V23990-P639-A40-PM flow 90PIM 1 1200V/8A Features flow 90PIM 1 ● Trench Fieldstop Technology IGBT4 for low saturation loss ● Supports design with 90° mounting angle between heatsink and PCB ● Clip-in PCB mounting ● Clip or screw on heatsink mounting Schematic Target Applications ● Industrial drives Types ● V23990-P639-A40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 28 36 A 200 A 200 A2s 33 50 W Tjmax 150 °C VCE 1200 V 15 19 A tp limited by Tjmax 24 A VCE ≤ 1200V, Tj ≤ Top max 24 A 58 87 W ±20 V 10 800 µs V 175 °C Input Rectifier Diode Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C Tc=80°C Inverter Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 2 V23990-P639-A40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 16 21 A 20 A 41 62 W Tjmax 175 °C VCE 1200 V 9 9 A tp limited by Tjmax 12 A VCE ≤ 1200V, Tj ≤ Top max 12 A 39 59 W ±20 V 10 800 µs V 175 °C Inverter FWD Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature VRRM IF IFRM Ptot Th=80°C Tc=80°C Tj=Tjmax tp limited by Tjmax Th=80°C Tc=80°C Tj=Tjmax Brake Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpuls Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Th=80°C Tc=80°C Tj=Tjmax Th=80°C Tc=80°C Tj=Tjmax Tj≤150°C VGE=15V Tjmax Brake FWD Peak Repetitive Reverse Voltage VRRM 1200 V Th=80°C Tc=80°C 9 9 A 6 A Th=80°C Tc=80°C 23 35 W Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm DC forward current Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature IF IFRM Ptot Tj=Tjmax tp limited by Tjmax Tj=Tjmax Thermal Properties Insulation Properties Insulation voltage Comparative tracking index Copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 2 V23990-P639-A40-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 1 1,26 1,24 0,92 0,82 11 14 1,6 Input Rectifier Diode Forward voltage VF 30 Threshold voltage (for power loss calc. only) Vto 30 Slope resistance (for power loss calc. only) rt 30 Reverse current Ir Thermal resistance chip to heatsink per chip 1500 RthJH Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mΩ 0,2 2,10 mA K/W Inverter Transistor Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode VCE(sat) 15 ICES 0 Gate-emitter leakage current IGES Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 8 1200 20 0 tr td(off) tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5 5,8 6,5 1,6 1,92 2,22 2,3 0,001 120 Rgoff=32 Ω Rgon=32 Ω ±15 600 8 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none td(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 0,0003 58 59 23 22 177 244 64 137 0,51 0,83 0,45 0,78 ns mWs 490 f=1MHz 0 Tj=25°C 25 50 pF 30 ±15 960 8 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 50 nC 1,65 K/W Inverter FWD Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip Copyright by Vincotech 10 Rgon=32 Ω ±15 600 di(rec)max /dt Erec RthJH Thermal grease thickness≤50um λ = 1 W/mK 8 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,35 1,86 1,77 7 9 241 416 0,81 1,66 89 51 0,31 0,66 2,31 3 2,05 V A ns µC A/µs mWs K/W Revision: 2 V23990-P639-A40-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,6 1,87 2,21 2,1 Brake Transistor Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time VCE=VGE 0,00015 4 tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,0005 120 none td(on) td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Rgoff=64 Ω Rgon=64 Ω ±15 600 4 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 83 79 28 32 178 243 77 132 0,26 0,39 0,24 0,41 ns mWs 250 f=1MHz 0 25 25 Tj=25°C pF 15 ±15 960 4 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 23 nC 2,44 K/W Brake FWD Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir Reverse recovery time Reverse recovered charge Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip Rgon=64 Ω 1200 IRRM trr Peak rate of fall of recovery current 3 Rgon=64 Ω Rgon=64 Ω ±15 600 di(rec)max /dt Erec RthJH 4 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 1,65 1,52 2,3 250 2,77 3,62 357 649 0,44 0,44 18 14 0,20 0,44 Thermal grease thickness≤50um λ = 1 W/mK V ǑA A ns µC A/µs mWs 3,03 K/W 22000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P Tj=25°C R100=1486 Ω Tc=100°C Power dissipation constant -5 5 % Tc=25°C 200 mW Tj=25°C 2 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3996 K Vincotech NTC Reference Copyright by Vincotech Tj=25°C 4 B Revision: 2 V23990-P639-A40-PM Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 30 IC (A) IC (A) 30 25 25 20 20 15 15 10 10 5 5 0 0 0 At tp = Tj = VGE from 1 2 3 4 5 V CE (V) 6 0 At tp = Tj = VGE from 250 Ǒs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 6 250 Ǒs 150 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 35 IC (A) IF (A) 9 5 30 7,5 25 6 20 4,5 15 3 10 1,5 5 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C 0 0 At tp = VCE = Tj = 25°C 0 2 250 10 4 6 8 10 V GE (V) 12 0 At tp = Ǒs V Copyright by Vincotech 5 0,5 250 1 1,5 2 2,5 3 V (V) F 3,5 Ǒs Revision: 2 V23990-P639-A40-PM Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 1,6 E (mWs) 2,0 Eon High T Eon High T 1,6 1,2 Eoff High T Eon Low T 1,2 Eon Low T Eoff High T 0,8 0,8 Eoff Low T Eoff Low T 0,4 0,4 0,0 0,0 0 4 8 12 I C (A) 0 16 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 25 50 75 100 125 RG(Ω) 150 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 8 A Output inverter FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 1,0 E (mWs) 1,0 Erec 0,8 0,8 Tj = Tjmax -25°C Tj = Tjmax -25°C 0,6 0,6 Erec Erec 0,4 0,4 Tj = 25°C Erec Tj = 25°C 0,2 0,2 0,0 0,0 0 4 8 12 I C (A) 0 16 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Copyright by Vincotech 30 60 90 120 RG(Ω) 150 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 8 A 6 Revision: 2 V23990-P639-A40-PM Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( µs) t ( µs) 1,00 tdoff tdoff tf tdon tf 0,10 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 4 8 12 I C (A) 0 16 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 30 60 90 120 RG(Ω ) 150 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 8 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,6 t rr( µs) 0,8 t rr( µs) trr trr 0,5 Tj = Tjmax -25°C 0,6 Tj = Tjmax -25°C 0,4 trr trr 0,3 0,4 0,2 Tj = 25°C Tj = 25°C 0,2 0,1 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 4 25/150 600 ±15 32 8 12 I C (A) 0 16 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 32 25/150 600 8 ±15 64 96 128 R gon ( Ω ) 160 °C V A V Revision: 2 V23990-P639-A40-PM Output Inverter Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr( µC) 2,0 Qrr( µC) 2,5 Qrr 2,0 Tj = Tjmax -25°C Qrr 1,6 Tj = Tjmax -25°C 1,2 1,5 Tj = 25°C Qrr 0,8 1,0 Qrr Tj = 25°C 0,4 0,5 0,0 0,0 0 At At Tj = VCE = VGE = Rgon = 4 25/150 600 ±15 32 8 12 I C (A) 0 16 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) Output inverter FWD 30 25/150 600 8 ±15 60 90 R gon ( Ω) 150 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 10 120 25 IrrM (A) IrrM (A) Tj = Tjmax -25°C IRRM 20 8 IRRM Tj = 25°C 6 15 4 10 2 5 Tj = Tjmax - 25°C IRRM Tj = 25°C IRRM 0 0 0 At Tj = VCE = VGE = Rgon = 4 25/150 600 ±15 32 8 12 I C (A) 16 °C V V Ω Copyright by Vincotech 8 0 30 At Tj = VR = IF = VGE = 25/150 600 8 ±15 60 90 120 R gon ( Ω ) 150 °C V A V Revision: 2 V23990-P639-A40-PM Output Inverter Output inverter FWD 500 dI0/dt dIrec/dt 400 2500 dI0/dt dIrec/dt 2000 300 1500 200 1000 100 500 0 0 0 At Tj = VCE = VGE = Rgon = 4 25/150 600 ±15 32 8 12 I C (A) 0 16 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 30 25/150 600 8 ±15 60 90 120 R gon ( Ω ) 150 °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 100 10 Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/ µs) direc / dt (A/µ s) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10 -5 At D= RthJH = 10-4 -3 10 -2 10-1 10 0 t p (s) 1 10 1 10-5 At D= RthJH = tp / T 1,65 Thermal grease R (C/W) 0,08 0,25 0,72 0,40 0,19 10 K/W IGBT thermal model values Phase change material Tau (s) 1,1E+00 2,5E-01 6,3E-02 1,5E-02 3,0E-03 Copyright by Vincotech R (C/W) 0,06 0,20 0,59 0,33 0,16 10-4 R (C/W) 0,04 0,15 0,78 0,68 0,41 0,24 9 10-2 10-1 100 t p (s) 1 101 tp / T 2,31 Thermal grease Tau (s) 8,7E-01 2,0E-01 5,1E-02 1,2E-02 2,4E-03 10-3 K/W FWD thermal model values Phase change material Tau (s) 9,4E+00 9,0E-01 1,2E-01 3,5E-02 6,2E-03 9,3E-04 R (C/W) 0,03 0,13 0,63 0,55 0,33 0,20 Tau (s) 7,7E+00 7,3E-01 9,7E-02 2,9E-02 5,0E-03 7,5E-04 Revision: 2 V23990-P639-A40-PM Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 20 IC (A) Ptot (W) 120 100 15 80 60 10 40 5 20 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 25 Ptot (W) IF (A) 80 150 20 60 15 40 10 20 5 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 °C Revision: 2 V23990-P639-A40-PM Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 20 IC (A) VGE (V) 102 18 100uS 16 1mS 10 1 240V 14 960V 12 10mS 10 100 100mS 8 DC 6 10-1 4 2 0 100 At D= Th = VGE = 101 102 V CE (V) 0 103 At IC = single pulse 80 ºC V ±15 Tjmax ºC Tj = Output inverter IGBT Figure 27 20 8 30 40 50 60 Q g (nC) 70 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 16 100 IC(sc) tsc(µS) 10 14 80 12 10 60 8 40 6 4 20 2 0 0 12 13 14 15 16 V GE (V) 12 17 14 16 20 V GE (V) At VCE = 1200 V At VCE ≤ 1200 V Tj ≤ 175 ºC Tj = 175 ºC Copyright by Vincotech 18 11 Revision: 2 V23990-P639-A40-PM IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 20 IC MAX CHIP Ic Ic MODULE 15 VCE MAX 10 5 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3phase SPWM Copyright by Vincotech 12 Revision: 2 V23990-P639-A40-PM Brake Brake IGBT Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) 15 IC (A) IC (A) 15 12 12 9 9 6 6 3 3 0 0 0 1 2 3 4 5 6 0 V CE (V) At tp = Tj = VGE from At tp = Tj = VGE from Ǒs 250 25 °C 7 V to 17 V in steps of 1 V Brake IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 6 250 Ǒs 150 °C 7 V to 17 V in steps of 1 V Brake FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 16 IF (A) IC (A) 9 V CE (V) 7,5 12 6 Tj = 25°C 8 4,5 Tj = Tjmax-25°C 3 4 1,5 Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VCE = 3 250 10 6 9 12 V GE (V) 0 15 At tp = Ǒs V Copyright by Vincotech 13 1 250 2 3 4 V F (V) 5 Ǒs Revision: 2 V23990-P639-A40-PM Brake Brake IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 1,0 E (mWs) E (mWs) 1,0 Eon Eon 0,8 0,8 Tj = Tjmax -25°C Eoff 0,6 0,6 Eon Eon Tj = Tjmax -25°C Eoff 0,4 0,4 Eoff Eoff 0,2 0,2 Tj = 25°C Tj = 25°C 0,0 0,0 0 2 4 6 I C (A) 0 8 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 64 Ω Rgoff = 64 Ω 64 128 192 256 RG (Ω ) 320 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 4 A Brake FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) E (mWs) 0,8 0,6 0,5 Tj = Tjmax -25°C 0,6 Erec Erec 0,4 Tj = Tjmax - 25°C 0,3 0,4 0,2 Erec Erec Tj = 25°C 0,2 0,1 Tj = 25°C 0 0 0 0 2 4 6 I C (A) With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 64 Ω Copyright by Vincotech 64 8 128 192 256 RG (Ω ) 320 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 4 A 14 Revision: 2 V23990-P639-A40-PM Brake Brake IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( µs) t ( µs) 1,00 tdoff tdon tdoff tf 0,10 tf tr 0,10 tdon tr 0,01 0,01 0,00 0,00 0 2 4 6 I C (A) 0 8 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 64 Ω Rgoff = 64 Ω 64 128 192 RG (Ω ) 256 320 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 4 A Brake IGBT Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) Brake FWD Figure 12 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 10-4 At Thermal grease RthJH = 2,436 10-3 D= K/W Copyright by Vincotech 10-2 10-1 100 t p (s) 101 10-5 1 tp / T Phase change material RthJH = 1,98 K/W 10-4 At Thermal grease RthJH = 3,03 15 10-3 D= K/W 10-2 10-1 100 t p (s) 101 1 tp / T Phase change material RthJH = 2,46 K/W Revision: 2 V23990-P639-A40-PM Brake Brake IGBT Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake IGBT Figure 14 Collector current as a function of heatsink temperature IC = f(Th) 80 Ptot (W) IC (A) 10 8 60 6 40 4 20 2 0 0 0 At Tj = 50 175 100 T h ( o C) 150 0 200 At Tj = VGE = ºC Brake FWD Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 200 ºC V Brake FWD Figure 16 Forward current as a function of heatsink temperature IF = f(Th) 10 IF (A) Ptot (W) 50 T h ( o C) 40 8 30 6 20 4 10 2 0 0 0 At Tj = 25 150 50 75 100 125 0 Th ( o C) 150 At Tj = ºC Copyright by Vincotech 16 50 150 100 Th ( o C) 150 ºC Revision: 2 V23990-P639-A40-PM Input Rectifier Bridge Rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 IF (A) ZthJC (K/W) 80 60 Tj = 25°C 100 Tj = Tjmax-25°C 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 20 0 0 0,4 At tp = 0,8 1,2 1,6 V F (V) 10-2 2 Ǒs 250 Rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-5 10-4 At D= RthJH = 2,10 10-3 10-2 10-1 100 101 1 tp / T K/W Rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 80 t p (s) 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 100 150 T h ( o C) 0 200 At Tj = ºC Copyright by Vincotech 17 50 150 100 150 T h ( o C) 200 ºC Revision: 2 V23990-P639-A40-PM Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 18 Revision: 2 V23990-P639-A40-PM Switching Definitions Output Inverter General conditions Tj = 150 °C Rgon = 32 Ω Rgoff = 32 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 125 % tdoff % IC VCE 200 100 VGE 90% VCE 90% 150 75 IC VCE 50 100 tEoff VGE tdon 25 50 IC 1% VGE VGE 10% 0 -25 -0,3 VCE 3% IC 10% 0 tEon -50 -0,1 0,1 0,3 0,5 0,7 3,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 8 0,24 0,67 4 4,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A Ǒs Ǒs Output inverter IGBT Figure 3 4,2 -15 15 600 8 0,06 0,28 time(us) 4,4 V V V A Ǒs Ǒs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 4,3 Turn-on Switching Waveforms & definition of tr 120 250 fitted % % VCE IC 100 200 IC 90% 80 150 60 IC 60% 40 VCE 100 IC 40% tr IC 90% 50 20 IC 10% Ic 0 0 IC 10% tf -20 -50 0 VC (100%) = IC (100%) = tf = 0,1 0,2 600 8 0,14 Copyright by Vincotech 0,3 0,4 time (us) 0,5 3,9 VC (100%) = IC (100%) = tr = V A Ǒs 19 4 4,1 600 8 0,02 4,2 time(us) 4,3 V A Ǒs Revision: 2 V23990-P639-A40-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 200 120 % Pon IC 1% Eoff % 100 Poff 150 80 Eon 100 60 40 50 20 VGE 10% VGE 90% VCE 3% 0 tEon 0 tEoff -50 -20 -0,2 0 0,2 0,4 0,6 3,9 0,8 4 4,1 4,2 4,3 time (us) Poff (100%) = Eoff (100%) = tEoff = 4,86 0,78 0,67 Pon (100%) = Eon (100%) = tEon = kW mJ Ǒs Output inverter FWD Figure 7 Gate voltage vs Gate charge (measured) 4,4 time(us) 4,86 0,83 0,28 kW mJ Ǒs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 150 VGE (V) 20 % Id 15 100 10 trr 50 5 Vd fitted 0 0 IRRM 10% -5 -50 -10 -100 IRRM 90% IRRM 100% -15 -20 -150 -10 0 10 20 30 40 50 60 70 3,8 4 4,2 4,4 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -15 15 600 8 62,70 Copyright by Vincotech 4,6 4,8 time(us) Qg (nC) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 20 600 8 -9 0,42 V A A Ǒs Revision: 2 V23990-P639-A40-PM Switching Definitions Output Inverter Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 % % Id Qrr Erec 100 100 80 tQrr tErec 50 60 0 40 -50 20 Prec -100 0 -20 -150 3,8 Id (100%) = Qrr (100%) = tQrr = 4,2 4,6 8 1,66 1,00 Copyright by Vincotech 5 time(us) 3,8 5,4 4,2 4,6 5 5,4 time(us) Prec (100%) = Erec (100%) = tErec = A ǑC Ǒs 21 4,86 0,66 1,00 kW mJ Ǒs Revision: 2 V23990-P639-A40-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste Ordering Code V23990-P639-A40-PM in DataMatrix as in packaging barcode as P639-A40 P639-A40 Outline Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Pin table X Y 53 46 39,5 32,5 28,1 18 15 12 9 3 0 0 3 8,5 11,5 17 20 33 36 39 46 53 0 0 0 0 0 0 0 0 0 0 0 7 7 7 7 7 7 7 7 7 7 7 Pin 25 26 27 28 Pin table X Y 29 28,5 31,8 28,5 36,5 43,5 28,5 28,5 Pin 29 30 31 32 Pin table X Y 52,55 25 52,55 16,9 52,55 52,55 8,6 2,8 Pinout Copyright by Vincotech 22 Revision: 2 V23990-P639-A40-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 23 Revision: 2