp / T
0,30
K/W
IGBT thermal model values
Thermal grease
Phase change interface
R (C/W)
0,02
0,06
0,07
0,11
0,03
0,02
R (C/W)
0,018
0,056
0,065
0,110
0,027
0,018
Tau (s)
7,9310
1,7520
0,2844
0,0467
0,0098
0,0005
Copyright by Vincotech
Tau (s)
7,6931
1,6994
0,2759
0,0453
0,0095
0,0005
9
10-4
10-3
10-2
10-1
100
t p (s)
1011
tp / T
0,45
K/W
FWD thermal model values
Thermal grease
Phase change interface
R (C/W)
0,02
0,10
0,10
0,16
0,04
0,03
R (C/W)
0,023
0,094
0,101
0,153
0,037
0,024
Tau (s)
8,2790
1,4930
0,3128
0,0526
0,0100
0,0005
Tau (s)
8,0306
1,4482
0,3034
0,0510
0,0097
0,0005
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
INPUT BOOST
INPUT BOOST IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
INPUT BOOST IGBT
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
175
IC (A)
Ptot (W)
600
150
500
125
400
100
300
75
200
50
100
25
0
0
0
At
Tj =
50
175
100
T h ( o C)
0
200
At
Tj =
VGS =
ºC
INPUT BOOST FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
10
100
T h ( o C)
200
ºC
V
INPUT BOOST FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
400
150
250
IF (A)
Ptot (W)
150
350
200
300
250
150
200
100
150
100
50
50
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
ºC
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
INPUT BOOST
INPUT BOOST IGBT
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
INPUT BOOST IGBT
Figure 26
Gate voltage vs Gate charge
VGS = f(Qg)
3
18
VGS (V)
ID (A)
10
10uS
16
120V
100uS
480V
1mS
10mS
14
2
10
12
100mS
10
DC
1
10
8
6
0
10
4
2
0
10-1
100
At
D=
Th =
VGS =
101
102
V DS (V)
0
103
At
ID =
single pulse
80
ºC
V
15
Tjmax
ºC
Tj =
INPUT BOOST IGBT
Figure 27
250
500
#REF!
750
1000
Qg (nC)
1500
A
INPUT BOOST IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
1250
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
14
IC(sc)
tsc (μS)
3500
12
3000
10
2500
8
2000
6
1500
4
1000
2
500
0
0
10
11
12
13
14
V GE (V)
12
15
13
14
15
At
VCE =
360
V
At
VCE ≤
360
V
Tj ≤
175
ºC
Tj =
175
ºC
Copyright by Vincotech
11
16
17
18
19 V
GE (V)
20
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
INPUT BOOST IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
500
450
IC MAX
400
300
250
VCE
MAX
200
Ic CHIP
Ic MODULE
350
150
100
50
0
0
100
200
300
At
Tjmax-25
Tj =
Uccminus=Uccplus
ºC
Switching mode :
3phase SPWM
Copyright by Vincotech
400
500
600
700
V CE (V)
12
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
INPUT BOOST Inverse.FWD
INPUT BOOST Inverse.FWD
Figure 1
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
Figure 2
Thyristor transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
INPUT BOOST Inverse.FWD
101
IF (A)
ZthJC (K/W)
350
300
0
10
250
10-1
200
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
150
10-2
100
Tj = Tjmax-25°C
10
-3
50
Tj = 25°C
0
-4
10
0,0
At
tp =
0,5
1,0
1,5
2,0
2,5
V F (V)
3,0
10-5
10-3
D=
At
Thermal grease
RthJH =
0,59
μs
250
10-4
INPUT BOOST Inverse.FWD
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
K/W
10-2
10-1
100
t p (s)
1011
tp / T
Phase change interface
RthJH =
0,00
K/W
INPUT BOOST Inverse.FWD
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
100
IF (A)
Ptot (W)
300
250
80
200
60
150
40
100
20
50
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
ºC
Copyright by Vincotech
13
50
175
100
150
T h ( o C)
200
ºC
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
Thyristor
Thyristor
Figure 1
Typical thyristor forward current as
a function of forward voltage
IF= f(VF)
Thyristor
Figure 2
Thyristor transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJC (K/W)
IF (A)
350
300
0
10
250
-1
10
200
150
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
Tj = Tjmax-25°C
100
Tj = 25°C
-3
10
50
0
0,0
At
tp =
0,3
0,5
0,8
1,0
1,3
1,5
V F (V )
10-4
2,0
10-5
10-4
At
D=
RthJH =
μs
250
Thyristor
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
100
1011
tp / T
0,25
K/W
Thyristor
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
300
t p (s)
300
IF (A)
Ptot (W)
1,8
250
250
200
200
150
150
100
100
50
50
0
0
0
At
Tj =
50
125
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
14
50
125
100
150
T h ( o C)
200
ºC
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
24000
Thermistor
Figure 2
Typical NTC resistance values
R/Ω
R(T ) = R25 ⋅ e
[Ω]
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
15
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
Switching Definitions PFC
General conditions
= 125 °C
Tj
= 2Ω
Rgon
Rgoff
= 2Ω
PFC IGBT
Figure 1
PFC IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
240
%
%
120
IC
tdoff
200
100
VGE 90%
VCE 90%
160
80
IC
120
60
40
VCE
IC 1%
tEoff
VGE
80
tdon
20
40
VCE
0
VGE 10%
VGE
-40
-0,2
VCE 3%
IC 10%
0
-20
tEon
-40
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
0,4
0
15
350
200
0,50
0,87
0,6
0,8
time (us)
1
3,9
4
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
PFC IGBT
Figure 3
4,1
0
15
350
200
0,05
0,27
4,2
4,3
4,4
V
V
V
A
μs
μs
PFC IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
250
140
%
%
120
fitted
200
IC
100
Ic 90%
150
80
VCE
60
100
Ic 60%
tr
40
Ic 40%
IC 90%
50
20
VCE
Ic
Ic 10%
IC 10%
0
tf
0
-20
-50
0,2
0,3
0,4
0,5
0,6
0,7
0,8
3,9
time (us)
VC (100%) =
IC (100%) =
tf =
350
200
0,05
Copyright by Vincotech
VC (100%) =
IC (100%) =
tr =
V
A
μs
16
4
4,1
350
200
0,03
4,2
4,3
time(us)
4,4
V
A
μs
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
Switching Definitions PFC
PFC IGBT
Figure 5
PFC IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
120
%
Ic 1%
Poff
100
%
Eon
Pon
Eoff
100
80
80
60
60
40
40
20
20
U ge 90%
Uce 3%
U ge 10%
0
0
tEon
tEoff
-20
-0,2
-20
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
0,4
69,84
9,16
0,87
kW
mJ
μs
0,6
0,8 time (us)
3,9
1
4
Pon (100%) =
Eon (100%) =
tEon =
PFC IGBT
Figure 7
4,1
69,8369
5,14
0,266
4,2
4,3
4,4
kW
mJ
μs
PFC FWD
Figure 8
Gate voltage vs Gate charge (measured)
time(us)
Turn-off Switching Waveforms & definition of trr
120
Uge (V)
20
Id
%
80
15
trr
40
Ud
10
fitted
0
IRRM 10%
-40
5
-80
0
IRRM 90%
-120
IRRM 100%
-5
-200
-160
0
200
400
600
800
4
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
15
350
200
773,08
Copyright by Vincotech
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
17
4,1
4,2
350
200
-252
0,17
4,3
4,4
time(us)
4,5
V
A
A
μs
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
Switching Definitions PFC
PFC FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
PFC FWD
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
%
%
Id
100
Qrr
Erec
100
Prec
80
tQint
tErec
50
60
0
40
-50
20
-100
0
-150
-20
4
Id (100%) =
Qrr (100%) =
tQint =
4,1
4,2
200
19,34
0,40
Copyright by Vincotech
4,3
4,4
4,5
time(us)
4,6
4
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
18
4,1
4,2
4,3
69,84
4,65
0,40
kW
mJ
μs
4,4
4,5
time(us)
4,6
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
30-F206NBA200SA-M295L33
in DataMatrix as
M295-L33
in packaging barcode as
M295-L33
Outline
Pinout
Copyright by Vincotech
19
Revision: 1
30-F206NBA200SA-M295L33
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
20
Revision: 1