70 W212NMC400SH01 M709P D2 14

70-W212NMC400SH01-M709P
datasheet
flow MNPC 4w
1200 V / 400 A
Features
flow SCREW 4w housing
● Mixed voltage NPC
● Low inductive
● High power screw interface
Target Applications
● Solar inverter
● UPS
Schematic
● High speed motor drive
Types
● 70-W212NMC400SH01-M709P
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
405
A
1200
A
1105
W
±20
V
10
800
µs
V
1200
A
175
°C
600
V
half bridge IGBT ( T1 , T4 )
Collector-emitter break down voltage
DC collector current
V CE
IC
T j=Tjmax
Repetitive peak collector current
I CRM
t p limited by T jmax
Power dissipation
P tot
T j=Tjmax
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Turn off safe operating area (RBSOA)
I cmax
Maximum Junction Temperature
T jmax
T c=80°C
T c=80°C
T j≤150°C
V GE=15V
V CE max = 1200V
T vj max= 175°C
neutral point FWD ( D2 , D3 )
Peak Repetitive Reverse Voltage
V RRM
T j=25°C
IF
T j=Tjmax
T c=80°C
282
A
Repetitive peak forward current
I FRM
tP = 1 ms
T vj < 150°C
800
A
Power dissipation per FWD
P tot
T j=Tjmax
T c=80°C
389
W
Maximum Junction Temperature
T jmax
175
°C
DC forward current
copyright Vincotech
1
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
355
A
1200
A
645
W
±20
V
6
360
µs
V
1200
A
175
°C
1200
V
234
A
1800
A
8100
A2s
468
W
175
°C
neutral point IGBT ( T2 , T3 )
Collector-emitter break down voltage
DC collector current
V CE
IC
T j=Tjmax
T c=80°C
Repetitive peak collector current
I CRM
t p limited by T jmax
Power dissipation
P tot
T j=Tjmax
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Turn off safe operating area (RBSOA)
I cmax
Maximum Junction Temperature
T jmax
T c=80°C
T j≤150°C
V GE=15V
V CE max = 1200V
T vj max= 150°C
half bridge FWD ( D1 , D4 )
Peak Repetitive Reverse Voltage
DC forward current
Surge forward current
V RRM
IF
T j=25°C
T j=Tjmax
T c=80°C
t p=10ms , sin 180°
T j=150°C
I FSM
I 2t-value
I 2t
Power dissipation per FWD
P tot
Maximum Junction Temperature
T jmax
T j=Tjmax
T c=80°C
General Module Properties
Material of module baseplate
Cu
Material of internal isulation
Al2O3
Thermal Properties
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
V is
t=2s
DC voltage
CTI
>200
2
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Value
Tj
Min
Typ
Unit
Max
half bridge IGBT ( T1 , T4 )
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. FWD
V GE(th)
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Fall time
0
20
400
1200
0
tf
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
R th(j-s)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
5,3
5,8
6,3
1,78
2,10
2,48
2,42
0,8
960
0,5
tr
t d(off)
Turn-on energy loss
Thermal resistance chip to heatsink
15
I CES
I GES
Turn-off delay time
0,0136
V CEsat
Gate-emitter leakage current
Rise time
VCE=VGE
Rgoff=1 Ω
Rgon=1 Ω
±15
350
406
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
202
210
28
33
260
305
29
53
5,28
9,85
9,84
15,78
ns
mWs
22160
f=1MHz
0
25
Tj=25°C
1520
pF
1280
15
960
400
Tj=25°C
Phase-Change
Material
λ = 3,4 W/mK
1840
nC
0,09
K/W
neutral point FWD ( D2 , D3 )
FWD forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink
VF
600
I RRM
t rr
Q rr
±15
Rgon=1 Ω
350
406
( di rf/dt )max
E rec
R th(j-s)
Phase-Change
Material
λ = 3,4 W/mK
V GE(th)
VCE=VGE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,2
1,75
1,64
294
341
67
242
14
32
8524
4659
3,49
8,01
1,9
V
A
ns
µC
A/µs
mWs
0,24
K/W
neutral point IGBT ( T2 , T3 )
Gate emitter threshold voltage
Collector-emitter saturation voltage
0,0064
V CEsat
15
400
Collector-emitter cut-off incl FWD
I CES
0
600
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
copyright Vincotech
R th(j-s)
5
5,8
6,5
1,05
1,57
1,78
1,85
0,02
2400
0,5
tr
t d(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=1 Ω
Rgon=1 Ω
±15
350
407
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
198
199
27
30
267
288
28
59
3,29
4,45
11,22
15,22
ns
mWs
24640
f=1MHz
0
25
Tj=25°C
1536
pF
732
±15
Phase-Change
Material
λ = 3,4 W/mK
3
480
400
Tj=25°C
2480
nC
0,15
K/W
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Value
Tj
Min
Unit
Typ
Max
2,18
2,18
2,46
half bridge FWD ( D1 , D4 )
FWD forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovery energy
Thermal resistance chip to heatsink
300
1200
I RRM
t rr
Q rr
Rgon=1 Ω
±15
( di rf/dt )max
E rec
R th(j-s)
350
407
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
360
436
511
56
75
15
31
23815
22850
4,00
8,74
Phase-Change
Material
λ = 3,4 W/mK
V
µA
A
ns
µC
A/µs
mWs
0,20
K/W
Thermistor
Rated resistance
R
Deviation of R100
Δ R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Power dissipation constant
Tj=100°C
22000
-5
200
mW
Tj=25°C
2
mW/K
K
B-value
B (25/50)
Tol. ±3%
Tj=25°C
3950
B (25/100)
Tol. ±3%
Tj=25°C
3996
copyright Vincotech
Tj=25°C
4
%
Tj=25°C
B-value
Vincotech NTC Reference
Ω
+5
K
B
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)
flow SCREW 4w housing
Figure 1
Typical output characteristics Vge=15V
I C = f(V CE)
IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
1200
IC (A)
IC (A)
1200
IGBT
1000
1000
800
800
600
600
400
400
200
200
0
0
0
At
tp =
Tj =
V GE=
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
V GE from
350
µs
25/125/150 °C
15
V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
1
2
3
4
350
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical FWD forward current as
a function of forward voltage
I F = f(V F)
FWD
1200
IF (A)
IC (A)
400
5
V CE (V)
350
1000
300
800
250
600
200
150
400
100
200
50
0
0
0
At
tp =
V CE =
T j=
2
4
6
8
10
V GE (V)
0
12
At
tp =
T j=
350
µs
10
V
25/125/150 °C
copyright Vincotech
5
0,5
1
1,5
2
2,5
V F (V)
3
350
µs
25/125/150 °C
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
E (mWs)
60
E (mWs)
30
IGBT
Eoff High T
25
Eon High T
50
Eon Low T
Eon High T
20
40
Eoff Low T
15
30
Eon Low T
10
20
Eoff High T
Eoff Low T
5
10
0
0
0
200
400
600
800
I C (A)
0
With an inductive load at
Tj =
25/125/150 °C
V CE =
350
V
V GE =
±15
V
R gon =
1,0
Ω
R goff =
1,0
Ω
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
25/125/150 °C
V CE =
350
V
V GE =
±15
V
IC =
406
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
10
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
10
E (mWs)
Erec High T
E (mWs)
FWD
8
8
6
6
Erec Low T
Erec High T
4
4
2
2
0
Erec Low T
0
0
200
400
600
I C (A)
800
0
With an inductive load at
Tj =
25/125/150 °C
V CE =
350
V
V GE =
±15
V
R gon =
1,0
Ω
copyright Vincotech
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
25/125/150 °C
V CE =
350
V
V GE =
±15
V
IC =
406
A
6
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
10,00
IGBT
tdoff
t (ms)
t (ms)
1,00
1,00
tdon
tdoff
0,10
tdon
tf
0,10
tr
tf
0,01
tr
0,01
0,00
0,00
0
200
400
600
800
I C (A)
0
With an inductive load at
Tj =
124
°C
V CE =
350
V
V GE =
±15
V
R gon =
1,0
Ω
R goff =
1,0
Ω
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
124
°C
V CE =
350
V
V GE =
±15
V
IC =
406
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,6
t rr(ms)
t rr(ms)
0,30
FWD
0,25
trr High T
0,5
trr High T
trr Low T
0,20
0,4
0,15
0,3
trr Low T
0,10
0,2
0,05
0,1
0,00
0,0
0
At
Tj =
V CE =
V GE =
R gon =
200
400
600
I C (A)
800
0
At
Tj =
VR=
IF=
V GE =
25/125/150 °C
350
V
±15
V
1,0
Ω
copyright Vincotech
7
2
4
6
8
R gon ( Ω) 10
25/125/150 °C
350
V
406
A
±15
V
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
Qrr (mC)
50
Qrr (mC)
50
FWD
Qrr High T
40
40
30
30
Qrr High T
Qrr Low T
20
20
10
10
Qrr Low T
0
0
0
At
At
Tj =
V CE =
V GE =
R gon =
200
400
600
0
800
I C (A)
2
At
Tj =
VR=
IF=
V GE =
25/125/150 °C
350
V
±15
V
1,0
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
4
6
8
R gon ( Ω)
10
25/125/150 °C
350
V
406
A
±15
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
FWD
500
IrrM (A)
IrrM (A)
500
IRRM High T
400
400
IRRM Low T
300
300
200
200
100
100
IRRM High T
IRRM Low T
0
0
0
At
Tj =
V CE =
V GE =
R gon =
200
400
600
I C (A)
0
800
At
Tj =
VR=
IF=
V GE =
25/125/150 °C
350
V
±15
V
1,0
Ω
copyright Vincotech
8
2
4
6
8
R gon ( Ω)
10
25/125/150 °C
350
V
406
A
±15
V
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
direc / dt (A/ms)
direc / dt (A/ms)
21000
dIrec/dt T
dI0/dtT
18000
FWD
21000
dIrec/dt T
dI0/dt T
18000
15000
15000
12000
12000
9000
9000
6000
6000
3000
3000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
200
400
600
800
I C (A)
0
At
Tj =
VR=
IF=
V GE =
25/125 °C
350
V
±15
V
1,0
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
IGBT
2
4
6
8
R gon ( Ω)
25/125 °C
350
V
406
A
±15
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
100
FWD
0
ZthJH (K/W)
ZthJH (K/W)
10
10
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10
10-3
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
101
t p (s)
At
D =
R thJH =
K/W
IGBT thermal model values
R (K/W)
0,037
0,019
0,023
0,003
0,005
10-4
10-3
10-2
10-1
100
101
t p (s)
tp/T
0,24
K/W
FWD thermal model values
Tau (s)
1,555
0,210
0,031
0,002
0,0003
copyright Vincotech
-3
10-5
tp/T
0,09
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
R (K/W)
0,046
0,048
0,046
0,074
0,018
9
Tau (s)
5,114
1,051
0,196
0,043
0,014
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
2500
IGBT
IC (A)
Ptot (W)
600
500
2000
400
1500
remove
remove
300
1000
200
500
100
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
FWD
50
175
15
100
150
T h ( o C)
°C
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
FWD
500
IF (A)
Ptot (W)
800
200
700
400
600
500
remove
remove
300
400
200
300
200
100
100
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T h ( o C)
200
°C
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Buck operation
half bridge IGBT (T1,T4) and neutral point FWD (D2,D3)
Figure 25
Reverse bias safe operating area
IGBT
Figure 26
Gate voltage vs Gate charge
I C = f(V CE)
IGBT
V GE = f(Q g)
VGE (V)
17,5
IC (A)
1000
IC MAX
15
Vcc=240V
800
MODULE
Ic CHIP = Ic
600
remove
Vcc=960V
12,5
10
7,5
400
5
200
2,5
0
0
0
200
400
600
800
1000
1200
1400
0
500
1000
V CE (V)
At
Tj =
At
IC =
150
ºC
Uccminus=Uccplus=Ucc/2
V GE =
R gon =
±15
V
1,0
Ω
3 level
Switching mode:
copyright Vincotech
11
400
1500
2000
Q g (nC)
2500
A
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)
Figure 1
Typical output characteristics Vge=15V
I C = f(V CE)
IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
1200
IGBT
IC (A)
IC (A)
1000
1000
800
800
600
600
400
400
200
200
0
0
0
At
tp =
Tj =
V GE=
1
2
3
V CE (V)
4
0
At
tp =
Tj =
V GE from
350
µs
25/125/150 °C
15
V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
1
2
3
4
5
350
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical FWD forward current as
a function of forward voltage
I F = f(V F)
FWD
1200
IF (A)
IC (A)
400
V CE (V)
350
1000
300
800
250
200
600
150
400
100
200
50
0
0
0
At
tp =
V CE =
Tj =
2
4
6
8
10
V GE (V)
12
0
At
tp =
Tj =
350
µs
10
V
25/125/150 °C
copyright Vincotech
12
1
2
3
4
V F (V)
5
350
µs
25/125/150 °C
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
E (mWs)
60
E (mWs)
30
IGBT
Eoff High T
25
Eon High T
50
Eon Low T
Eoff Low T
20
40
15
30
10
20
Eoff High T
Eoff Low T
Eon High T
Eon Low T
5
10
0
0
0
200
400
600
800
I C (A)
0
With an inductive load at
Tj =
25/125/150 °C
V CE =
350
V
V GE =
±15
V
R gon =
1
Ω
R goff =
1
Ω
2
4
6
8
R G ( Ω ) 10
With an inductive load at
Tj =
25/125/150 °C
V CE =
350
V
V GE =
±15
V
IC =
407
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
E (mWs)
12
Erec High T
FWD
12
10
10
8
8
Erec High T
Erec Low T
6
6
4
4
2
2
0
0
Erec Low T
0
200
400
600
800
0
2
I C (A)
With an inductive load at
Tj =
25/125/150 °C
V CE =
350
V
V GE =
±15
V
R gon =
1
Ω
copyright Vincotech
4
6
8
RG (Ω )
10
With an inductive load at
Tj =
25/125/150 °C
V CE =
350
V
V GE =
±15
V
IC =
407
A
13
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
t ( µs)
1
t ( µs)
1
IGBT
tdoff
tdoff
tdon
tdon
0,1
0,1
tf
tf
tr
tr
0,01
0,01
0,001
0,001
0
200
400
600
800
I C (A)
0
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
R gon =
1
Ω
R goff =
1
Ω
2
4
6
8
10
R G( Ω )
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
IC =
407
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,6
t rr(ms)
t rr(ms)
0,10
FWD
trr High T
0,5
0,08
trr High T
0,4
0,06
trr Low T
0,3
0,04
0,2
0,02
0,1
0,00
0
0
At
Tj =
V CE =
V GE =
R gon =
trr Low T
200
400
600
I C (A)
800
0
At
Tj =
VR=
IF=
V GE =
25/125/150 °C
350
V
±15
V
1
Ω
copyright Vincotech
14
2
4
6
8
R gon ( Ω)
10
25/125/150 °C
350
V
407
A
±15
V
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
Qrr (mC)
40
Qrr (mC)
50
FWD
Qrr High T
40
Qrr High T
30
30
20
Qrr Low T
20
10
Qrr Low T
10
0
0
0
At
At
Tj =
V CE =
V GE =
R gon =
200
400
600
800
I C (A)
0
At
Tj =
VR=
IF=
V GE =
25/125/150 °C
350
V
±15
V
1
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
2
4
6
8
R gon ( Ω)
10
25/125/150 °C
350
V
407
A
±15
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
FWD
600
IrrM (A)
IrrM (A)
700
IRRM High T
600
500
IRRM Low T
500
400
400
300
300
200
200
IRRM High T
IRRM Low T
100
100
0
0
0
At
Tj =
V CE =
V GE =
R gon =
200
400
600
I C (A)
800
0
At
Tj =
VR=
IF=
V GE =
25/125/150 °C
350
V
±15
V
1
Ω
copyright Vincotech
15
2
4
6
8
R gon ( Ω)
10
25/125/150 °C
350
V
407
A
±15
V
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
30000
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
dIrec/dt T
dIo/dt T
25000
FWD
35000
dIrec/dt T
dI0/dt T
30000
25000
20000
20000
15000
15000
10000
10000
5000
5000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
200
400
600
I C (A)
800
0
At
Tj =
VR=
IF=
V GE =
25/125/150 °C
350
V
±15
V
1
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
IGBT
4
6
8
R gon ( Ω)
10
25/125/150 °C
350
V
407
A
±15
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
FWD
100
ZthJH (K/W)
ZthJH (K/W)
100
10
2
10-1
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10-3
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
101
t p (s)
102
10-5
At
D =
R thJH =
tp/T
0,15
K/W
IGBT thermal model values
R (K/W)
0,05
0,02
0,03
0,03
0,01
10-3
10-2
10-1
100
101
t p (s)
102
tp/T
0,20
K/W
FWD thermal model values
Tau (s)
3,58
0,74
0,18
0,04
0,01
copyright Vincotech
10-4
R (K/W)
0,02
0,03
0,05
0,07
0,03
16
Tau (s)
4,55
0,92
0,19
0,05
0,02
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
1200
IGBT
600
IC (A)
Ptot (W)
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
1000
500
800
400
600
300
400
200
200
100
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
ºC
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
FWD
50
175
15
100
150
T h ( o C)
200
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
FWD
400
Ptot (W)
IF (A)
1000
350
800
300
250
600
200
400
150
100
200
50
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
17
50
175
100
150
Th ( o C)
200
ºC
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Boost operation
neutral point IGBT (T2,T3) and half bridge FWD (D1,D2)
Figure 25
Reverse bias safe operating area
IGBT
Figure 26
IGBT
Gate voltage vs Gate charge
I C = f(V CE)
V GE = f(Q g)
18
IC (A)
VGE (V)
1000
16
IC
800
MAX
14
Vcc=120V
12
Vcc=480V
600
Ic CHIP
10
8
400
6
4
200
2
0
0
0
100
200
300
400
500
600
0
700
500
1000
At
Tj =
At
IC =
25,150
ºC
Uccminus=Uccplus=Ucc/2
VGE =
Rgon =
±15
1
copyright Vincotech
1500
2000
2500
3000
3500
Q g (nC)
V CE (V)
400
A
V
Ω
18
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
Thermistor
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
19
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Switching Definitions Half Bridge
General
Tj
R gon
R goff
conditions
= 125 °C
= 1Ω
= 1Ω
Figure 1
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
150
200
%
VCE
%
IC
125
tdoff
100
150
VGE 90%
VCE
IC
75
100
VGE
VGE
tdon
50
VCE 90%
50
tEoff
25
VGE10%
IC 1%
VCE 3%
IC10%
0
tEon
0
-50
-25
0
0,2
0,4
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0,6
-15
15
700
407
0,305
0,715
0,8
time (us)
3,8
1
4
4,2
4,4
4,6
4,8
time(us)
V
V
V
A
µs
µs
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t f
-15
15
700
407
0,210
0,488
V
V
V
A
µs
µs
Figure 4
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t r
150
200
VCE
%
Ic
%
125
fitted
150
IC
100
VCE
IC 90%
100
75
IC90%
IC 60%
tr
50
50
IC 40%
25
0
IC
0
IC10%
10%
tf
-50
-25
0,3
0,4
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
0,5
700
407
0,053
0,6
time (us)
4,1
0,7
V
A
µs
V C (100%) =
I C (100%) =
tr =
20
4,2
4,3
700
407
0,033
4,4
time(us)
4,5
V
A
µs
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Switching Definitions Half Bridge
Figure 5
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t Eon
125
125
%
Poff
%
IC 1%
100
Eon
100
Eoff
75
75
50
50
25
25
VGE90%
VGE10%
0
VCE3%
Pon
0
tEoff
tEon
-25
-25
0
0,2
0,4
0,6
0,8
1
3,8
time (us)
P off (100%) =
E off (100%) =
t E off =
284,95
15,78
0,715
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
4
4,2
284,95
9,85
0,488
4,4
4,6
time(us)
4,8
kW
mJ
µs
Figure 7
Neutral Point FWD
Turn-off Switching Waveforms & definition of t rr
150
%
Id
100
trr
50
Vd
fitted
0
IRRM 10%
-50
IRRM 90%
IRRM 100%
-100
4,1
4,2
4,3
4,4
4,5
4,6
time(us)
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
700
407
-341
0,242
V
A
A
µs
21
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Switching Definitions Half Bridge
Figure 8
Neutral Point FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
Neutral Point FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
125
%
%
Id
Qrr
100
100
Erec
tErec
75
tQrr
50
50
0
25
Prec
-50
0
-25
-100
4,1
4,2
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
4,3
407
31,93
0,51
4,4
4,5
4,6
4,7
4,1
4,8
time(us)
A
µC
µs
4,2
P rec (100%) =
E rec (100%) =
t E rec =
22
4,3
4,4
284,95
8,01
0,51
4,5
4,6
4,7
4,8
time(us)
kW
mJ
µs
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Half Bridge switching measurement circuit
Figure 10
Ucc
T1
15V
Uce
L_load
700V
D2
D3
T2
T3
15V
15V
Uge
V
T4
1mH
Scope GND
V
Ic
0.000003
0.00001
Q
Q
Q
Q
Q
Q
0.000003
copyright Vincotech
23
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Switching Definitions Neutral Point
General
Tj
R gon
R goff
flow SCREW 4w housing
conditions
= 125 °C
= 1Ω
= 1Ω
Figure 1
Neutral Point IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
Neutral Point IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
150
250
%
IC
%
125
200
tdoff
VCE
100
VGE 90%
VCE
150
90%
75
VGE
IC
VCE
100
50
tdon
tEoff
50
VGE
25
IC 1%
0
0
VCE 3%
VGE 10%
IC 10%
tEon
-50
-25
0
0,2
0,4
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0,6
-15
15
350
403
0,23
0,58
0,8
time (us)
3,9
1
4
4,1
4,2
4,3
4,4
time(us)
V
V
V
A
µs
µs
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Neutral Point IGBT
Turn-off Switching Waveforms & definition of t f
-15
15
350
403
0,199
0,38
V
V
V
A
µs
µs
Figure 4
Neutral Point IGBT
Turn-on Switching Waveforms & definition of t r
150
250
%
IC
%
125
200
VCE
fitted
IC
100
150
Ic 90%
75
VCE
Ic 60%
100
IC 90%
50
tr
Ic 40%
50
25
Ic10%
0
IC 10%
0
tf
-25
-50
0,3
0,4
0,5
0,6
0,7
4,1
time (us)
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
350
403
0,06
V
A
µs
V C (100%) =
I C (100%) =
tr =
24
4,15
4,2
4,25
350
403
0,030
V
A
µs
4,3
4,35
time(us)
4,4
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Switching Definitions Neutral Point
Figure 5
Neutral Point IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Neutral Point IGBT
Turn-on Switching Waveforms & definition of t Eon
125
125
Poff
%
%
IC 1%
Eon
Eoff
100
100
75
75
50
50
25
Pon
25
Uge90%
Uge
0
Uce 3%
10%
0
tEoff
tEon
-25
-25
0
0,2
0,4
0,6
0,8
1
3,9
time (us)
P off (100%) =
E off (100%) =
t E off =
140,97
15,22
0,58
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
4
4,1
4,2
4,3
time(us)
4,4
140,9653 kW
13,39
mJ
0,38
µs
Figure 7
Half Bridge FWD
Turn-off Switching Waveforms & definition of t rr
150
%
Id
100
trr
50
Ud
fitted
0
IRRM 10%
-50
-100
IRRM 90%
IRRM 100%
-150
4,15
4,2
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
4,25
350
403
-511
0,08
4,3
4,35
time(us) 4,4
V
A
A
µs
25
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Switching Definitions Neutral Point
Figure 8
Half Bridge FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Qrr= integrating time for Q rr)
Figure 9
Half Bridge FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
125
150
%
%
Qrr
Id
Erec
100
100
tQint
50
75
0
50
-50
25
tErec
Prec
0
-100
-150
4,15
4,2
I d (100%) =
Q rr (100%) =
t Qint =
copyright Vincotech
4,25
4,3
403
31,37
0,33
A
µC
µs
4,35
4,4
time(us)
-25
4,15
4,45
4,2
P rec (100%) =
E rec (100%) =
t E rec =
26
4,25
140,97
8,74
0,33
4,3
4,35
4,4
time(us)
4,45
kW
mJ
µs
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Neutral Point switching measurement circuit
Figure 10
T1
15V
Uce
Ucc
D2
D3
700V
T3
T2
15V
15V
L_load
T4
1mH
Scope GND
1
Uge
V
Ic
0.000003
0.00001
Q
Q
Q
Q
Q
Q
0.000003
copyright Vincotech
27
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Standard
Ordering Code
70-W212NMC400SH01-M709P
in DataMatrix as
M709P
in packaging barcode as
M709P
Outline
Low current connections
Driver pins
Power connections
Pin
1.1
X1
-0,2
Y1
81,6
Function
G1-1
Group
T1
M4
screw
X3
Y3
Function
Y2
Function
2,8
44,2
81,6
81,6
E1-1
G1-2
T1
T1
3.1
3.2
-37
-37
89,8
89,8
TR+
DC+
M6
screw
2.1
2.2
X2
1.2
1.3
0
22
0
0
Phase
Phase
1.4
1.5
41,2
1,85
81,6
68,5
E1-2
E2-1
T1
T2
3.3
3.4
-37
81,4
89,8
89,8
Neutral
TR+
2.3
2.4
44
0
0
110
Phase
DC+
1.6
1.7
4,85
42,2
67,5
68,5
G2-1
E2-2
T2
T2
3.5
3.6
81,4
81,4
89,8
89,8
Neutral
DC+
2.5
2.6
22
44
110
110
Neutral
DC-
1.8
39,2
67,5
G2-2
T2
3.7
-37
65,2
CE
1.9
1.10
-5,4
-5,4
46,6
49,6
G3-1
E3-1
T3
T3
3.8
3.9
-37
81,4
65,2
65,2
Neutral
CE
1.11
49,4
46,6
G3-2
T3
3.10
81,4
65,2
Neutral
1.12 49,4 49,6
1.13 -3,45 30,7
E3-2
E4-1
T3
T4
3.11
3.12
-37
-37
45,2
45,2
Phase
Neutral
1.14 -0,45 30,7
1.15 47,5 30,7
1.16 44,5 30,7
1.17 19,5
16
G4-1
E4-2
G4-2
Desat-DC+
T4
T4
T4
3.13
3.14
3.15
3.16
81,4
81,4
-37
-37
45,2
45,2
20,6
20,6
Phase
Neutral
DCTR-
1.18
1.19
1.20
1.21
1.22
Desat-DC+
Desat-GND
Desat-GND
NTC
NTC
3.17
3.18
3.19
3.20
-37
81,4
81,4
81,4
20,6
20,6
20,6
20,6
Neutral
DCNeutral
TR-
24,6
19,5
24,6
67,7
67,7
16
50,8
50,8
86,7
89,8
copyright Vincotech
28
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
Ordering Code and Marking - Outline - Pinout
flow SCREW 4w housing
Pinout
Identification
ID
T1, T4
D1, D4
T2, T3
D2, D3
NTC
copyright Vincotech
Component
IGBT
FWD
IGBT
FWD
NTC
Voltage
1200V
1200V
600V
600V
-
Current
400A
300A
400A
400A
-
29
Function
Half Bridge Switch
Half Bridge Diode
Neutral Point Switch
Neutral Point Diode
Thermistor
Comment
31 Jul. 2015 / Revision 2
70-W212NMC400SH01-M709P
datasheet
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are
presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete
and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any
changes without further notice to any products to improve reliability, function or design. No representation, guarantee
or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application
or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or
that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and
determine the suitability of the information and the product for reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
30
31 Jul. 2015 / Revision 2