70-W212NMC400SH01-M709P datasheet flow MNPC 4w 1200 V / 400 A Features flow SCREW 4w housing ● Mixed voltage NPC ● Low inductive ● High power screw interface Target Applications ● Solar inverter ● UPS Schematic ● High speed motor drive Types ● 70-W212NMC400SH01-M709P Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 405 A 1200 A 1105 W ±20 V 10 800 µs V 1200 A 175 °C 600 V half bridge IGBT ( T1 , T4 ) Collector-emitter break down voltage DC collector current V CE IC T j=Tjmax Repetitive peak collector current I CRM t p limited by T jmax Power dissipation P tot T j=Tjmax Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Turn off safe operating area (RBSOA) I cmax Maximum Junction Temperature T jmax T c=80°C T c=80°C T j≤150°C V GE=15V V CE max = 1200V T vj max= 175°C neutral point FWD ( D2 , D3 ) Peak Repetitive Reverse Voltage V RRM T j=25°C IF T j=Tjmax T c=80°C 282 A Repetitive peak forward current I FRM tP = 1 ms T vj < 150°C 800 A Power dissipation per FWD P tot T j=Tjmax T c=80°C 389 W Maximum Junction Temperature T jmax 175 °C DC forward current copyright Vincotech 1 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 355 A 1200 A 645 W ±20 V 6 360 µs V 1200 A 175 °C 1200 V 234 A 1800 A 8100 A2s 468 W 175 °C neutral point IGBT ( T2 , T3 ) Collector-emitter break down voltage DC collector current V CE IC T j=Tjmax T c=80°C Repetitive peak collector current I CRM t p limited by T jmax Power dissipation P tot T j=Tjmax Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Turn off safe operating area (RBSOA) I cmax Maximum Junction Temperature T jmax T c=80°C T j≤150°C V GE=15V V CE max = 1200V T vj max= 150°C half bridge FWD ( D1 , D4 ) Peak Repetitive Reverse Voltage DC forward current Surge forward current V RRM IF T j=25°C T j=Tjmax T c=80°C t p=10ms , sin 180° T j=150°C I FSM I 2t-value I 2t Power dissipation per FWD P tot Maximum Junction Temperature T jmax T j=Tjmax T c=80°C General Module Properties Material of module baseplate Cu Material of internal isulation Al2O3 Thermal Properties Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech V is t=2s DC voltage CTI >200 2 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Characteristic Values Parameter Conditions Symbol V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Value Tj Min Typ Unit Max half bridge IGBT ( T1 , T4 ) Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. FWD V GE(th) Integrated Gate resistor R gint Turn-on delay time t d(on) Fall time 0 20 400 1200 0 tf E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG R th(j-s) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 5,3 5,8 6,3 1,78 2,10 2,48 2,42 0,8 960 0,5 tr t d(off) Turn-on energy loss Thermal resistance chip to heatsink 15 I CES I GES Turn-off delay time 0,0136 V CEsat Gate-emitter leakage current Rise time VCE=VGE Rgoff=1 Ω Rgon=1 Ω ±15 350 406 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 202 210 28 33 260 305 29 53 5,28 9,85 9,84 15,78 ns mWs 22160 f=1MHz 0 25 Tj=25°C 1520 pF 1280 15 960 400 Tj=25°C Phase-Change Material λ = 3,4 W/mK 1840 nC 0,09 K/W neutral point FWD ( D2 , D3 ) FWD forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink VF 600 I RRM t rr Q rr ±15 Rgon=1 Ω 350 406 ( di rf/dt )max E rec R th(j-s) Phase-Change Material λ = 3,4 W/mK V GE(th) VCE=VGE Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,2 1,75 1,64 294 341 67 242 14 32 8524 4659 3,49 8,01 1,9 V A ns µC A/µs mWs 0,24 K/W neutral point IGBT ( T2 , T3 ) Gate emitter threshold voltage Collector-emitter saturation voltage 0,0064 V CEsat 15 400 Collector-emitter cut-off incl FWD I CES 0 600 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink copyright Vincotech R th(j-s) 5 5,8 6,5 1,05 1,57 1,78 1,85 0,02 2400 0,5 tr t d(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=1 Ω Rgon=1 Ω ±15 350 407 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 198 199 27 30 267 288 28 59 3,29 4,45 11,22 15,22 ns mWs 24640 f=1MHz 0 25 Tj=25°C 1536 pF 732 ±15 Phase-Change Material λ = 3,4 W/mK 3 480 400 Tj=25°C 2480 nC 0,15 K/W 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Characteristic Values Parameter Conditions Symbol V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Value Tj Min Unit Typ Max 2,18 2,18 2,46 half bridge FWD ( D1 , D4 ) FWD forward voltage VF Reverse leakage current Ir Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovery energy Thermal resistance chip to heatsink 300 1200 I RRM t rr Q rr Rgon=1 Ω ±15 ( di rf/dt )max E rec R th(j-s) 350 407 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 360 436 511 56 75 15 31 23815 22850 4,00 8,74 Phase-Change Material λ = 3,4 W/mK V µA A ns µC A/µs mWs 0,20 K/W Thermistor Rated resistance R Deviation of R100 Δ R/R Power dissipation P Tj=25°C R100=1486 Ω Power dissipation constant Tj=100°C 22000 -5 200 mW Tj=25°C 2 mW/K K B-value B (25/50) Tol. ±3% Tj=25°C 3950 B (25/100) Tol. ±3% Tj=25°C 3996 copyright Vincotech Tj=25°C 4 % Tj=25°C B-value Vincotech NTC Reference Ω +5 K B 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Buck operation half bridge IGBT (T1,T4) and neutral point FWD (D2,D3) flow SCREW 4w housing Figure 1 Typical output characteristics Vge=15V I C = f(V CE) IGBT Figure 2 Typical output characteristics I C = f(V CE) 1200 IC (A) IC (A) 1200 IGBT 1000 1000 800 800 600 600 400 400 200 200 0 0 0 At tp = Tj = V GE= 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 350 µs 25/125/150 °C 15 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT 1 2 3 4 350 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical FWD forward current as a function of forward voltage I F = f(V F) FWD 1200 IF (A) IC (A) 400 5 V CE (V) 350 1000 300 800 250 600 200 150 400 100 200 50 0 0 0 At tp = V CE = T j= 2 4 6 8 10 V GE (V) 0 12 At tp = T j= 350 µs 10 V 25/125/150 °C copyright Vincotech 5 0,5 1 1,5 2 2,5 V F (V) 3 350 µs 25/125/150 °C 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Buck operation half bridge IGBT (T1,T4) and neutral point FWD (D2,D3) Figure 5 Typical switching energy losses as a function of collector current E = f(I C) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) E (mWs) 60 E (mWs) 30 IGBT Eoff High T 25 Eon High T 50 Eon Low T Eon High T 20 40 Eoff Low T 15 30 Eon Low T 10 20 Eoff High T Eoff Low T 5 10 0 0 0 200 400 600 800 I C (A) 0 With an inductive load at Tj = 25/125/150 °C V CE = 350 V V GE = ±15 V R gon = 1,0 Ω R goff = 1,0 Ω 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 25/125/150 °C V CE = 350 V V GE = ±15 V IC = 406 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD 10 Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 10 E (mWs) Erec High T E (mWs) FWD 8 8 6 6 Erec Low T Erec High T 4 4 2 2 0 Erec Low T 0 0 200 400 600 I C (A) 800 0 With an inductive load at Tj = 25/125/150 °C V CE = 350 V V GE = ±15 V R gon = 1,0 Ω copyright Vincotech 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 25/125/150 °C V CE = 350 V V GE = ±15 V IC = 406 A 6 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Buck operation half bridge IGBT (T1,T4) and neutral point FWD (D2,D3) Figure 9 Typical switching times as a function of collector current t = f(I C) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 10,00 IGBT tdoff t (ms) t (ms) 1,00 1,00 tdon tdoff 0,10 tdon tf 0,10 tr tf 0,01 tr 0,01 0,00 0,00 0 200 400 600 800 I C (A) 0 With an inductive load at Tj = 124 °C V CE = 350 V V GE = ±15 V R gon = 1,0 Ω R goff = 1,0 Ω 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 124 °C V CE = 350 V V GE = ±15 V IC = 406 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,6 t rr(ms) t rr(ms) 0,30 FWD 0,25 trr High T 0,5 trr High T trr Low T 0,20 0,4 0,15 0,3 trr Low T 0,10 0,2 0,05 0,1 0,00 0,0 0 At Tj = V CE = V GE = R gon = 200 400 600 I C (A) 800 0 At Tj = VR= IF= V GE = 25/125/150 °C 350 V ±15 V 1,0 Ω copyright Vincotech 7 2 4 6 8 R gon ( Ω) 10 25/125/150 °C 350 V 406 A ±15 V 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Buck operation half bridge IGBT (T1,T4) and neutral point FWD (D2,D3) Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) Qrr (mC) 50 Qrr (mC) 50 FWD Qrr High T 40 40 30 30 Qrr High T Qrr Low T 20 20 10 10 Qrr Low T 0 0 0 At At Tj = V CE = V GE = R gon = 200 400 600 0 800 I C (A) 2 At Tj = VR= IF= V GE = 25/125/150 °C 350 V ±15 V 1,0 Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 4 6 8 R gon ( Ω) 10 25/125/150 °C 350 V 406 A ±15 V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) FWD 500 IrrM (A) IrrM (A) 500 IRRM High T 400 400 IRRM Low T 300 300 200 200 100 100 IRRM High T IRRM Low T 0 0 0 At Tj = V CE = V GE = R gon = 200 400 600 I C (A) 0 800 At Tj = VR= IF= V GE = 25/125/150 °C 350 V ±15 V 1,0 Ω copyright Vincotech 8 2 4 6 8 R gon ( Ω) 10 25/125/150 °C 350 V 406 A ±15 V 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Buck operation half bridge IGBT (T1,T4) and neutral point FWD (D2,D3) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) direc / dt (A/ms) direc / dt (A/ms) 21000 dIrec/dt T dI0/dtT 18000 FWD 21000 dIrec/dt T dI0/dt T 18000 15000 15000 12000 12000 9000 9000 6000 6000 3000 3000 0 0 0 At Tj = V CE = V GE = R gon = 200 400 600 800 I C (A) 0 At Tj = VR= IF= V GE = 25/125 °C 350 V ±15 V 1,0 Ω Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) IGBT 2 4 6 8 R gon ( Ω) 25/125 °C 350 V 406 A ±15 V Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) 100 FWD 0 ZthJH (K/W) ZthJH (K/W) 10 10 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10 10-3 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 101 t p (s) At D = R thJH = K/W IGBT thermal model values R (K/W) 0,037 0,019 0,023 0,003 0,005 10-4 10-3 10-2 10-1 100 101 t p (s) tp/T 0,24 K/W FWD thermal model values Tau (s) 1,555 0,210 0,031 0,002 0,0003 copyright Vincotech -3 10-5 tp/T 0,09 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 R (K/W) 0,046 0,048 0,046 0,074 0,018 9 Tau (s) 5,114 1,051 0,196 0,043 0,014 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Buck operation half bridge IGBT (T1,T4) and neutral point FWD (D2,D3) Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T h) 2500 IGBT IC (A) Ptot (W) 600 500 2000 400 1500 remove remove 300 1000 200 500 100 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = °C Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) FWD 50 175 15 100 150 T h ( o C) °C V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) FWD 500 IF (A) Ptot (W) 800 200 700 400 600 500 remove remove 300 400 200 300 200 100 100 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 175 100 150 T h ( o C) 200 °C 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Buck operation half bridge IGBT (T1,T4) and neutral point FWD (D2,D3) Figure 25 Reverse bias safe operating area IGBT Figure 26 Gate voltage vs Gate charge I C = f(V CE) IGBT V GE = f(Q g) VGE (V) 17,5 IC (A) 1000 IC MAX 15 Vcc=240V 800 MODULE Ic CHIP = Ic 600 remove Vcc=960V 12,5 10 7,5 400 5 200 2,5 0 0 0 200 400 600 800 1000 1200 1400 0 500 1000 V CE (V) At Tj = At IC = 150 ºC Uccminus=Uccplus=Ucc/2 V GE = R gon = ±15 V 1,0 Ω 3 level Switching mode: copyright Vincotech 11 400 1500 2000 Q g (nC) 2500 A 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D2) Figure 1 Typical output characteristics Vge=15V I C = f(V CE) IGBT Figure 2 Typical output characteristics I C = f(V CE) 1200 IGBT IC (A) IC (A) 1000 1000 800 800 600 600 400 400 200 200 0 0 0 At tp = Tj = V GE= 1 2 3 V CE (V) 4 0 At tp = Tj = V GE from 350 µs 25/125/150 °C 15 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT 1 2 3 4 5 350 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical FWD forward current as a function of forward voltage I F = f(V F) FWD 1200 IF (A) IC (A) 400 V CE (V) 350 1000 300 800 250 200 600 150 400 100 200 50 0 0 0 At tp = V CE = Tj = 2 4 6 8 10 V GE (V) 12 0 At tp = Tj = 350 µs 10 V 25/125/150 °C copyright Vincotech 12 1 2 3 4 V F (V) 5 350 µs 25/125/150 °C 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D2) Figure 5 Typical switching energy losses as a function of collector current E = f(I C) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) E (mWs) 60 E (mWs) 30 IGBT Eoff High T 25 Eon High T 50 Eon Low T Eoff Low T 20 40 15 30 10 20 Eoff High T Eoff Low T Eon High T Eon Low T 5 10 0 0 0 200 400 600 800 I C (A) 0 With an inductive load at Tj = 25/125/150 °C V CE = 350 V V GE = ±15 V R gon = 1 Ω R goff = 1 Ω 2 4 6 8 R G ( Ω ) 10 With an inductive load at Tj = 25/125/150 °C V CE = 350 V V GE = ±15 V IC = 407 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) E (mWs) 12 Erec High T FWD 12 10 10 8 8 Erec High T Erec Low T 6 6 4 4 2 2 0 0 Erec Low T 0 200 400 600 800 0 2 I C (A) With an inductive load at Tj = 25/125/150 °C V CE = 350 V V GE = ±15 V R gon = 1 Ω copyright Vincotech 4 6 8 RG (Ω ) 10 With an inductive load at Tj = 25/125/150 °C V CE = 350 V V GE = ±15 V IC = 407 A 13 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D2) Figure 9 Typical switching times as a function of collector current t = f(I C) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) t ( µs) 1 t ( µs) 1 IGBT tdoff tdoff tdon tdon 0,1 0,1 tf tf tr tr 0,01 0,01 0,001 0,001 0 200 400 600 800 I C (A) 0 With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V R gon = 1 Ω R goff = 1 Ω 2 4 6 8 10 R G( Ω ) With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V IC = 407 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,6 t rr(ms) t rr(ms) 0,10 FWD trr High T 0,5 0,08 trr High T 0,4 0,06 trr Low T 0,3 0,04 0,2 0,02 0,1 0,00 0 0 At Tj = V CE = V GE = R gon = trr Low T 200 400 600 I C (A) 800 0 At Tj = VR= IF= V GE = 25/125/150 °C 350 V ±15 V 1 Ω copyright Vincotech 14 2 4 6 8 R gon ( Ω) 10 25/125/150 °C 350 V 407 A ±15 V 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D2) Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) Qrr (mC) 40 Qrr (mC) 50 FWD Qrr High T 40 Qrr High T 30 30 20 Qrr Low T 20 10 Qrr Low T 10 0 0 0 At At Tj = V CE = V GE = R gon = 200 400 600 800 I C (A) 0 At Tj = VR= IF= V GE = 25/125/150 °C 350 V ±15 V 1 Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 2 4 6 8 R gon ( Ω) 10 25/125/150 °C 350 V 407 A ±15 V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) FWD 600 IrrM (A) IrrM (A) 700 IRRM High T 600 500 IRRM Low T 500 400 400 300 300 200 200 IRRM High T IRRM Low T 100 100 0 0 0 At Tj = V CE = V GE = R gon = 200 400 600 I C (A) 800 0 At Tj = VR= IF= V GE = 25/125/150 °C 350 V ±15 V 1 Ω copyright Vincotech 15 2 4 6 8 R gon ( Ω) 10 25/125/150 °C 350 V 407 A ±15 V 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D2) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 30000 direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) dIrec/dt T dIo/dt T 25000 FWD 35000 dIrec/dt T dI0/dt T 30000 25000 20000 20000 15000 15000 10000 10000 5000 5000 0 0 0 At Tj = V CE = V GE = R gon = 200 400 600 I C (A) 800 0 At Tj = VR= IF= V GE = 25/125/150 °C 350 V ±15 V 1 Ω Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) IGBT 4 6 8 R gon ( Ω) 10 25/125/150 °C 350 V 407 A ±15 V Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) FWD 100 ZthJH (K/W) ZthJH (K/W) 100 10 2 10-1 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10-3 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 101 t p (s) 102 10-5 At D = R thJH = tp/T 0,15 K/W IGBT thermal model values R (K/W) 0,05 0,02 0,03 0,03 0,01 10-3 10-2 10-1 100 101 t p (s) 102 tp/T 0,20 K/W FWD thermal model values Tau (s) 3,58 0,74 0,18 0,04 0,01 copyright Vincotech 10-4 R (K/W) 0,02 0,03 0,05 0,07 0,03 16 Tau (s) 4,55 0,92 0,19 0,05 0,02 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D2) IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T h) 1200 IGBT 600 IC (A) Ptot (W) Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) 1000 500 800 400 600 300 400 200 200 100 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = ºC Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) FWD 50 175 15 100 150 T h ( o C) 200 ºC V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) FWD 400 Ptot (W) IF (A) 1000 350 800 300 250 600 200 400 150 100 200 50 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 17 50 175 100 150 Th ( o C) 200 ºC 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Boost operation neutral point IGBT (T2,T3) and half bridge FWD (D1,D2) Figure 25 Reverse bias safe operating area IGBT Figure 26 IGBT Gate voltage vs Gate charge I C = f(V CE) V GE = f(Q g) 18 IC (A) VGE (V) 1000 16 IC 800 MAX 14 Vcc=120V 12 Vcc=480V 600 Ic CHIP 10 8 400 6 4 200 2 0 0 0 100 200 300 400 500 600 0 700 500 1000 At Tj = At IC = 25,150 ºC Uccminus=Uccplus=Ucc/2 VGE = Rgon = ±15 1 copyright Vincotech 1500 2000 2500 3000 3500 Q g (nC) V CE (V) 400 A V Ω 18 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) Thermistor NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 19 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Switching Definitions Half Bridge General Tj R gon R goff conditions = 125 °C = 1Ω = 1Ω Figure 1 Half Bridge IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 Half Bridge IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 150 200 % VCE % IC 125 tdoff 100 150 VGE 90% VCE IC 75 100 VGE VGE tdon 50 VCE 90% 50 tEoff 25 VGE10% IC 1% VCE 3% IC10% 0 tEon 0 -50 -25 0 0,2 0,4 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0,6 -15 15 700 407 0,305 0,715 0,8 time (us) 3,8 1 4 4,2 4,4 4,6 4,8 time(us) V V V A µs µs V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Half Bridge IGBT Turn-off Switching Waveforms & definition of t f -15 15 700 407 0,210 0,488 V V V A µs µs Figure 4 Half Bridge IGBT Turn-on Switching Waveforms & definition of t r 150 200 VCE % Ic % 125 fitted 150 IC 100 VCE IC 90% 100 75 IC90% IC 60% tr 50 50 IC 40% 25 0 IC 0 IC10% 10% tf -50 -25 0,3 0,4 V C (100%) = I C (100%) = tf = copyright Vincotech 0,5 700 407 0,053 0,6 time (us) 4,1 0,7 V A µs V C (100%) = I C (100%) = tr = 20 4,2 4,3 700 407 0,033 4,4 time(us) 4,5 V A µs 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Switching Definitions Half Bridge Figure 5 Half Bridge IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Half Bridge IGBT Turn-on Switching Waveforms & definition of t Eon 125 125 % Poff % IC 1% 100 Eon 100 Eoff 75 75 50 50 25 25 VGE90% VGE10% 0 VCE3% Pon 0 tEoff tEon -25 -25 0 0,2 0,4 0,6 0,8 1 3,8 time (us) P off (100%) = E off (100%) = t E off = 284,95 15,78 0,715 kW mJ µs P on (100%) = E on (100%) = t E on = 4 4,2 284,95 9,85 0,488 4,4 4,6 time(us) 4,8 kW mJ µs Figure 7 Neutral Point FWD Turn-off Switching Waveforms & definition of t rr 150 % Id 100 trr 50 Vd fitted 0 IRRM 10% -50 IRRM 90% IRRM 100% -100 4,1 4,2 4,3 4,4 4,5 4,6 time(us) V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 700 407 -341 0,242 V A A µs 21 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Switching Definitions Half Bridge Figure 8 Neutral Point FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 Neutral Point FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 125 % % Id Qrr 100 100 Erec tErec 75 tQrr 50 50 0 25 Prec -50 0 -25 -100 4,1 4,2 I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 4,3 407 31,93 0,51 4,4 4,5 4,6 4,7 4,1 4,8 time(us) A µC µs 4,2 P rec (100%) = E rec (100%) = t E rec = 22 4,3 4,4 284,95 8,01 0,51 4,5 4,6 4,7 4,8 time(us) kW mJ µs 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Half Bridge switching measurement circuit Figure 10 Ucc T1 15V Uce L_load 700V D2 D3 T2 T3 15V 15V Uge V T4 1mH Scope GND V Ic 0.000003 0.00001 Q Q Q Q Q Q 0.000003 copyright Vincotech 23 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Switching Definitions Neutral Point General Tj R gon R goff flow SCREW 4w housing conditions = 125 °C = 1Ω = 1Ω Figure 1 Neutral Point IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 Neutral Point IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 150 250 % IC % 125 200 tdoff VCE 100 VGE 90% VCE 150 90% 75 VGE IC VCE 100 50 tdon tEoff 50 VGE 25 IC 1% 0 0 VCE 3% VGE 10% IC 10% tEon -50 -25 0 0,2 0,4 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0,6 -15 15 350 403 0,23 0,58 0,8 time (us) 3,9 1 4 4,1 4,2 4,3 4,4 time(us) V V V A µs µs V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Neutral Point IGBT Turn-off Switching Waveforms & definition of t f -15 15 350 403 0,199 0,38 V V V A µs µs Figure 4 Neutral Point IGBT Turn-on Switching Waveforms & definition of t r 150 250 % IC % 125 200 VCE fitted IC 100 150 Ic 90% 75 VCE Ic 60% 100 IC 90% 50 tr Ic 40% 50 25 Ic10% 0 IC 10% 0 tf -25 -50 0,3 0,4 0,5 0,6 0,7 4,1 time (us) V C (100%) = I C (100%) = tf = copyright Vincotech 350 403 0,06 V A µs V C (100%) = I C (100%) = tr = 24 4,15 4,2 4,25 350 403 0,030 V A µs 4,3 4,35 time(us) 4,4 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Switching Definitions Neutral Point Figure 5 Neutral Point IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Neutral Point IGBT Turn-on Switching Waveforms & definition of t Eon 125 125 Poff % % IC 1% Eon Eoff 100 100 75 75 50 50 25 Pon 25 Uge90% Uge 0 Uce 3% 10% 0 tEoff tEon -25 -25 0 0,2 0,4 0,6 0,8 1 3,9 time (us) P off (100%) = E off (100%) = t E off = 140,97 15,22 0,58 kW mJ µs P on (100%) = E on (100%) = t E on = 4 4,1 4,2 4,3 time(us) 4,4 140,9653 kW 13,39 mJ 0,38 µs Figure 7 Half Bridge FWD Turn-off Switching Waveforms & definition of t rr 150 % Id 100 trr 50 Ud fitted 0 IRRM 10% -50 -100 IRRM 90% IRRM 100% -150 4,15 4,2 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 4,25 350 403 -511 0,08 4,3 4,35 time(us) 4,4 V A A µs 25 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Switching Definitions Neutral Point Figure 8 Half Bridge FWD Turn-on Switching Waveforms & definition of t Qrr (t Qrr= integrating time for Q rr) Figure 9 Half Bridge FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 125 150 % % Qrr Id Erec 100 100 tQint 50 75 0 50 -50 25 tErec Prec 0 -100 -150 4,15 4,2 I d (100%) = Q rr (100%) = t Qint = copyright Vincotech 4,25 4,3 403 31,37 0,33 A µC µs 4,35 4,4 time(us) -25 4,15 4,45 4,2 P rec (100%) = E rec (100%) = t E rec = 26 4,25 140,97 8,74 0,33 4,3 4,35 4,4 time(us) 4,45 kW mJ µs 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Neutral Point switching measurement circuit Figure 10 T1 15V Uce Ucc D2 D3 700V T3 T2 15V 15V L_load T4 1mH Scope GND 1 Uge V Ic 0.000003 0.00001 Q Q Q Q Q Q 0.000003 copyright Vincotech 27 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Standard Ordering Code 70-W212NMC400SH01-M709P in DataMatrix as M709P in packaging barcode as M709P Outline Low current connections Driver pins Power connections Pin 1.1 X1 -0,2 Y1 81,6 Function G1-1 Group T1 M4 screw X3 Y3 Function Y2 Function 2,8 44,2 81,6 81,6 E1-1 G1-2 T1 T1 3.1 3.2 -37 -37 89,8 89,8 TR+ DC+ M6 screw 2.1 2.2 X2 1.2 1.3 0 22 0 0 Phase Phase 1.4 1.5 41,2 1,85 81,6 68,5 E1-2 E2-1 T1 T2 3.3 3.4 -37 81,4 89,8 89,8 Neutral TR+ 2.3 2.4 44 0 0 110 Phase DC+ 1.6 1.7 4,85 42,2 67,5 68,5 G2-1 E2-2 T2 T2 3.5 3.6 81,4 81,4 89,8 89,8 Neutral DC+ 2.5 2.6 22 44 110 110 Neutral DC- 1.8 39,2 67,5 G2-2 T2 3.7 -37 65,2 CE 1.9 1.10 -5,4 -5,4 46,6 49,6 G3-1 E3-1 T3 T3 3.8 3.9 -37 81,4 65,2 65,2 Neutral CE 1.11 49,4 46,6 G3-2 T3 3.10 81,4 65,2 Neutral 1.12 49,4 49,6 1.13 -3,45 30,7 E3-2 E4-1 T3 T4 3.11 3.12 -37 -37 45,2 45,2 Phase Neutral 1.14 -0,45 30,7 1.15 47,5 30,7 1.16 44,5 30,7 1.17 19,5 16 G4-1 E4-2 G4-2 Desat-DC+ T4 T4 T4 3.13 3.14 3.15 3.16 81,4 81,4 -37 -37 45,2 45,2 20,6 20,6 Phase Neutral DCTR- 1.18 1.19 1.20 1.21 1.22 Desat-DC+ Desat-GND Desat-GND NTC NTC 3.17 3.18 3.19 3.20 -37 81,4 81,4 81,4 20,6 20,6 20,6 20,6 Neutral DCNeutral TR- 24,6 19,5 24,6 67,7 67,7 16 50,8 50,8 86,7 89,8 copyright Vincotech 28 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet Ordering Code and Marking - Outline - Pinout flow SCREW 4w housing Pinout Identification ID T1, T4 D1, D4 T2, T3 D2, D3 NTC copyright Vincotech Component IGBT FWD IGBT FWD NTC Voltage 1200V 1200V 600V 600V - Current 400A 300A 400A 400A - 29 Function Half Bridge Switch Half Bridge Diode Neutral Point Switch Neutral Point Diode Thermistor Comment 31 Jul. 2015 / Revision 2 70-W212NMC400SH01-M709P datasheet DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 30 31 Jul. 2015 / Revision 2