V23990-P848-*5*-PM flow PIM 0 3rdgen 1200 V / 4 A flow PIM 0 3rdgen Features ● 2 Clips housing in 12 and 17mm height ● Trench Fieldstop Technology IGBT4 ● Enhenced Rectifier ● Optional w/o BRC Target Applications Schematic ● Industrial Drives ● Embedded Generation Types ● V23990-P848-A58-PM 12mm housing ● V23990-P848-A59-PM 17mm housing ● V23990-P848-C58-PM 12mm housing; w/o BRC ● V23990-P848-C59-PM 17mm housing; w/o BRC Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 34 34 A 370 A 370 A 2s 39 64 W Input Rectifier Diode Repetitive peak reverse voltage V RRM DC forward current I FAV Surge forward current I FSM Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C I2t-value I 2t Power dissipation P tot Maximum Junction Temperature T jmax 150 °C V CE 1200 V 9 10 A 12 A 8 A 38 57 W ±20 V 10 800 µs V 175 °C Tj=Tjmax Th=80°C Tc=80°C Inverter Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC I Cpulse Turn off safe operating area P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC copyright Vincotech Th=80°C Tc=80°C t p limited by T jmax VCE ≤ 1200V, Tj ≤ Top max Power dissipation Maximum Junction Temperature Tj=Tjmax T j=Tjmax Tj≤150°C VGE=15V T jmax 1 T h=80°C T c=80°C 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 10 10 A 32 A 37 56 W 175 °C Inverter Diode Peak Repetitive Reverse Voltage DC forward current V RRM IF Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax Th=80°C Tc=80°C Brake Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC I Cpulse Turn off safe operating area Th=80°C Tc=80°C Tj=Tjmax t p limited by T jmax VCE ≤ 1200V, Tj ≤ Top max Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature 1200 V CE Th=80°C Tc=80°C Tj=Tjmax Tj≤150°C VGE=15V T jmax V 8 10 A 12 A 8 A 32 49 W ±20 V 10 800 µs V 175 °C Brake Diode Peak Repetitive Reverse Voltage DC forward current 1200 V RRM IF Th=80°C Tc=80°C Tj=Tjmax V 6 6 A 6 A 18 28 W Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax 175 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech V is t=2s DC voltage CTI >200 2 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Characteristic Values Parameter Conditions Symbol Value V r [V] I C [A] or V GE [V] or or I [A] or V CE [V] or F V GS [V] I D [A] V DS [V] Tj Min Unit Typ Max 1,19 1,17 0,91 0,79 8 11 1,7 Input Rectifier Diode Forward voltage VF 30 Threshold voltage (for power loss calc. only) V to 30 Slope resistance (for power loss calc. only) rt Reverse current Ir 30 1500 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=150°C V V mΩ 0,1 mA Thermal resistance chip to heatsink R thJH Thermal grease thickness≤50u m λ = 1 W/mK 1,80 K/W Thermal resistance chip to heatsink R thJH Phase-Change Material ʎ=3,4W/mK 1,54 K/W Inverter Transistor Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) VCE=VGE 0,0008 15 V CE(sat) 50 Collector-emitter cut-off current incl. Diode I CES 0 600 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG 5 5,8 6,5 1,95 2,28 200 Rgoff=64 Ω Rgon=64 Ω 600 ±15 4 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V 0,05 mA nA Ω none tr t d(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 77 75 18 23 176 226 83 110 0,32 0,56 0,21 0,31 ns mWs 250 f=1MHz 0 25 Tj=25°C pF 25 15 ±15 Thermal resistance chip to heatsink R thJH Thermal grease thickness≤50u m λ = 1 W/mK Thermal resistance chip to heatsink R thJH Phase-Change Material ʎ=3,4W/mK 960 4 Tj=25°C 25 nC 2,51 K/W 2,18 K/W Inverter Diode Diode forward voltage Peak reverse recovery current I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current Reverse recovered energy 10 VF Rgon=64 Ω 600 di(rec)max /dt E rec Thermal resistance chip to heatsink R thJH Thermal grease thickness≤50u m λ = 1 W/mK Thermal resistance chip to heatsink R thJH Phase-Change Material ʎ=3,4W/mK copyright Vincotech 15 3 10 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,35 1,41 1,25 5,24 6,35 248 431 0,58 1,24 95 49 0,21 0,47 2,2 V A ns µC A/µs mWs 2,56 K/W 2,23 K/W 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Characteristic Values Parameter Conditions Symbol Value V r [V] I C [A] or V GE [V] or or I [A] or V CE [V] or F V GS [V] I D [A] V DS [V] Tj Min Unit Typ Max 5,8 6,5 Brake Transistor Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) VCE=VGE 0,00015 15 V CE(sat) 4 Collector-emitter cut-off incl diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor Turn-on delay time Rise time Turn-off delay time Fall time Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 5 1,96 2,27 200 none t d(on) tr t d(off) tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG V 0,05 R gint Rgoff=64 Ω Rgon=64 Ω ±15 600 4 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V mA nA Ω 78 75 18 24 170 217 81 103 0,24 0,36 0,22 0,33 ns mWs 250 f=1MHz 0 25 Tj=25°C pF 25 15 15 Thermal resistance chip to heatsink R thJH Thermal grease thickness≤50u m λ = 1 W/mK Thermal resistance chip to heatsink R thJH Phase-Change Material ʎ=3,4W/mK 960 4 Tj=25°C 25 nC 2,95 K/W 2,56 K/W Brake Diode Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current 15 600 4 I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current 4 Rgon=64 Ω Rgon=64 Ω 15 600 di(rec)max /dt 4 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 1,88 1,79 2,35 250 4,03 4,52 276 485 0,43 0,43 37 31 0,17 0,38 V µA A ns µC A/µs Reverse recovery energy E rec mWs Thermal resistance chip to heatsink R thJH Thermal grease thickness≤50u m λ = 1 W/mK 3,86 K/W Thermal resistance chip to heatsink R thJH Phase-Change Material ʎ=3,4W/mK 3,38 K/W 22000 Ω Thermistor Rated resistance T=25°C R Deviation of R100 ΔR/R Power dissipation P R100=1486 Ω T=100°C Power dissipation constant -5 5 T=25°C 210 mW T=25°C 3,5 mW/K K B-value B(25/50) Tol. ±3% T=25°C 3940 B-value B(25/100) Tol. ±3% T=25°C 4000 Vincotech NTC Reference copyright Vincotech % K A 4 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Output Inverter Figure 1 Typical output characteristics I C = f(V CE) Output inverter IGBT Figure 2 Typical output characteristics I C = f(V CE) 12 IC (A) IC (A) 12 Output inverter IGBT 10 10 8 8 6 6 4 4 2 2 0 0 0 1 At tp = Tj = V GE from 2 3 V CE (V) 4 5 0 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) Output inverter IGBT 1 2 3 V CE (V) 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) Output inverter FWD 15 IF (A) IC (A) 5 4 4 12 3 9 2 6 1 3 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0,0 At tp = µs V 5 0,5 250 1,0 1,5 2,0 V F (V) 2,5 µs 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Output Inverter Figure 5 Typical switching energy losses as a function of collector current E = f(I C) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) E (mWs) 1,2 E (mWs) 1,2 Output inverter IGBT Eon High T Eon High T 1 1 0,8 0,8 Eon Low T Eon Low T 0,6 0,6 Eoff High T 0,4 0,4 Eoff Low T Eoff High T Eoff Low T 0,2 0,2 0 0 0 2 4 6 I C (A) 8 0 With an inductive load at Tj = °C 25/150 25/150 V CE = 600 V V GE = ±15 V R gon = 64 Ω R goff = 64 Ω 50 100 150 200 250 RG(Ω) 300 With an inductive load at Tj = °C 25/150 25/150 V CE = 600 V V GE = ±15 V IC = 4 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) E (mWs) 0,7 Erec 0,6 Output inverter FWD 0,6 0,5 Tj = Tjmax -25°C Tj = Tjmax -25°C Erec 0,5 0,4 0,4 0,3 Erec 0,3 Tj = 25°C Tj = 25°C 0,2 Erec 0,2 0,1 0,1 0 0 0 2 4 6 I C (A) 8 0 With an inductive load at Tj = 25/150 25/150 °C V CE = 600 V V GE = ±15 V R gon = 64 Ω copyright Vincotech 50 100 150 200 250 R G ( Ω ) 300 With an inductive load at Tj = 25/150 25/150 °C V CE = 600 V V GE = ±15 V IC = 4 A 6 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Output Inverter Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1,00 1,00 t ( µs) Output inverter IGBT t ( µs) Figure 9 Typical switching times as a function of collector current t = f(I C) Output inverter IGBT tdoff tdon tdoff tf 0,10 tf 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 1 2 3 4 5 6 7 I C (A) 8 0 With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V R gon = 64 Ω R goff = 64 Ω 50 100 150 200 R G ( Ω ) 300 250 With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V IC = 4 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I C) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) t rr( µs) 0,8 t rr( µs) 0,6 Output inverter FWD trr Tj = Tjmax -25°C 0,5 trr 0,6 0,4 Tj = Tjmax -25°C trr 0,3 trr 0,4 Tj = 25°C Tj = 25°C 0,2 0,2 0,1 0,0 0,0 0 At Tj = V CE = V GE = R gon = 2 25/150 25/150 600 ±15 64 copyright Vincotech 4 6 I C (A) 0 8 At Tj = VR= IF= V GE = °C V V Ω 7 50 25/150 25/150 600 4 ±15 100 150 200 250 R gon ( Ω ) 300 °C V A V 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Output Inverter Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) 2 Output inverter FWD 1,4 Qrr( µC) Qrr( µC) Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) Tj = Tjmax -25°C Tj = Tjmax -25°C Qrr 1,2 Qrr 1,5 1 0,8 1 Qrr 0,6 Qrr Tj = 25°C Tj = 25°C 0,4 0,5 0,2 0 0 0 At At Tj = V CE = V GE = R gon = 2 25/150 25/150 600 ±15 64 4 6 I C (A) 8 0 At Tj = VR= IF= V GE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) Output inverter FWD 50 25/150 25/150 600 4 ±15 100 150 250 R gon ( Ω) 300 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 7 200 Output inverter FWD IrrM (A) IrrM (A) 12 Tj = Tjmax -25°C IRRM 6 10 IRRM Tj = 25°C 5 8 4 6 3 Tj = Tjmax - 25°C 4 2 IRRM Tj = 25°C IRRM 2 1 0 0 0 At Tj = V CE = V GE = R gon = 2 25/150 25/150 600 ±15 64 copyright Vincotech 4 6 I C (A) 8 0 At Tj = VR= IF= V GE = °C V V Ω 8 50 25/150 25/150 600 4 ±15 100 150 200 250 R gon ( Ω ) 300 °C V A V 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Output Inverter Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I C) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 1200 direc / dt (A/ µs) direc / dt (A/µ s) 250 Output inverter FWD dI0/dt dIrec/dt dI0/dt dIrec/dt 1000 200 800 150 600 100 400 50 200 0 0 0 At Tj = V CE = V GE = R gon = 2 25/150 25/150 600 ±15 64 4 I C (A) 6 0 8 At Tj = VR= IF= V GE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) Output inverter IGBT 50 25/150 25/150 600 4 ±15 100 150 Output inverter FWD 1 Zth-JH (K/W) ZthJH (K/W) 10 R gon ( Ω ) 300 250 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) 101 200 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) K/W R thJH = 2,18 -1 10 -2 10-5 10110 At D = R thJH = tp / T 2,51 10 K/W D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-4 10-3 10-2 K/W R thJH = 10-1 t p (s) 100 tp / T 2,56 2,23 K/W IGBT thermal model values Thermal grease Phase change material FWD thermal model values Thermal grease Phase change material R (K/W) 0,05 0,26 0,85 0,64 0,38 0,33 R (K/W) 0,12 0,62 1,10 0,37 0,35 Tau (s) 6,2E+00 4,9E-01 8,6E-02 1,3E-02 2,2E-03 3,4E-04 copyright Vincotech R (K/W) 0,04 0,23 0,74 0,56 0,33 0,28 Tau (s) 6,2E+00 4,9E-01 8,6E-02 1,3E-02 2,2E-03 3,4E-04 9 101 Tau (s) 2,8E+00 2,1E-01 4,8E-02 7,2E-03 8,8E-04 R (K/W) 0,11 0,54 0,95 0,33 0,30 Tau (s) 2,8E+00 2,1E-01 4,8E-02 7,2E-03 8,8E-04 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Output Inverter Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T h) 12 IC (A) Ptot (W) 70 Output inverter IGBT 60 10 50 8 40 6 30 4 20 2 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = °C Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) Output inverter FWD 50 175 15 100 T h ( o C) 200 °C V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) Output inverter FWD 12 Ptot (W) IF (A) 80 150 10 60 8 40 6 4 20 2 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 175 100 150 T h ( o C) 200 °C 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Output Inverter Figure 25 Safe operating area as a function of collector-emitter voltage I C = f(V CE) Figure 26 Gate voltage vs Gate charge Output inverter IGBT V GE = f(Q GE) 3 VGE (V) 17,5 IC (A) 10 Output inverter IGBT 15 240V 960V 102 12,5 10uS 100uS 10 1mS 101 10mS 7,5 100mS 5 DC 100 2,5 0 10-1 10 10 -1 At D = Th = V GE = Tj = 101 0 102 V CE (V) 0 103 At IC = single pulse 80 ºC ±15 V T jmax ºC Figure 27 Output inverter IGBT 5 10 4 15 20 Q g (nC) 30 A Figure 28 Short circuit withstand time as a function of gate-emitter voltage t sc = f(V GE) 25 Output inverter IGBT Typical short circuit collector current as a function of gate-emitter voltage V GE = f(Q GE) 40 tsc (µS) IC (sc) 17,5 35 15 30 12,5 25 10 20 7,5 15 5 10 2,5 5 0 0 12 At V CE = Tj ≤ 13 14 1200 V 175 ºC copyright Vincotech 15 16 V GE (V) 17 12 At V CE ≤ Tj = 11 13 14 15 1200 V 175 ºC 16 17 18 19 V (V) 20 GE 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Figure 29 Reverse bias safe operating area IGBT I C = f(V CE) IC (A) 10 IC MAX 8 Ic CHIP Ic MODULE 6 4 VCE MAX 2 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = T jmax-25 ºC Uccminus=Uccplus Switching mode : copyright Vincotech 3 level switching 12 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Brake Figure 1 Typical output characteristics I C = f(V CE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 12 IC (A) 12 9 9 6 6 3 3 Brake IGBT 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 0 5 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) Brake IGBT 1 2 3 4 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) Brake FWD 16 IC (A) IF (A) 5 V CE (V) 4 12 3 8 2 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 4 1 0 0 0 At tp = V CE = 2 4 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 12 0 At tp = 13 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 µs 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Brake Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) 0,8 E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(I C) Eon 0,7 Brake IGBT 0,84 Eon 0,72 Tj = Tjmax -25°C 0,6 0,6 Tj = Tjmax -25°C Eoff Eon 0,5 Eon 0,48 Eoff 0,36 0,4 Eoff 0,3 0,24 Eoff 0,2 Tj = 25°C 0,12 0,1 Tj = 25°C 0 0,0 0 1 2 3 4 5 6 7 I C (A) 0 8 With an inductive load at Tj = 25/150 25/150 °C V CE = 600 V V GE = ±15 V R gon = 64 Ω R goff = 64 Ω 50 100 150 200 250 R ( Ω ) 300 G With an inductive load at Tj = 25/150 25/150 °C V CE = 600 V V GE = ±15 V IC = 4 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 0,6 Brake FWD E (mWs) E (mWs) 0,45 Erec 0,5 Tj = Tjmax -25°C Erec 0,36 0,4 0,27 Tj = Tjmax - 25°C 0,3 0,18 Erec Erec Tj = 25°C 0,2 Tj = 25°C 0,09 0,1 0 0 0 1 2 3 4 5 6 7I C (A) 0 8 With an inductive load at Tj = 25/150 25/150 °C V CE = 600 V V GE = ±15 V R gon = 64 Ω copyright Vincotech 50 100 150 200 250 R G ( Ω ) 300 With an inductive load at Tj = 25/150 25/150 °C V CE = 600 V V GE = ±15 V IC = 4 A 14 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Brake Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1,00 1,00 t ( µs) Brake IGBT t ( µs) Figure 9 Typical switching times as a function of collector current t = f(I C) Brake IGBT tdoff tdon tdoff tf 0,10 tf 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 1 2 3 4 5 7 I C (A) 6 8 0 With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V R gon = 64 Ω R goff = 64 Ω 100 150 200 250 R G ( Ω ) 300 With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V IC = 4 A Figure 11 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) Brake IGBT Figure 12 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) Brake FWD ZthJH (K/W) 101 ZthJH (K/W) 101 10 50 0 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 10-4 At Thermal grease R thJH = 2,95 copyright Vincotech 10-3 10-2 10-1 100 t p (s) D = tp / T K/W Phase change material R thJH = 2,56 K/W 101 10-5 10-4 At Thermal grease R thJH = 3,86 15 10-3 10-2 10-1 100 t p (s) D = tp / T K/W Phase change material R thJH = 3,38 K/W 101 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Brake Figure 13 Power dissipation as a function of heatsink temperature P tot = f(T h) Brake IGBT Figure 14 Collector current as a function of heatsink temperature I C = f(T h) IC (A) 12 Ptot (W) 60 50 10 40 8 30 6 20 4 10 2 0 0 0 50 At Tj = 175 100 150 T h ( o C) 200 0 At Tj = V GE = ºC Figure 15 Power dissipation as a function of heatsink temperature P tot = f(T h) Brake FWD 50 175 15 100 150 T h ( o C) 200 ºC V Figure 16 Forward current as a function of heatsink temperature I F = f(T h) 40 Brake FWD 12 IF (A) Ptot (W) Brake IGBT 35 10 30 8 25 20 6 15 4 10 2 5 0 0 0 At Tj = 25 150 copyright Vincotech 50 75 100 125 Th ( o C) 150 0 At Tj = ºC 16 25 50 150 ºC 75 100 125 Th ( o C) 150 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Input Rectifier Bridge Figure 1 Typical diode forward current as a function of forward voltage I F= f(V F) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) 100 1 IF (A) ZthJC (K/W) 10 Rectifier diode 80 Tj = 25°C 100 Tj = Tjmax-25°C 60 40 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 20 0 0,0 At tp = 0,3 0,5 250 0,8 1,0 1,3 10-2 1,8 V F (V) 2,0 1,5 10-5 10-4 At Thermal grease tp / T D = R thJH = 1,80 µs Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) Rectifier diode 10-3 10-2 D = tp / T K/W D = R thJH = 10-1 101 Phase change material tp / T 1,54 Figure 4 Forward current as a function of heatsink temperature I F = f(T h) K/W Rectifier diode 35 IF (A) Ptot (W) 100 t p (s) 100 30 80 25 60 20 15 40 10 20 5 0 0 0 At Tj = 25 50 150 ºC copyright Vincotech 75 100 125 T h ( o C) 150 0 At Tj = 17 25 50 150 ºC 75 100 125 T h ( o C) 150 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) Thermistor Figure 2 Typical NTC resistance values B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 25000 Thermistor R (Ω) R(T ) = R25 ⋅ e [Ω] 20000 15000 10000 5000 0 25 45 copyright Vincotech 65 85 105 T (°C) 125 18 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Switching Definitions Output Inverter General Tj R gon R goff conditions = 150 °C = 64 Ω = 64 Ω Figure 1 Output inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for Eoff) 120 300 tdoff % Figure 2 Output inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) % VCE 100 250 VGE 90% VCE 90% IC 80 200 IC 60 150 tEoff 40 VCE 100 VGE 20 tdon IC 1% 50 0 VGE10% VGE -20 IC10% 0 tEon -40 -0,4 -50 -0,2 0 0,2 0,4 0,6 0,8 2,9 3 3,1 3,2 time (us) V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = -15 15 600 4 0,23 0,59 V V V A µs µs V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Output inverter IGBT Turn-off Switching Waveforms & definition of t f -15 15 600 4 0,08 0,32 time(us) 3,3 V V V A µs µs Figure 4 Output inverter IGBT Turn-on Switching Waveforms & definition of t r 140 300 % % 120 Ic 250 fitted IC VCE 100 200 IC 90% 80 150 IC 60% 60 VCE 100 40 IC90% IC 40% tr 50 20 IC10% 0 IC10% 0 tf -20 0 0,1 0,2 0,3 0,4 -50 0,5 3 3,05 3,1 3,15 3,2 V C (100%) = I C (100%) = tf = copyright Vincotech 600 4 0,11 3,25 3,3 3,35 3,4 time(us) time (us) V A µs V C (100%) = I C (100%) = tr = 19 600 4 0,02 V A µs 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Switching Definitions Output Inverter Figure 5 Output inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Output inverter IGBT Turn-on Switching Waveforms & definition of t Eon 120 250 % % Eoff 100 Pon 200 Poff 80 150 60 Eon 100 40 50 20 VGE 10% VGE 90% IC 1% VCE 3% 0 0 tEon tEoff -20 -0,2 -50 0 0,2 0,4 0,6 2,9 0,8 3 3,1 3,2 3,3 3,4 time (us) P off (100%) = E off (100%) = t E off = 2,41 0,32 0,59 time(us) kW mJ µs P on (100%) = E on (100%) = t E on = 2,41 0,56 0,32 kW mJ µs Figure 7 Output inverter FWD Turn-off Switching Waveforms & definition of t rr 100 Id % trr 50 fitted 0 Vd IRRM10% -50 -100 IRRM90% -150 IRRM100% -200 3 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 20 3,2 3,4 600 4 -6 0,43 3,6 time(us) 3,8 V A A µs 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Switching Definitions Output Inverter Figure 8 Output inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Qrr) Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 120 150 % % Qrr Id Erec 100 100 Prec tQrr 50 80 0 60 -50 40 -100 20 -150 0 tErec -200 -20 3 3,4 3,8 4,2 3 3,2 3,4 3,6 2,41 0,47 1,00 kW mJ µs time(us) I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 4 1,24 1,00 A µC µs P rec (100%) = E rec (100%) = t E rec = 21 3,8 4 time(us) 4,2 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version in DataMatrix as Ordering Code without thermal paste 12mm housing without thermal paste 17mm housing without thermal paste 12mm housing without thermal paste 17mm housing in packaging barcode as V23990-P848-A58-(opt.)-PM V23990-P848-A59-(opt.)-PM P848-A58 P848-A59 P848-A58 P848-A59 V23990-P848-C58-(opt.)-PM V23990-P848-C59-(opt.)-PM P848-C58 P848-C59 P848-C58 P848-C59 Outline Pin Pin table X Y 1 2 25,5 25,5 2,7 0 3 22,8 0 4 20,1 0 5 6 16,2 13,5 0 0 7 10,8 0 8 8,1 0 9 10 5,4 2,7 0 0 11 0 0 12 13 14 0 0 7,5 19,8 22,5 19,8 15 16 7,5 15 22,5 19,8 17 18 15 22,8 22,5 22,5 19 20 25,5 33,5 22,5 22,5 21 22 23 33,5 33,5 33,5 15 7,5 0 Pinout copyright Vincotech 22 14 Jan. 2015 / Revision 5 V23990-P848-*5*-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 23 14 Jan. 2015 / Revision 5