V23990-P840-*5*-PM flow PIM 0 3rdgen 1200 V / 15 A flow PIM 0 3rdgen Features ● 2 Clips housing in 12 and 17mm height ● Trench Fieldstop Technology IGBT4 ● Enhenced Rectifier ● Optional w/o BRC Target Applications Schematic ● Industrial Drives ● Embedded Generation Types ● V23990-P840-A58-PM 12mm housing ● V23990-P840-A59-PM 17mm housing ● V23990-P840-C58-PM 12mm housing; w/o BRC ● V23990-P840-C59-PM 17mm housing; w/o BRC Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 34 34 A 370 A 370 A 2s 39 64 W Input Rectifier Diode Repetitive peak reverse voltage V RRM DC forward current I FAV Surge forward current I FSM Tj=Tjmax T h=80°C T c=80°C tp=10ms T j=25°C I2t-value I 2t Power dissipation P tot Maximum Junction Temperature T jmax 150 °C V CE 1200 V Tj=Tjmax T h=80°C T c=80°C Inverter Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC I Cpulse Turn off safe operating area Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature copyright Vincotech Tj=Tjmax T h=80°C 18 T c=80°C 24 A tp limited by Tjmax 45 A VCE ≤ 1200V, Tj ≤ Top max 30 A 52 79 W ±20 V 10 800 µs V 175 °C Tj=Tjmax Tj≤150°C VGE=15V T jmax 1 T h=80°C T c=80°C 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V Inverter Diode Peak Repetitive Reverse Voltage DC forward current V RRM IF Tj=Tjmax Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax T h=80°C 20 T c=80°C 25 T h=80°C T c=80°C A 30 A 38 57 W 175 °C Brake Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC I Cpulse Turn off safe operating area T h=80°C Tj=Tjmax T c=80°C tp limited by Tjmax VCE ≤ 1200V, Tj ≤ Top max Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature 1200 V CE T h=80°C Tj=Tjmax T c=80°C Tj≤150°C VGE=15V T jmax V 12 15 A 24 A 16 A 40 61 W ±20 V 10 800 µs V 175 °C Brake Diode Peak Repetitive Reverse Voltage DC forward current 1200 V RRM IF T h=80°C Tj=Tjmax T c=80°C V 10 10 A 15 A Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax 150 °C Storage temperature T stg -40…+kell °C Operation temperature under switching condition T op -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm T h=80°C T c=80°C 22 34 W Thermal Properties Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech V is t=2s DC voltage >200 CTI 2 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Characteristic Values Parameter Value Symbol V r [V] or I C [A] or I F V GE [V] or V CE [V] or [A] or I D T j V GS [V] V DS [V] [A] Min Unit Typ Max 1,19 1,17 0,91 0,79 8 11 1,7 Input Rectifier Diode Forward voltage VF 30 Threshold voltage (for power loss calc. only) V to 30 Slope resistance (for power loss calc. only) rt Reverse current Ir 30 1500 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=150°C V V mΩ 0,1 mA Thermal resistance chip to heatsink R thJH Thermal grease thickness≤50um λ = 1 W/mK 1,80 K/W Thermal resistance chip to heatsink R thJH Phase-Change Material ʎ=3,4W/mK 1,54 K/W Inverter Transistor Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) VCE=VGE 0,0005 V CE(sat) 15 Collector-emitter cut-off current incl. Diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG 5 5,8 6,5 1,94 2,26 200 Rgoff=16 Ω Rgon=16 Ω 600 ±15 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V 0,01 mA nA Ω none tr t d(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 60 60 15 19 197 239 79 106 0,88 1,25 0,88 1,24 ns mWs 1000 f=1MHz 0 25 Tj=25°C 100 pF Tj=25°C 93 nC 56 ±15 15 Thermal resistance chip to heatsink R thJH Thermal grease thickness≤50um λ = 1 W/mK 1,83 K/W Thermal resistance chip to heatsink R thJH Phase-Change Material ʎ=3,4W/mK 1,56 K/W Inverter Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 10 I RRM t rr Q rr Rgon=16 Ω di(rec)max /dt Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,35 1,90 1,91 13,3 16,1 282 433 1,59 2,75 129 109 0,65 1,16 2,35 V A ns µC A/µs Reverse recovered energy E rec Thermal resistance chip to heatsink R thJH Thermal grease thickness≤50um λ = 1 W/mK 2,52 K/W Thermal resistance chip to heatsink R thJH Phase-Change Material ʎ=3,4W/mK 2,18 K/W copyright Vincotech 3 mWs 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Characteristic Values Parameter Value Symbol V r [V] or I C [A] or I F V GE [V] or V CE [V] or [A] or I D T j V GS [V] V DS [V] [A] Unit Min Typ Max 5 5,8 6,5 1,6 1,87 2,22 2,1 Brake Transistor Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) VCE=VGE 0,0003 V CE(sat) 8 Collector-emitter cut-off incl diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG 0,05 200 none tr t d(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=32 Ω Rgon=32 Ω 600 15 8 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 71 72 20 24 181 228 78 104 0,50 0,71 0,43 0,62 ns mWs 490 f=1MHz 25 0 50 Tj=25°C pF 30 ±15 Thermal resistance chip to heatsink R thJH Thermal grease thickness≤50um λ = 1 W/mK Thermal resistance chip to heatsink R thJH Phase-Change Material ʎ=3,4W/mK 8 Tj=25°C 50 nC 2,36 K/W 2,03 K/W Brake Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir 1200 I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current 7,5 Rgon=32 Ω Rgon=32 Ω di(rec)max /dt Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,67 1,61 2,2 250 8,68 9,87 258 427 0,90 0,90 78 73 0,35 0,69 V µA A ns µC A/µs Reverse recovery energy E rec Thermal resistance chip to heatsink R thJH Thermal grease thickness≤50um λ = 1 W/mK 3,15 K/W Thermal resistance chip to heatsink R thJH Phase-Change Material ʎ=3,4W/mK 2,74 K/W 22000 Ω mWs Thermistor Rated resistance T=25°C R Deviation of R100 ∆R/R Power dissipation P T=100°C R100=1486 Ω Power dissipation constant -5 5 % T=25°C 210 mW T=25°C 3,5 mW/K B-value B(25/50) Tol. ±3% T=25°C 3940 K B-value B(25/100) Tol. ±3% T=25°C 4000 K Vincotech NTC Reference copyright Vincotech A 4 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Output Inverter Figure 1 Typical output characteristics I C = f(V CE) Output inverter IGBT Figure 2 Typical output characteristics I C = f(V CE) 50 IC (A) IC (A) 50 Output inverter IGBT 40 40 30 30 20 20 10 10 0 0 0 1 At tp = Tj = V GE from 2 3 V CE (V) 4 5 0 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) Output inverter IGBT 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) Output inverter FWD 30 IF (A) IC (A) 16 V CE (V) 25 12 20 8 15 10 4 Tj = Tjmax-25°C 5 Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = V CE = 2 4 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 12 0,0 At tp = 5 0,5 1,0 250 µs 1,5 2,0 2,5 V F (V) 3,0 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Output Inverter Figure 5 Typical switching energy losses as a function of collector current E = f(I C) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) E (mWs) 2,5 E (mWs) 3 Output inverter IGBT Eon High T Eon High T 2,5 2 Eoff High T 2 Eon Low T 1,5 Eon Low T Eoff High T Eoff Low T 1,5 1 Eoff Low T 1 0,5 0,5 0 0 0 5 10 15 25 I C (A) 20 30 0 With an inductive load at 25/125 Tj = 25/125 °C V CE = 600 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 10 20 30 40 50 60 R G ( Ω ) 70 With an inductive load at Tj = 25/125 °C 25/125 V CE = 600 V V GE = ±15 V IC = 15 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) Tj = Tjmax -25°C E (mWs) E (mWs) 1,6 Erec Output inverter FWD 1,2 Tj = Tjmax -25°C Erec 1 1,2 0,8 Erec Erec 0,8 0,6 Tj = 25°C Tj = 25°C 0,4 0,4 0,2 0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V R gon = 16 Ω copyright Vincotech 10 20 30 40 50 60 R G ( Ω ) 70 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V IC = 15 A 6 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Output Inverter Figure 9 Typical switching times as a function of collector current t = f(I C) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1,00 t ( µs) t ( µs) 1,00 Output inverter IGBT 0,10 tdoff tdoff tf tdon tf 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 10 20 30 40 50 60 R G ( Ω ) 70 With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V IC = 15 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I C) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) t rr( µs) 0,8 t rr( µs) 0,6 Output inverter FWD trr trr 0,5 Tj = Tjmax -25°C 0,6 0,4 Tj = Tjmax -25°C trr Tj = 25°C trr 0,4 0,3 Tj = 25°C 0,2 0,2 0,1 0,0 0,0 0 At Tj = V CE = V GE = R gon = 5 25/125 25/125 600 ±15 16 copyright Vincotech 10 15 20 25 I C (A) 0 30 At Tj = VR= IF= V GE = °C V V Ω 7 10 25/125 25/125 600 15 ±15 20 30 40 50 60 R gon ( Ω ) 70 °C V A V 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Output Inverter Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) 3,5 Output inverter FWD Qrr( µC) Qrr( µC) 3,5 Qrr 3 Tj = Tjmax -25°C 3 Qrr Tj = Tjmax -25°C 2,5 2,5 2 2 Qrr Tj = 25°C Tj = 25°C 1,5 1,5 1 1 0,5 0,5 0 Qrr 0 0 At At Tj = V CE = V GE = R gon = 5 25/125 25/125 600 ±15 16 10 15 20 25 I C (A) 30 0 At Tj = VR= IF= V GE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) Output inverter FWD 10 20 25/125 25/125 600 15 ±15 30 40 50 60 R gon ( Ω) 70 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) Output inverter FWD 50 Tj=Tjmax-25°C IrrM (A) IrrM (A) 16 IRRM 40 Tj = 25°C 12 IRRM 30 8 20 Tj = Tjmax - 25°C Tj = 25°C 4 10 IRRM IRRM 0 0 0 At Tj = V CE = V GE = R gon = 5 25/125 25/125 600 ±15 16 copyright Vincotech 10 15 20 25 I C (A) 30 0 At Tj = VR= IF= V GE = °C V V Ω 8 10 25/125 25/125 600 15 ±15 20 30 40 50 60 R gon ( Ω ) 70 °C V A V 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Output Inverter Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I C) Output inverter FWD Output inverter FWD 6000 dI0/dt dI0/dt direc / dt (A/ µs) direc / dt (A/µ s) 1400 Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) dIrec/dt 1200 dIrec/dt 5000 1000 4000 800 3000 600 2000 400 1000 200 0 0 0 At Tj = V CE = V GE = R gon = 5 25/125 25/125 600 ±15 16 10 15 20 I C (A) 25 0 30 At Tj = VR= IF= V GE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) Output inverter IGBT 10 20 25/125 25/125 600 15 ±15 °C V A V 30 40 Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) Output inverter FWD 101 ZthJH (K/W) Zth-JH (K/W) 101 60 R gon ( Ω ) 70 50 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 t p (s) 100 10-2 101 10-5 At D = R thJH = tp / T 1,83 K/W R thJH = 1,56 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 K/W 10-4 10-3 10-2 K/W R thJH = 10-1 t p (s) 100 tp / T 2,52 2,18 K/W IGBT thermal model values Thermal grease Phase change material FWD thermal model values Thermal grease Phase change material R (K/W) 0,06 0,28 0,77 0,42 0,19 0,10 R (K/W) 0,05 0,26 1,04 0,69 0,27 0,21 Tau (s) 5,6E+00 8,7E-01 1,7E-01 3,4E-02 6,2E-03 5,5E-04 copyright Vincotech R (K/W) 0,05 0,24 0,66 0,36 0,16 0,09 Tau (s) 5,6E+00 8,7E-01 1,7E-01 3,4E-02 6,2E-03 5,5E-04 9 101 Tau (s) 9,6E+00 8,2E-01 1,2E-01 2,6E-02 3,4E-03 3,8E-04 R (K/W) 0,04 0,22 0,90 0,60 0,23 0,19 Tau (s) 9,6E+00 8,2E-01 1,2E-01 2,6E-02 3,4E-03 3,8E-04 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Output Inverter Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T h) 30 IC (A) Ptot (W) 100 Output inverter IGBT 25 80 20 60 15 40 10 20 5 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = °C Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) Output inverter FWD 50 175 15 100 T h ( o C) 200 °C V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) Output inverter FWD 30 IF (A) Ptot (W) 70 150 60 25 50 20 40 15 30 10 20 5 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 175 100 150 T h ( o C) 200 °C 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Output Inverter Figure 25 Safe operating area as a function of collector-emitter voltage I C = f(V CE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge Output inverter IGBT V GE = f(Q GE) 103 IC (A) VGE (V) 20 17,5 240V 102 15 1mS 960V 100uS 12,5 10mS 101 10 100mS 7,5 DC 5 100 2,5 0 10-1 10 0 At D = Th = V GE = Tj = 10 1 10 2 10 V CE (V) 3 0 10 At IC = single pulse 80 ºC ±15 V T jmax ºC Figure 27 25 50 75 100 4 Output inverter IGBT 15 125 A Figure 28 Short circuit withstand time as a function of gate-emitter voltage t sc = f(V GE) Q g (nC) Output inverter IGBT Typical short circuit collector current as a function of gate-emitter voltage V GE = f(Q GE) tsc (µS) IC (sc) 17,5 15 150 125 12,5 100 10 75 7,5 50 5 25 2,5 0 0 12 At V CE = Tj ≤ 13 14 1200 V 175 ºC copyright Vincotech 15 16 V GE (V) 17 12 At V CE ≤ Tj = 11 14 1200 V 175 ºC 16 18 V GE (V) 20 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Figure 29 Reverse bias safe operating area IGBT I C = f(V CE) IC (A) 35 IC MAX 30 Ic MODULE 20 15 Ic CHIP 25 10 VCE MAX 5 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = T jmax-25 ºC Uccminus=Uccplus Switching mode : copyright Vincotech 3 level switching 12 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Brake Figure 1 Typical output characteristics I C = f(V CE) Brake IGBT Figure 2 Typical output characteristics I C = f(V CE) 30 Brake IGBT IC (A) IC (A) 30 25 25 20 20 15 15 10 10 5 5 0 0 0 1 At tp = Tj = V GE from 2 3 4 V CE (V) 0 5 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) Brake IGBT 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) Brake FWD 25 IC (A) IF (A) 10 V CE (V) 8 20 6 15 4 10 2 5 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 10 12 V GE (V) 14 0 At tp = µs V 13 1 250 1 2 2 3 3 V F (V) 4 µs 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Brake Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) 1,6 Brake IGBT 1,4 E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(I C) Eon Eon Tj = Tjmax -25°C 1,2 Tj = Tjmax -25°C 1,2 1 Eon Eoff Eon 0,8 Eoff 0,6 0,8 Eoff Eoff 0,4 0,4 0,2 Tj = 25°C Tj = 25°C 0 0,0 0 0 4 8 12 I C (A) 20 40 60 80 100 120 16 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V R gon = 32 Ω R goff = 32 Ω RG (Ω ) 140 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V IC = 8 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) Brake FWD 0,7 E (mWs) 1 E (mWs) Erec Erec Tj = Tjmax -25°C 0,6 0,8 0,5 Tj = Tjmax - 25°C 0,6 0,4 Tj = 25°C Erec Erec 0,3 0,4 Tj = 25°C 0,2 0,2 0,1 0 0 0 0 4 8 12 I C (A) With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V R gon = 32 Ω copyright Vincotech 20 40 16 60 80 100 120 RG (Ω ) 140 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V IC = 8 A 14 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Brake Figure 9 Typical switching times as a function of collector current t = f(I C) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1,00 t ( µs) t ( µs) 1,00 Brake IGBT tdon tdoff tdoff tf 0,10 tf 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 2 4 6 8 10 14 I C (A) 12 16 0 With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V R gon = 32 Ω R goff = 32 Ω 40 60 80 100 120 R G ( Ω ) 140 With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V IC = 8 A Figure 11 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) Brake IGBT Figure 12 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) Brake FWD ZthJH (K/W) 101 ZthJH (K/W) 101 10 20 0 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 10-2 10-5 10-4 At Thermal grease R thJH = 2,357 copyright Vincotech 10-3 10-2 10-1 100 t p (s) D = tp / T K/W Phase change material R thJH = 2,03 K/W D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 101 10-5 10-4 At Thermal grease R thJH = 3,15 15 10-3 10-2 10-1 100 t p (s) D = tp / T K/W Phase change material R thJH = 2,74 K/W 101 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Brake Figure 14 Collector current as a function of heatsink temperature I C = f(T h) 80 20 IC (A) Brake IGBT Ptot (W) Figure 13 Power dissipation as a function of heatsink temperature P tot = f(T h) Brake IGBT 16 60 12 40 8 20 4 0 0 0 50 At Tj = 175 100 T h ( o C) 150 200 0 At Tj = V GE = ºC Figure 15 Power dissipation as a function of heatsink temperature P tot = f(T h) Brake FWD 50 175 15 100 T h ( o C) 150 ºC V Figure 16 Forward current as a function of heatsink temperature I F = f(T h) Brake FWD 12 IF (A) Ptot (W) 50 200 40 9 30 6 20 3 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 Th ( o C) 150 0 At Tj = ºC 16 30 150 60 90 120 Th ( o C) 150 ºC 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Input Rectifier Bridge Figure 1 Typical diode forward current as a function of forward voltage I F= f(V F) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) Rectifier diode 101 IF (A) ZthJC (K/W) 100 80 10 0 10 -1 60 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 Tj = Tjmax-25°C 20 Tj = 25°C 0 0,0 At tp = 0,3 0,5 250 0,8 1,0 1,3 10-2 1,8 V F (V) 2,0 1,5 10-5 µs Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) Rectifier diode 10-4 10-3 10-2 10-1 At Thermal grease tp/T D = D = tp / T R thJH = K/W D = R thJH = 1,80 101 Phase change material tp/T Figure 4 Forward current as a function of heatsink temperature I F = f(T h) 1,54 K/W Rectifier diode 60 IF (A) Ptot (W) 100 t p (s) 100 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T h ( o C) 150 0 At Tj = ºC 17 30 150 60 90 120 T h ( o C) 150 ºC 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) Thermistor Figure 2 Typical NTC resistance values B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 25000 Thermistor R/Ω R(T ) = R25 ⋅ e [Ω] 20000 15000 10000 5000 0 25 45 copyright Vincotech 65 85 105 T (°C) 125 18 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Switching Definitions Output Inverter General Tj R gon R goff conditions = 125 °C = 16 Ω = 16 Ω Figure 1 Output inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t Eoff = integrating time for E off) 120 Figure 2 Output inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t Eon = integrating time for E on) 250 tdoff % % VCE 100 IC 200 VGE 90% VCE 90% 80 VGE 150 IC 60 VCE 100 VGE 40 tdon tEoff 50 20 IC 1% 0 VGE10% 0 VCE 3% IC10% tEon -20 -0,2 -50 0 0,2 0,4 0,6 0,8 2,9 3 3,1 3,2 time (us) V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t Eoff = -15 15 600 15 0,24 0,57 V V V A µs µs V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t Eon = Figure 3 Output inverter IGBT Turn-off Switching Waveforms & definition of t f -15 15 600 15 0,06 0,25 time(us) 3,3 V V V A µs µs Figure 4 Output inverter IGBT Turn-on Switching Waveforms & definition of t r 140 250 % % 120 fitted Ic VCE 200 IC 100 IC 90% 80 150 IC 60% 60 40 100 IC 40% IC90% VCE tr 20 IC10% 50 0 tf IC10% -20 0,1 0,2 0,3 0,4 0 0,5 3 3,05 3,1 V C (100%) = I C (100%) = tf = copyright Vincotech 600 15 0,11 3,15 3,2 time(us) time (us) V A µs V C (100%) = I C (100%) = tr = 19 600 15 0,02 V A µs 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Switching Definitions Output Inverter Figure 5 Output inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Output inverter IGBT Turn-on Switching Waveforms & definition of t Eon 200 120 % Eoff Pon % 100 150 Poff 80 Eon 100 60 40 50 IC 1% 20 VGE 10% VGE 90% VCE 3% 0 0 tEon tEoff -20 -0,2 -50 0 0,2 0,4 0,6 2,9 0,8 3 3,1 3,2 time (us) P off (100%) = E off (100%) = t Eoff = 9,00 1,24 0,57 3,3 time(us) kW mJ µs P on (100%) = E on (100%) = t Eon = 9,00 1,25 0,25 kW mJ µs Figure 7 Output inverter FWD Turn-off Switching Waveforms & definition of t rr 100 Id % trr 50 fitted 0 IRRM10% Vd -50 IRRM90% -100 IRRM100% -150 3 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 20 3,2 3,4 600 15 -16 0,43 3,6 time(us) 3,8 V A A µs 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Switching Definitions Output Inverter Figure 8 Output inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Qrr = integrating time for Q rr) Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 120 150 % Erec % Qrr 100 100 tQrr 80 tErec 50 60 0 40 Prec -50 20 Id -100 0 -150 -20 3 3,4 3,8 4,2 3 3,2 3,4 3,6 9,00 1,16 0,90 kW mJ µs time(us) I d (100%) = Q rr (100%) = t Qrr = copyright Vincotech 15 2,75 0,90 A µC µs P rec (100%) = E rec (100%) = t Erec = 21 3,8 4 time(us) 4,2 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version in DataMatrix as Ordering Code without thermal paste 12mm housing V23990-P840-A58-(opt.)-PM without thermal paste 17mm housing without thermal paste 12mm housing without thermal paste 17mm housing V23990-P840-A59-(opt.)-PM V23990-P840-C58-(opt.)-PM V23990-P840-C59-(opt.)-PM in packaging barcode as P840-A58 P840-A59 P840-A58 P840-A59 P840-C58 P840-C59 P840-C58 P840-C59 Outline Pin table Pin X Y 1 2 25,5 25,5 2,7 0 3 22,8 0 4 20,1 0 5 6 16,2 13,5 0 0 7 10,8 0 8 8,1 0 9 10 5,4 2,7 0 0 11 0 0 12 13 14 0 0 7,5 19,8 22,5 19,8 15 16 7,5 15 22,5 19,8 17 18 15 22,8 22,5 22,5 19 20 25,5 33,5 22,5 22,5 21 22 23 33,5 33,5 33,5 15 7,5 0 Pinout copyright Vincotech 22 14 Jan. 2015 / Revision 6 V23990-P840-*5*-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 23 14 Jan. 2015 / Revision 6