V23990-P840-*5*-PM Maximum Ratings

V23990-P840-*5*-PM
flow PIM 0 3rdgen
1200 V / 15 A
flow PIM 0 3rdgen
Features
● 2 Clips housing in 12 and 17mm height
● Trench Fieldstop Technology IGBT4
● Enhenced Rectifier
● Optional w/o BRC
Target Applications
Schematic
● Industrial Drives
● Embedded Generation
Types
● V23990-P840-A58-PM 12mm housing
● V23990-P840-A59-PM 17mm housing
● V23990-P840-C58-PM 12mm housing; w/o BRC
● V23990-P840-C59-PM 17mm housing; w/o BRC
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
34
34
A
370
A
370
A 2s
39
64
W
Input Rectifier Diode
Repetitive peak reverse voltage
V RRM
DC forward current
I FAV
Surge forward current
I FSM
Tj=Tjmax
T h=80°C
T c=80°C
tp=10ms
T j=25°C
I2t-value
I 2t
Power dissipation
P tot
Maximum Junction Temperature
T jmax
150
°C
V CE
1200
V
Tj=Tjmax
T h=80°C
T c=80°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
I Cpulse
Turn off safe operating area
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
T h=80°C
18
T c=80°C
24
A
tp limited by Tjmax
45
A
VCE ≤ 1200V, Tj ≤ Top max
30
A
52
79
W
±20
V
10
800
µs
V
175
°C
Tj=Tjmax
Tj≤150°C
VGE=15V
T jmax
1
T h=80°C
T c=80°C
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
V RRM
IF
Tj=Tjmax
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
T h=80°C
20
T c=80°C
25
T h=80°C
T c=80°C
A
30
A
38
57
W
175
°C
Brake Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
I Cpulse
Turn off safe operating area
T h=80°C
Tj=Tjmax
T c=80°C
tp limited by Tjmax
VCE ≤ 1200V, Tj ≤ Top max
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
1200
V CE
T h=80°C
Tj=Tjmax
T c=80°C
Tj≤150°C
VGE=15V
T jmax
V
12
15
A
24
A
16
A
40
61
W
±20
V
10
800
µs
V
175
°C
Brake Diode
Peak Repetitive Reverse Voltage
DC forward current
1200
V RRM
IF
T h=80°C
Tj=Tjmax
T c=80°C
V
10
10
A
15
A
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
150
°C
Storage temperature
T stg
-40…+kell
°C
Operation temperature under switching condition
T op
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
T h=80°C
T c=80°C
22
34
W
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
V is
t=2s
DC voltage
>200
CTI
2
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Characteristic Values
Parameter
Value
Symbol
V r [V] or I C [A] or I F
V GE [V] or
V CE [V] or [A] or I D T j
V GS [V]
V DS [V]
[A]
Min
Unit
Typ
Max
1,19
1,17
0,91
0,79
8
11
1,7
Input Rectifier Diode
Forward voltage
VF
30
Threshold voltage (for power loss calc. only)
V to
30
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
30
1500
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
V
V
mΩ
0,1
mA
Thermal resistance chip to heatsink
R thJH
Thermal grease
thickness≤50um
λ = 1 W/mK
1,80
K/W
Thermal resistance chip to heatsink
R thJH
Phase-Change
Material
ʎ=3,4W/mK
1,54
K/W
Inverter Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
VCE=VGE
0,0005
V CE(sat)
15
Collector-emitter cut-off current incl. Diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
5
5,8
6,5
1,94
2,26
200
Rgoff=16 Ω
Rgon=16 Ω
600
±15
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
0,01
mA
nA
Ω
none
tr
t d(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
60
60
15
19
197
239
79
106
0,88
1,25
0,88
1,24
ns
mWs
1000
f=1MHz
0
25
Tj=25°C
100
pF
Tj=25°C
93
nC
56
±15
15
Thermal resistance chip to heatsink
R thJH
Thermal grease
thickness≤50um
λ = 1 W/mK
1,83
K/W
Thermal resistance chip to heatsink
R thJH
Phase-Change
Material
ʎ=3,4W/mK
1,56
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
10
I RRM
t rr
Q rr
Rgon=16 Ω
di(rec)max
/dt
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,35
1,90
1,91
13,3
16,1
282
433
1,59
2,75
129
109
0,65
1,16
2,35
V
A
ns
µC
A/µs
Reverse recovered energy
E rec
Thermal resistance chip to heatsink
R thJH
Thermal grease
thickness≤50um
λ = 1 W/mK
2,52
K/W
Thermal resistance chip to heatsink
R thJH
Phase-Change
Material
ʎ=3,4W/mK
2,18
K/W
copyright Vincotech
3
mWs
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Characteristic Values
Parameter
Value
Symbol
V r [V] or I C [A] or I F
V GE [V] or
V CE [V] or [A] or I D T j
V GS [V]
V DS [V]
[A]
Unit
Min
Typ
Max
5
5,8
6,5
1,6
1,87
2,22
2,1
Brake Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
VCE=VGE
0,0003
V CE(sat)
8
Collector-emitter cut-off incl diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
0,05
200
none
tr
t d(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=32 Ω
Rgon=32 Ω
600
15
8
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
71
72
20
24
181
228
78
104
0,50
0,71
0,43
0,62
ns
mWs
490
f=1MHz
25
0
50
Tj=25°C
pF
30
±15
Thermal resistance chip to heatsink
R thJH
Thermal grease
thickness≤50um
λ = 1 W/mK
Thermal resistance chip to heatsink
R thJH
Phase-Change
Material
ʎ=3,4W/mK
8
Tj=25°C
50
nC
2,36
K/W
2,03
K/W
Brake Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
1200
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
7,5
Rgon=32 Ω
Rgon=32 Ω
di(rec)max
/dt
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,67
1,61
2,2
250
8,68
9,87
258
427
0,90
0,90
78
73
0,35
0,69
V
µA
A
ns
µC
A/µs
Reverse recovery energy
E rec
Thermal resistance chip to heatsink
R thJH
Thermal grease
thickness≤50um
λ = 1 W/mK
3,15
K/W
Thermal resistance chip to heatsink
R thJH
Phase-Change
Material
ʎ=3,4W/mK
2,74
K/W
22000
Ω
mWs
Thermistor
Rated resistance
T=25°C
R
Deviation of R100
∆R/R
Power dissipation
P
T=100°C
R100=1486 Ω
Power dissipation constant
-5
5
%
T=25°C
210
mW
T=25°C
3,5
mW/K
B-value
B(25/50) Tol. ±3%
T=25°C
3940
K
B-value
B(25/100) Tol. ±3%
T=25°C
4000
K
Vincotech NTC Reference
copyright Vincotech
A
4
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Output Inverter
Figure 1
Typical output characteristics
I C = f(V CE)
Output inverter IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
50
IC (A)
IC (A)
50
Output inverter IGBT
40
40
30
30
20
20
10
10
0
0
0
1
At
tp =
Tj =
V GE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
Output inverter IGBT
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Output inverter FWD
30
IF (A)
IC (A)
16
V CE (V)
25
12
20
8
15
10
4
Tj = Tjmax-25°C
5
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
V CE =
2
4
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
12
0,0
At
tp =
5
0,5
1,0
250
µs
1,5
2,0
2,5
V F (V) 3,0
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Output Inverter
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
E (mWs)
2,5
E (mWs)
3
Output inverter IGBT
Eon High T
Eon High T
2,5
2
Eoff High T
2
Eon Low T
1,5
Eon Low T
Eoff High T
Eoff Low T
1,5
1
Eoff Low T
1
0,5
0,5
0
0
0
5
10
15
25 I C (A)
20
30
0
With an inductive load at
25/125
Tj =
25/125
°C
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
10
20
30
40
50
60
R G ( Ω ) 70
With an inductive load at
Tj =
25/125
°C
25/125
V CE =
600
V
V GE =
±15
V
IC =
15
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
Tj = Tjmax -25°C
E (mWs)
E (mWs)
1,6
Erec
Output inverter FWD
1,2
Tj = Tjmax -25°C
Erec
1
1,2
0,8
Erec
Erec
0,8
0,6
Tj = 25°C
Tj = 25°C
0,4
0,4
0,2
0
0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
copyright Vincotech
10
20
30
40
50
60
R G ( Ω ) 70
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
IC =
15
A
6
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Output Inverter
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1,00
t ( µs)
t ( µs)
1,00
Output inverter IGBT
0,10
tdoff
tdoff
tf
tdon
tf
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
10
20
30
40
50
60 R G ( Ω )
70
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
±15
V
IC =
15
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
t rr( µs)
0,8
t rr( µs)
0,6
Output inverter FWD
trr
trr
0,5
Tj = Tjmax -25°C
0,6
0,4
Tj = Tjmax -25°C
trr
Tj = 25°C
trr
0,4
0,3
Tj = 25°C
0,2
0,2
0,1
0,0
0,0
0
At
Tj =
V CE =
V GE =
R gon =
5
25/125
25/125
600
±15
16
copyright Vincotech
10
15
20
25
I C (A)
0
30
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
10
25/125
25/125
600
15
±15
20
30
40
50
60 R gon ( Ω ) 70
°C
V
A
V
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Output Inverter
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
3,5
Output inverter FWD
Qrr( µC)
Qrr( µC)
3,5
Qrr
3
Tj = Tjmax -25°C
3
Qrr
Tj = Tjmax -25°C
2,5
2,5
2
2
Qrr
Tj = 25°C
Tj = 25°C
1,5
1,5
1
1
0,5
0,5
0
Qrr
0
0
At
At
Tj =
V CE =
V GE =
R gon =
5
25/125
25/125
600
±15
16
10
15
20
25
I C (A)
30
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
Output inverter FWD
10
20
25/125
25/125
600
15
±15
30
40
50
60 R gon ( Ω) 70
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
Output inverter FWD
50
Tj=Tjmax-25°C
IrrM (A)
IrrM (A)
16
IRRM
40
Tj = 25°C
12
IRRM
30
8
20
Tj = Tjmax - 25°C
Tj = 25°C
4
10
IRRM
IRRM
0
0
0
At
Tj =
V CE =
V GE =
R gon =
5
25/125
25/125
600
±15
16
copyright Vincotech
10
15
20
25 I C (A)
30
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
8
10
25/125
25/125
600
15
±15
20
30
40
50
60 R gon ( Ω ) 70
°C
V
A
V
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Output Inverter
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I C)
Output inverter FWD
Output inverter FWD
6000
dI0/dt
dI0/dt
direc / dt (A/ µs)
direc / dt (A/µ s)
1400
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
dIrec/dt
1200
dIrec/dt
5000
1000
4000
800
3000
600
2000
400
1000
200
0
0
0
At
Tj =
V CE =
V GE =
R gon =
5
25/125
25/125
600
±15
16
10
15
20
I C (A)
25
0
30
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Output inverter IGBT
10
20
25/125
25/125
600
15
±15
°C
V
A
V
30
40
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Output inverter FWD
101
ZthJH (K/W)
Zth-JH (K/W)
101
60 R gon ( Ω ) 70
50
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
t p (s)
100
10-2
101
10-5
At
D =
R thJH =
tp / T
1,83
K/W
R thJH =
1,56
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
K/W
10-4
10-3
10-2
K/W
R thJH =
10-1
t p (s)
100
tp / T
2,52
2,18
K/W
IGBT thermal model values
Thermal grease
Phase change material
FWD thermal model values
Thermal grease
Phase change material
R (K/W)
0,06
0,28
0,77
0,42
0,19
0,10
R (K/W)
0,05
0,26
1,04
0,69
0,27
0,21
Tau (s)
5,6E+00
8,7E-01
1,7E-01
3,4E-02
6,2E-03
5,5E-04
copyright Vincotech
R (K/W)
0,05
0,24
0,66
0,36
0,16
0,09
Tau (s)
5,6E+00
8,7E-01
1,7E-01
3,4E-02
6,2E-03
5,5E-04
9
101
Tau (s)
9,6E+00
8,2E-01
1,2E-01
2,6E-02
3,4E-03
3,8E-04
R (K/W)
0,04
0,22
0,90
0,60
0,23
0,19
Tau (s)
9,6E+00
8,2E-01
1,2E-01
2,6E-02
3,4E-03
3,8E-04
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Output Inverter
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
30
IC (A)
Ptot (W)
100
Output inverter IGBT
25
80
20
60
15
40
10
20
5
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Output inverter FWD
50
175
15
100
T h ( o C)
200
°C
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
Output inverter FWD
30
IF (A)
Ptot (W)
70
150
60
25
50
20
40
15
30
10
20
5
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T h ( o C)
200
°C
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Output Inverter
Figure 25
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
Output inverter IGBT
V GE = f(Q GE)
103
IC (A)
VGE (V)
20
17,5
240V
102
15
1mS
960V
100uS
12,5
10mS
101
10
100mS
7,5
DC
5
100
2,5
0
10-1
10
0
At
D =
Th =
V GE =
Tj =
10
1
10
2
10
V CE (V)
3
0
10
At
IC =
single pulse
80
ºC
±15
V
T jmax
ºC
Figure 27
25
50
75
100
4
Output inverter IGBT
15
125
A
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
t sc = f(V GE)
Q g (nC)
Output inverter IGBT
Typical short circuit collector current as a function of
gate-emitter voltage
V GE = f(Q GE)
tsc (µS)
IC (sc)
17,5
15
150
125
12,5
100
10
75
7,5
50
5
25
2,5
0
0
12
At
V CE =
Tj ≤
13
14
1200
V
175
ºC
copyright Vincotech
15
16
V GE (V)
17
12
At
V CE ≤
Tj =
11
14
1200
V
175
ºC
16
18
V GE (V)
20
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Figure 29
Reverse bias safe operating area
IGBT
I C = f(V CE)
IC (A)
35
IC MAX
30
Ic
MODULE
20
15
Ic CHIP
25
10
VCE MAX
5
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
T jmax-25
ºC
Uccminus=Uccplus
Switching mode :
copyright Vincotech
3 level switching
12
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Brake
Figure 1
Typical output characteristics
I C = f(V CE)
Brake IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
30
Brake IGBT
IC (A)
IC (A)
30
25
25
20
20
15
15
10
10
5
5
0
0
0
1
At
tp =
Tj =
V GE from
2
3
4
V CE (V)
0
5
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
Brake IGBT
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Brake FWD
25
IC (A)
IF (A)
10
V CE (V)
8
20
6
15
4
10
2
5
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
10
12
V GE (V) 14
0
At
tp =
µs
V
13
1
250
1
2
2
3
3
V F (V)
4
µs
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Brake
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
1,6
Brake IGBT
1,4
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
Eon
Eon
Tj = Tjmax -25°C
1,2
Tj = Tjmax -25°C
1,2
1
Eon
Eoff
Eon
0,8
Eoff
0,6
0,8
Eoff
Eoff
0,4
0,4
0,2
Tj = 25°C
Tj = 25°C
0
0,0
0
0
4
8
12
I C (A)
20
40
60
80
100
120
16
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
R gon =
32
Ω
R goff =
32
Ω
RG (Ω )
140
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
IC =
8
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
Brake FWD
0,7
E (mWs)
1
E (mWs)
Erec
Erec
Tj = Tjmax -25°C
0,6
0,8
0,5
Tj = Tjmax - 25°C
0,6
0,4
Tj = 25°C
Erec
Erec
0,3
0,4
Tj = 25°C
0,2
0,2
0,1
0
0
0
0
4
8
12
I C (A)
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
R gon =
32
Ω
copyright Vincotech
20
40
16
60
80
100
120
RG (Ω )
140
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
IC =
8
A
14
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Brake
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1,00
t ( µs)
t ( µs)
1,00
Brake IGBT
tdon
tdoff
tdoff
tf
0,10
tf
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
2
4
6
8
10
14 I C (A)
12
16
0
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
±15
V
R gon =
32
Ω
R goff =
32
Ω
40
60
80
100
120 R G ( Ω ) 140
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
±15
V
IC =
8
A
Figure 11
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Brake IGBT
Figure 12
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Brake FWD
ZthJH (K/W)
101
ZthJH (K/W)
101
10
20
0
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
10-2
10-5
10-4
At
Thermal grease
R thJH =
2,357
copyright Vincotech
10-3
10-2
10-1
100
t p (s)
D =
tp / T
K/W
Phase change material
R thJH =
2,03
K/W
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
101
10-5
10-4
At
Thermal grease
R thJH =
3,15
15
10-3
10-2
10-1
100
t p (s)
D =
tp / T
K/W
Phase change material
R thJH =
2,74
K/W
101
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Brake
Figure 14
Collector current as a
function of heatsink temperature
I C = f(T h)
80
20
IC (A)
Brake IGBT
Ptot (W)
Figure 13
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Brake IGBT
16
60
12
40
8
20
4
0
0
0
50
At
Tj =
175
100
T h ( o C)
150
200
0
At
Tj =
V GE =
ºC
Figure 15
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Brake FWD
50
175
15
100
T h ( o C)
150
ºC
V
Figure 16
Forward current as a
function of heatsink temperature
I F = f(T h)
Brake FWD
12
IF (A)
Ptot (W)
50
200
40
9
30
6
20
3
10
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
Th ( o C)
150
0
At
Tj =
ºC
16
30
150
60
90
120
Th ( o C)
150
ºC
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Input Rectifier Bridge
Figure 1
Typical diode forward current as
a function of forward voltage
I F= f(V F)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Rectifier diode
101
IF (A)
ZthJC (K/W)
100
80
10
0
10
-1
60
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
Tj = Tjmax-25°C
20
Tj = 25°C
0
0,0
At
tp =
0,3
0,5
250
0,8
1,0
1,3
10-2
1,8 V F (V) 2,0
1,5
10-5
µs
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Rectifier diode
10-4
10-3
10-2
10-1
At
Thermal grease
tp/T
D =
D =
tp / T
R thJH =
K/W
D =
R thJH =
1,80
101
Phase change material
tp/T
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T h)
1,54
K/W
Rectifier diode
60
IF (A)
Ptot (W)
100
t p (s)
100
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T h ( o C)
150
0
At
Tj =
ºC
17
30
150
60
90
120
T h ( o C)
150
ºC
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
Thermistor
Figure 2
Typical NTC resistance values



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
25000
Thermistor
R/Ω
R(T ) = R25 ⋅ e
[Ω]
20000
15000
10000
5000
0
25
45
copyright Vincotech
65
85
105
T (°C) 125
18
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Switching Definitions Output Inverter
General
Tj
R gon
R goff
conditions
= 125 °C
= 16 Ω
= 16 Ω
Figure 1
Output inverter IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t Eoff = integrating time for E off)
120
Figure 2
Output inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t Eon = integrating time for E on)
250
tdoff
%
%
VCE
100
IC
200
VGE 90%
VCE 90%
80
VGE
150
IC
60
VCE
100
VGE
40
tdon
tEoff
50
20
IC 1%
0
VGE10%
0
VCE 3%
IC10%
tEon
-20
-0,2
-50
0
0,2
0,4
0,6
0,8
2,9
3
3,1
3,2
time (us)
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t Eoff =
-15
15
600
15
0,24
0,57
V
V
V
A
µs
µs
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t Eon =
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
-15
15
600
15
0,06
0,25
time(us)
3,3
V
V
V
A
µs
µs
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of t r
140
250
%
%
120
fitted
Ic
VCE
200
IC
100
IC 90%
80
150
IC 60%
60
40
100
IC 40%
IC90%
VCE
tr
20
IC10%
50
0
tf
IC10%
-20
0,1
0,2
0,3
0,4
0
0,5
3
3,05
3,1
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
600
15
0,11
3,15
3,2
time(us)
time (us)
V
A
µs
V C (100%) =
I C (100%) =
tr =
19
600
15
0,02
V
A
µs
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
200
120
%
Eoff
Pon
%
100
150
Poff
80
Eon
100
60
40
50
IC 1%
20
VGE 10%
VGE 90%
VCE 3%
0
0
tEon
tEoff
-20
-0,2
-50
0
0,2
0,4
0,6
2,9
0,8
3
3,1
3,2
time (us)
P off (100%) =
E off (100%) =
t Eoff =
9,00
1,24
0,57
3,3
time(us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t Eon =
9,00
1,25
0,25
kW
mJ
µs
Figure 7
Output inverter FWD
Turn-off Switching Waveforms & definition of t rr
100
Id
%
trr
50
fitted
0
IRRM10%
Vd
-50
IRRM90%
-100
IRRM100%
-150
3
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
20
3,2
3,4
600
15
-16
0,43
3,6
time(us)
3,8
V
A
A
µs
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Switching Definitions Output Inverter
Figure 8
Output inverter FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Qrr = integrating time for Q rr)
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
120
150
%
Erec
%
Qrr
100
100
tQrr
80
tErec
50
60
0
40
Prec
-50
20
Id
-100
0
-150
-20
3
3,4
3,8
4,2
3
3,2
3,4
3,6
9,00
1,16
0,90
kW
mJ
µs
time(us)
I d (100%) =
Q rr (100%) =
t Qrr =
copyright Vincotech
15
2,75
0,90
A
µC
µs
P rec (100%) =
E rec (100%) =
t Erec =
21
3,8
4
time(us)
4,2
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
in DataMatrix as
Ordering Code
without thermal paste 12mm housing
V23990-P840-A58-(opt.)-PM
without thermal paste 17mm housing
without thermal paste 12mm housing
without thermal paste 17mm housing
V23990-P840-A59-(opt.)-PM
V23990-P840-C58-(opt.)-PM
V23990-P840-C59-(opt.)-PM
in packaging barcode as
P840-A58
P840-A59
P840-A58
P840-A59
P840-C58
P840-C59
P840-C58
P840-C59
Outline
Pin table
Pin
X
Y
1
2
25,5
25,5
2,7
0
3
22,8
0
4
20,1
0
5
6
16,2
13,5
0
0
7
10,8
0
8
8,1
0
9
10
5,4
2,7
0
0
11
0
0
12
13
14
0
0
7,5
19,8
22,5
19,8
15
16
7,5
15
22,5
19,8
17
18
15
22,8
22,5
22,5
19
20
25,5
33,5
22,5
22,5
21
22
23
33,5
33,5
33,5
15
7,5
0
Pinout
copyright Vincotech
22
14 Jan. 2015 / Revision 6
V23990-P840-*5*-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured
characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further
notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its
patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
23
14 Jan. 2015 / Revision 6