V23990 P848 x5x D5 14

V23990-P848-*5*-PM
flow PIM 0 3rdgen
1200 V / 4 A
flow PIM 0 3rdgen
Features
● 2 Clips housing in 12 and 17mm height
● Trench Fieldstop Technology IGBT4
● Enhenced Rectifier
● Optional w/o BRC
Target Applications
Schematic
● Industrial Drives
● Embedded Generation
Types
● V23990-P848-A58-PM 12mm housing
● V23990-P848-A59-PM 17mm housing
● V23990-P848-C58-PM 12mm housing; w/o BRC
● V23990-P848-C59-PM 17mm housing; w/o BRC
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
34
34
A
370
A
370
A 2s
39
64
W
Input Rectifier Diode
Repetitive peak reverse voltage
V RRM
DC forward current
I FAV
Surge forward current
I FSM
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
I2t-value
I 2t
Power dissipation
P tot
Maximum Junction Temperature
T jmax
150
°C
V CE
1200
V
9
10
A
12
A
8
A
38
57
W
±20
V
10
800
µs
V
175
°C
Tj=Tjmax
Th=80°C
Tc=80°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
I Cpulse
Turn off safe operating area
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
copyright Vincotech
Th=80°C
Tc=80°C
t p limited by T jmax
VCE ≤ 1200V, Tj ≤ Top max
Power dissipation
Maximum Junction Temperature
Tj=Tjmax
T j=Tjmax
Tj≤150°C
VGE=15V
T jmax
1
T h=80°C
T c=80°C
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
10
10
A
32
A
37
56
W
175
°C
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
V RRM
IF
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
Th=80°C
Tc=80°C
Brake Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
I Cpulse
Turn off safe operating area
Th=80°C
Tc=80°C
Tj=Tjmax
t p limited by T jmax
VCE ≤ 1200V, Tj ≤ Top max
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
1200
V CE
Th=80°C
Tc=80°C
Tj=Tjmax
Tj≤150°C
VGE=15V
T jmax
V
8
10
A
12
A
8
A
32
49
W
±20
V
10
800
µs
V
175
°C
Brake Diode
Peak Repetitive Reverse Voltage
DC forward current
1200
V RRM
IF
Th=80°C
Tc=80°C
Tj=Tjmax
V
6
6
A
6
A
18
28
W
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
175
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
V is
t=2s
DC voltage
CTI
>200
2
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V]
I C [A] or
V GE [V] or or
I [A] or
V CE [V] or F
V GS [V]
I D [A]
V DS [V]
Tj
Min
Unit
Typ
Max
1,19
1,17
0,91
0,79
8
11
1,7
Input Rectifier Diode
Forward voltage
VF
30
Threshold voltage (for power loss calc. only)
V to
30
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
30
1500
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
V
V
mΩ
0,1
mA
Thermal resistance chip to heatsink
R thJH
Thermal grease
thickness≤50u
m λ = 1 W/mK
1,80
K/W
Thermal resistance chip to heatsink
R thJH
Phase-Change
Material
ʎ=3,4W/mK
1,54
K/W
Inverter Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
VCE=VGE
0,0008
15
V CE(sat)
50
Collector-emitter cut-off current incl. Diode
I CES
0
600
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
5
5,8
6,5
1,95
2,28
200
Rgoff=64 Ω
Rgon=64 Ω
600
±15
4
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
0,05
mA
nA
Ω
none
tr
t d(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
77
75
18
23
176
226
83
110
0,32
0,56
0,21
0,31
ns
mWs
250
f=1MHz
0
25
Tj=25°C
pF
25
15
±15
Thermal resistance chip to heatsink
R thJH
Thermal grease
thickness≤50u
m λ = 1 W/mK
Thermal resistance chip to heatsink
R thJH
Phase-Change
Material
ʎ=3,4W/mK
960
4
Tj=25°C
25
nC
2,51
K/W
2,18
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
Reverse recovered energy
10
VF
Rgon=64 Ω
600
di(rec)max
/dt
E rec
Thermal resistance chip to heatsink
R thJH
Thermal grease
thickness≤50u
m λ = 1 W/mK
Thermal resistance chip to heatsink
R thJH
Phase-Change
Material
ʎ=3,4W/mK
copyright Vincotech
15
3
10
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,35
1,41
1,25
5,24
6,35
248
431
0,58
1,24
95
49
0,21
0,47
2,2
V
A
ns
µC
A/µs
mWs
2,56
K/W
2,23
K/W
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V]
I C [A] or
V GE [V] or or
I [A] or
V CE [V] or F
V GS [V]
I D [A]
V DS [V]
Tj
Min
Unit
Typ
Max
5,8
6,5
Brake Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
VCE=VGE
0,00015
15
V CE(sat)
4
Collector-emitter cut-off incl diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
Turn-on delay time
Rise time
Turn-off delay time
Fall time
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
5
1,96
2,27
200
none
t d(on)
tr
t d(off)
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
V
0,05
R gint
Rgoff=64 Ω
Rgon=64 Ω
±15
600
4
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
mA
nA
Ω
78
75
18
24
170
217
81
103
0,24
0,36
0,22
0,33
ns
mWs
250
f=1MHz
0
25
Tj=25°C
pF
25
15
15
Thermal resistance chip to heatsink
R thJH
Thermal grease
thickness≤50u
m λ = 1 W/mK
Thermal resistance chip to heatsink
R thJH
Phase-Change
Material
ʎ=3,4W/mK
960
4
Tj=25°C
25
nC
2,95
K/W
2,56
K/W
Brake Diode
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
15
600
4
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
4
Rgon=64 Ω
Rgon=64 Ω
15
600
di(rec)max
/dt
4
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
1,88
1,79
2,35
250
4,03
4,52
276
485
0,43
0,43
37
31
0,17
0,38
V
µA
A
ns
µC
A/µs
Reverse recovery energy
E rec
mWs
Thermal resistance chip to heatsink
R thJH
Thermal grease
thickness≤50u
m λ = 1 W/mK
3,86
K/W
Thermal resistance chip to heatsink
R thJH
Phase-Change
Material
ʎ=3,4W/mK
3,38
K/W
22000
Ω
Thermistor
Rated resistance
T=25°C
R
Deviation of R100
ΔR/R
Power dissipation
P
R100=1486 Ω
T=100°C
Power dissipation constant
-5
5
T=25°C
210
mW
T=25°C
3,5
mW/K
K
B-value
B(25/50) Tol. ±3%
T=25°C
3940
B-value
B(25/100) Tol. ±3%
T=25°C
4000
Vincotech NTC Reference
copyright Vincotech
%
K
A
4
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Output Inverter
Figure 1
Typical output characteristics
I C = f(V CE)
Output inverter IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
12
IC (A)
IC (A)
12
Output inverter IGBT
10
10
8
8
6
6
4
4
2
2
0
0
0
1
At
tp =
Tj =
V GE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
Output inverter IGBT
1
2
3
V CE (V)
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Output inverter FWD
15
IF (A)
IC (A)
5
4
4
12
3
9
2
6
1
3
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0,0
At
tp =
µs
V
5
0,5
250
1,0
1,5
2,0
V F (V) 2,5
µs
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Output Inverter
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
E (mWs)
1,2
E (mWs)
1,2
Output inverter IGBT
Eon High T
Eon High T
1
1
0,8
0,8
Eon Low T
Eon Low T
0,6
0,6
Eoff High T
0,4
0,4
Eoff Low T
Eoff High T
Eoff Low T
0,2
0,2
0
0
0
2
4
6
I C (A)
8
0
With an inductive load at
Tj =
°C
25/150
25/150
V CE =
600
V
V GE =
±15
V
R gon =
64
Ω
R goff =
64
Ω
50
100
150
200
250
RG(Ω)
300
With an inductive load at
Tj =
°C
25/150
25/150
V CE =
600
V
V GE =
±15
V
IC =
4
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
E (mWs)
0,7
Erec
0,6
Output inverter FWD
0,6
0,5
Tj = Tjmax -25°C
Tj = Tjmax -25°C
Erec
0,5
0,4
0,4
0,3
Erec
0,3
Tj = 25°C
Tj = 25°C
0,2
Erec
0,2
0,1
0,1
0
0
0
2
4
6
I C (A) 8
0
With an inductive load at
Tj =
25/150
25/150
°C
V CE =
600
V
V GE =
±15
V
R gon =
64
Ω
copyright Vincotech
50
100
150
200
250 R G ( Ω )
300
With an inductive load at
Tj =
25/150
25/150
°C
V CE =
600
V
V GE =
±15
V
IC =
4
A
6
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Output Inverter
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1,00
1,00
t ( µs)
Output inverter IGBT
t ( µs)
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Output inverter IGBT
tdoff
tdon
tdoff
tf
0,10
tf
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
1
2
3
4
5
6
7 I C (A)
8
0
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
R gon =
64
Ω
R goff =
64
Ω
50
100
150
200
R G ( Ω ) 300
250
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
IC =
4
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
t rr( µs)
0,8
t rr( µs)
0,6
Output inverter FWD
trr
Tj = Tjmax -25°C
0,5
trr
0,6
0,4
Tj = Tjmax -25°C
trr
0,3
trr
0,4
Tj = 25°C
Tj = 25°C
0,2
0,2
0,1
0,0
0,0
0
At
Tj =
V CE =
V GE =
R gon =
2
25/150
25/150
600
±15
64
copyright Vincotech
4
6
I C (A)
0
8
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
50
25/150
25/150
600
4
±15
100
150
200
250
R gon ( Ω ) 300
°C
V
A
V
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Output Inverter
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
2
Output inverter FWD
1,4
Qrr( µC)
Qrr( µC)
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
Tj = Tjmax -25°C
Tj = Tjmax -25°C
Qrr
1,2
Qrr
1,5
1
0,8
1
Qrr
0,6
Qrr
Tj = 25°C
Tj = 25°C
0,4
0,5
0,2
0
0
0
At
At
Tj =
V CE =
V GE =
R gon =
2
25/150
25/150
600
±15
64
4
6
I C (A)
8
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
Output inverter FWD
50
25/150
25/150
600
4
±15
100
150
250
R gon ( Ω) 300
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
7
200
Output inverter FWD
IrrM (A)
IrrM (A)
12
Tj = Tjmax -25°C
IRRM
6
10
IRRM
Tj = 25°C
5
8
4
6
3
Tj = Tjmax - 25°C
4
2
IRRM
Tj = 25°C
IRRM
2
1
0
0
0
At
Tj =
V CE =
V GE =
R gon =
2
25/150
25/150
600
±15
64
copyright Vincotech
4
6
I C (A)
8
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
8
50
25/150
25/150
600
4
±15
100
150
200
250
R gon ( Ω ) 300
°C
V
A
V
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Output Inverter
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I C)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
1200
direc / dt (A/ µs)
direc / dt (A/µ s)
250
Output inverter FWD
dI0/dt
dIrec/dt
dI0/dt
dIrec/dt
1000
200
800
150
600
100
400
50
200
0
0
0
At
Tj =
V CE =
V GE =
R gon =
2
25/150
25/150
600
±15
64
4
I C (A)
6
0
8
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Output inverter IGBT
50
25/150
25/150
600
4
±15
100
150
Output inverter FWD
1
Zth-JH (K/W)
ZthJH (K/W)
10
R gon ( Ω ) 300
250
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
101
200
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
K/W
R thJH =
2,18
-1
10
-2
10-5
10110
At
D =
R thJH =
tp / T
2,51
10
K/W
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-4
10-3
10-2
K/W
R thJH =
10-1
t p (s)
100
tp / T
2,56
2,23
K/W
IGBT thermal model values
Thermal grease
Phase change material
FWD thermal model values
Thermal grease
Phase change material
R (K/W)
0,05
0,26
0,85
0,64
0,38
0,33
R (K/W)
0,12
0,62
1,10
0,37
0,35
Tau (s)
6,2E+00
4,9E-01
8,6E-02
1,3E-02
2,2E-03
3,4E-04
copyright Vincotech
R (K/W)
0,04
0,23
0,74
0,56
0,33
0,28
Tau (s)
6,2E+00
4,9E-01
8,6E-02
1,3E-02
2,2E-03
3,4E-04
9
101
Tau (s)
2,8E+00
2,1E-01
4,8E-02
7,2E-03
8,8E-04
R (K/W)
0,11
0,54
0,95
0,33
0,30
Tau (s)
2,8E+00
2,1E-01
4,8E-02
7,2E-03
8,8E-04
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Output Inverter
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
12
IC (A)
Ptot (W)
70
Output inverter IGBT
60
10
50
8
40
6
30
4
20
2
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Output inverter FWD
50
175
15
100
T h ( o C)
200
°C
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
Output inverter FWD
12
Ptot (W)
IF (A)
80
150
10
60
8
40
6
4
20
2
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T h ( o C)
200
°C
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Output Inverter
Figure 25
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
Figure 26
Gate voltage vs Gate charge
Output inverter IGBT
V GE = f(Q GE)
3
VGE (V)
17,5
IC (A)
10
Output inverter IGBT
15
240V
960V
102
12,5
10uS
100uS
10
1mS
101
10mS
7,5
100mS
5
DC
100
2,5
0
10-1
10
10
-1
At
D =
Th =
V GE =
Tj =
101
0
102
V CE (V)
0
103
At
IC =
single pulse
80
ºC
±15
V
T jmax
ºC
Figure 27
Output inverter IGBT
5
10
4
15
20
Q g (nC)
30
A
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
t sc = f(V GE)
25
Output inverter IGBT
Typical short circuit collector current as a function of
gate-emitter voltage
V GE = f(Q GE)
40
tsc (µS)
IC (sc)
17,5
35
15
30
12,5
25
10
20
7,5
15
5
10
2,5
5
0
0
12
At
V CE =
Tj ≤
13
14
1200
V
175
ºC
copyright Vincotech
15
16
V GE (V)
17
12
At
V CE ≤
Tj =
11
13
14
15
1200
V
175
ºC
16
17
18
19 V (V) 20
GE
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Figure 29
Reverse bias safe operating area
IGBT
I C = f(V CE)
IC (A)
10
IC MAX
8
Ic CHIP
Ic
MODULE
6
4
VCE MAX
2
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
T jmax-25
ºC
Uccminus=Uccplus
Switching mode :
copyright Vincotech
3 level switching
12
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Brake
Figure 1
Typical output characteristics
I C = f(V CE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
12
IC (A)
12
9
9
6
6
3
3
Brake IGBT
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
0
5
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
Brake IGBT
1
2
3
4
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Brake FWD
16
IC (A)
IF (A)
5
V CE (V)
4
12
3
8
2
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
4
1
0
0
0
At
tp =
V CE =
2
4
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V) 12
0
At
tp =
13
0,5
250
1
1,5
2
2,5
3
V F (V) 3,5
µs
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Brake
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
0,8
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
Eon
0,7
Brake IGBT
0,84
Eon
0,72
Tj = Tjmax -25°C
0,6
0,6
Tj = Tjmax -25°C
Eoff
Eon
0,5
Eon
0,48
Eoff
0,36
0,4
Eoff
0,3
0,24
Eoff
0,2
Tj = 25°C
0,12
0,1
Tj = 25°C
0
0,0
0
1
2
3
4
5
6
7 I C (A)
0
8
With an inductive load at
Tj =
25/150
25/150
°C
V CE =
600
V
V GE =
±15
V
R gon =
64
Ω
R goff =
64
Ω
50
100
150
200
250 R ( Ω ) 300
G
With an inductive load at
Tj =
25/150
25/150
°C
V CE =
600
V
V GE =
±15
V
IC =
4
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
0,6
Brake FWD
E (mWs)
E (mWs)
0,45
Erec
0,5
Tj = Tjmax -25°C
Erec
0,36
0,4
0,27
Tj = Tjmax - 25°C
0,3
0,18
Erec
Erec
Tj = 25°C
0,2
Tj = 25°C
0,09
0,1
0
0
0
1
2
3
4
5
6
7I C (A)
0
8
With an inductive load at
Tj =
25/150
25/150
°C
V CE =
600
V
V GE =
±15
V
R gon =
64
Ω
copyright Vincotech
50
100
150
200
250
R G ( Ω ) 300
With an inductive load at
Tj =
25/150
25/150
°C
V CE =
600
V
V GE =
±15
V
IC =
4
A
14
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Brake
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1,00
1,00
t ( µs)
Brake IGBT
t ( µs)
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Brake IGBT
tdoff
tdon
tdoff
tf
0,10
tf
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
1
2
3
4
5
7 I C (A)
6
8
0
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
R gon =
64
Ω
R goff =
64
Ω
100
150
200
250
R G ( Ω ) 300
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
IC =
4
A
Figure 11
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Brake IGBT
Figure 12
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Brake FWD
ZthJH (K/W)
101
ZthJH (K/W)
101
10
50
0
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
10-4
At
Thermal grease
R thJH =
2,95
copyright Vincotech
10-3
10-2
10-1
100
t p (s)
D =
tp / T
K/W
Phase change material
R thJH =
2,56
K/W
101
10-5
10-4
At
Thermal grease
R thJH =
3,86
15
10-3
10-2
10-1
100
t p (s)
D =
tp / T
K/W
Phase change material
R thJH =
3,38
K/W
101
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Brake
Figure 13
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
I C = f(T h)
IC (A)
12
Ptot (W)
60
50
10
40
8
30
6
20
4
10
2
0
0
0
50
At
Tj =
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
ºC
Figure 15
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Brake FWD
50
175
15
100
150
T h ( o C)
200
ºC
V
Figure 16
Forward current as a
function of heatsink temperature
I F = f(T h)
40
Brake FWD
12
IF (A)
Ptot (W)
Brake IGBT
35
10
30
8
25
20
6
15
4
10
2
5
0
0
0
At
Tj =
25
150
copyright Vincotech
50
75
100
125
Th ( o C) 150
0
At
Tj =
ºC
16
25
50
150
ºC
75
100
125
Th ( o C) 150
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Input Rectifier Bridge
Figure 1
Typical diode forward current as
a function of forward voltage
I F= f(V F)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
100
1
IF (A)
ZthJC (K/W)
10
Rectifier diode
80
Tj = 25°C
100
Tj = Tjmax-25°C
60
40
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
20
0
0,0
At
tp =
0,3
0,5
250
0,8
1,0
1,3
10-2
1,8 V F (V) 2,0
1,5
10-5
10-4
At
Thermal grease
tp / T
D =
R thJH =
1,80
µs
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Rectifier diode
10-3
10-2
D =
tp / T
K/W
D =
R thJH =
10-1
101
Phase change material
tp / T
1,54
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T h)
K/W
Rectifier diode
35
IF (A)
Ptot (W)
100
t p (s)
100
30
80
25
60
20
15
40
10
20
5
0
0
0
At
Tj =
25
50
150
ºC
copyright Vincotech
75
100
125
T h ( o C) 150
0
At
Tj =
17
25
50
150
ºC
75
100
125
T h ( o C) 150
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
Thermistor
Figure 2
Typical NTC resistance values



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
25000
Thermistor
R (Ω)
R(T ) = R25 ⋅ e
[Ω]
20000
15000
10000
5000
0
25
45
copyright Vincotech
65
85
105
T (°C) 125
18
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Switching Definitions Output Inverter
General
Tj
R gon
R goff
conditions
= 150 °C
= 64 Ω
= 64 Ω
Figure 1
Output inverter IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for Eoff)
120
300
tdoff
%
Figure 2
Output inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
%
VCE
100
250
VGE 90%
VCE 90%
IC
80
200
IC
60
150
tEoff
40
VCE
100
VGE
20
tdon
IC 1%
50
0
VGE10%
VGE
-20
IC10%
0
tEon
-40
-0,4
-50
-0,2
0
0,2
0,4
0,6
0,8
2,9
3
3,1
3,2
time (us)
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
-15
15
600
4
0,23
0,59
V
V
V
A
µs
µs
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
-15
15
600
4
0,08
0,32
time(us)
3,3
V
V
V
A
µs
µs
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of t r
140
300
%
%
120
Ic
250
fitted
IC
VCE
100
200
IC 90%
80
150
IC 60%
60
VCE
100
40
IC90%
IC 40%
tr
50
20
IC10%
0
IC10%
0
tf
-20
0
0,1
0,2
0,3
0,4
-50
0,5
3
3,05
3,1
3,15
3,2
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
600
4
0,11
3,25
3,3
3,35
3,4
time(us)
time (us)
V
A
µs
V C (100%) =
I C (100%) =
tr =
19
600
4
0,02
V
A
µs
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
120
250
%
%
Eoff
100
Pon
200
Poff
80
150
60
Eon
100
40
50
20
VGE 10%
VGE 90%
IC 1%
VCE 3%
0
0
tEon
tEoff
-20
-0,2
-50
0
0,2
0,4
0,6
2,9
0,8
3
3,1
3,2
3,3
3,4
time (us)
P off (100%) =
E off (100%) =
t E off =
2,41
0,32
0,59
time(us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
2,41
0,56
0,32
kW
mJ
µs
Figure 7
Output inverter FWD
Turn-off Switching Waveforms & definition of t rr
100
Id
%
trr
50
fitted
0
Vd
IRRM10%
-50
-100
IRRM90%
-150
IRRM100%
-200
3
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
20
3,2
3,4
600
4
-6
0,43
3,6
time(us)
3,8
V
A
A
µs
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Switching Definitions Output Inverter
Figure 8
Output inverter FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Qrr)
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
120
150
%
%
Qrr
Id
Erec
100
100
Prec
tQrr
50
80
0
60
-50
40
-100
20
-150
0
tErec
-200
-20
3
3,4
3,8
4,2
3
3,2
3,4
3,6
2,41
0,47
1,00
kW
mJ
µs
time(us)
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
4
1,24
1,00
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
21
3,8
4
time(us)
4,2
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
in DataMatrix as
Ordering Code
without thermal paste 12mm housing
without thermal paste 17mm housing
without thermal paste 12mm housing
without thermal paste 17mm housing
in packaging barcode as
V23990-P848-A58-(opt.)-PM
V23990-P848-A59-(opt.)-PM
P848-A58
P848-A59
P848-A58
P848-A59
V23990-P848-C58-(opt.)-PM
V23990-P848-C59-(opt.)-PM
P848-C58
P848-C59
P848-C58
P848-C59
Outline
Pin
Pin table
X
Y
1
2
25,5
25,5
2,7
0
3
22,8
0
4
20,1
0
5
6
16,2
13,5
0
0
7
10,8
0
8
8,1
0
9
10
5,4
2,7
0
0
11
0
0
12
13
14
0
0
7,5
19,8
22,5
19,8
15
16
7,5
15
22,5
19,8
17
18
15
22,8
22,5
22,5
19
20
25,5
33,5
22,5
22,5
21
22
23
33,5
33,5
33,5
15
7,5
0
Pinout
copyright Vincotech
22
14 Jan. 2015 / Revision 5
V23990-P848-*5*-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured
characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further
notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its
patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
23
14 Jan. 2015 / Revision 5