V23990 P849 x4x D7 14

V23990-P849-*4*-PM
datasheet
flow PIM 0 3rdgen
1200 V / 8 A
flow PIM 0 3rdgen
Features
● 2 Clips housing in 12 and 17mm height
● Trench Fieldstop Technology IGBT4
● Optional w/o BRC
Target Applications
12mm Press-fit pins
12mm Solder pins
17mm Press-fit pins
17mm Solder pins
Schematic
● Industrial Drives
● Embedded Generation
Types
● V23990-P849-A48(Y)-PM
● V23990-P849-A49(Y)-PM
● V23990-P849-C48(Y)-PM
● V23990-P849-C49(Y)-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
27
30
A
220
A
200
A 2s
33
50
W
Input Rectifier Diode
Repetitive peak reverse voltage
V RRM
DC forward current
I FAV
Surge forward current
I FSM
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
I2t-value
I 2t
Power dissipation
P tot
Maximum Junction Temperature
T jmax
150
°C
V CE
1200
V
13
16
A
tp limited by Tjmax
24
A
VCE ≤ 1200V, Tj ≤ Top max
16
A
44
67
W
±20
V
10
800
µs
V
175
°C
Tj=Tjmax
Th=80°C
Tc=80°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
I CRM
Turn off safe operating area
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
T jmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
15
20
A
20
A
35
54
W
175
°C
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
V RRM
IF
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
Th=80°C
Tc=80°C
Brake Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
I CRM
Th=80°C
Tc=80°C
Tj=Tjmax
tp limited by Tjmax
VCE ≤ 1200V, Tj ≤ Top max
Turn off safe operating area
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
1200
V CE
Th=80°C
Tc=80°C
Tj=Tjmax
Tj≤150°C
VGE=15V
T jmax
V
8
10
A
12
A
8
A
32
49
W
±20
V
10
360
µs
V
175
°C
Brake Diode
Peak Repetitive Reverse Voltage
DC forward current
1200
V RRM
IF
Th=80°C
Tc=80°C
Tj=Tjmax
V
6
6
A
6
A
18
27
W
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
150
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(Tjmax - 25)
°C
4000
V
min 12,7
mm
9,7/9,48/>12,7
mm
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
V is
t=2s
DC voltage
Creepage distance
12mm solder pin/12mm Press-fit pin/
17mm housing
Clearance
Comparative tracking index
copyright Vincotech
CTI
>200
2
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Tj
Min
Unit
Typ
Max
1,2
1,17
0,93
0,8
11
15
1,8
Input Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
V to
30
Slope resistance (for power loss calc. only)
rt
30
Reverse current
Ir
30
1500
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mΩ
0,1
mA
Thermal resistance chip to heatsink
R th(j-s)
Thermal grease
thickness≤50um λ
= 1 W/mK
2,13
K/W
Thermal resistance chip to heatsink
R th(j-s)
Phase-Change
Material
ʎ=3,4W/mK
1,84
K/W
V GE(th)
VCE=VGE
Inverter Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
0,0003
V CEsat
8
Collector-emitter cut-off current incl. Diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
5
5,8
6,5
1,6
1,87
2,20
2,35
0,05
200
Rgoff=32 Ω
Rgon=32 Ω
15
600
8
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
none
tr
t d(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
71
71
19
23
194
236
79
108
0,50
0,75
0,43
0,62
ns
mWs
490
f=1MHz
0
Vcc=960V
±15
25
Tj=25°C
50
pF
Tj=25°C
53
nC
30
8
Thermal resistance chip to heatsink
R th(j-s)
Thermal grease
thickness≤50um λ
= 1 W/mK
2,16
K/W
Thermal resistance chip to heatsink
R th(j-s)
Phase-Change
Material
ʎ=3,4W/mK
1,86
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
VF
10
I RRM
t rr
Q rr
Rgon=32 Ω
( di rf/dt )max
E rec
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,35
1,70
1,66
8,47
9,88
251
383
0,89
1,57
84
69
0,34
0,63
2,2
V
A
ns
µC
A/µs
mWs
Thermal resistance chip to heatsink
R th(j-s)
Thermal grease
thickness≤50um λ
= 1 W/mK
2,68
K/W
Thermal resistance chip to heatsink
R th(j-s)
Phase-Change
Material
ʎ=3,4W/mK
2,33
K/W
copyright Vincotech
3
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,6
1,96
2,17
2,2
Brake Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
VCE=VGE
V CEsat
0,00015
15
4
Collector-emitter cut-off incl diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
0,05
200
none
tr
t d(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=64 Ω
Rgon=64 Ω
600
15
4
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
93
90
19
24
184
226
71
99
0,25
0,34
0,22
0,30
ns
mWs
250
f=1MHz
0
25
15
960
25
Tj=25°C
pF
15
4
Tj=25°C
25
nC
Thermal resistance chip to heatsink
R th(j-s)
Thermal grease
thickness≤50um λ
= 1 W/mK
2,93
K/W
Thermal resistance chip to heatsink
R th(j-s)
Phase-Change
Material
ʎ=3,4W/mK
2,55
K/W
Brake Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovery energy
VF
4
Ir
1200
I RRM
t rr
Q rr
Rgon=64 Ω
Rgon=64 Ω
( di rf/dt )max
E rec
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
1,91
1,84
2,35
250
4,22
4,65
268
446
0,44
0,44
44
40
0,18
0,32
V
µA
A
ns
µC
A/µs
mWs
Thermal resistance chip to heatsink
R th(j-s)
Thermal grease
thickness≤50um λ
= 1 W/mK
3,98
K/W
Thermal resistance chip to heatsink
R th(j-s)
Phase-Change
Material
ʎ=3,4W/mK
3,49
K/W
22000
Ω
Thermistor
Rated resistance
T=25°C
R
Deviation of R100
Δ R/R
Power dissipation
P
R100=1486 Ω
T=100°C
Power dissipation constant
-5
5
%
T=25°C
210
mW
T=25°C
3,5
mW/K
B-value
B (25/50)
Tol. ±3%
T=25°C
3940
K
B-value
B (25/100)
Tol. ±3%
T=25°C
4000
K
Vincotech NTC Reference
copyright Vincotech
A
4
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Output Inverter
Figure 1
Typical output characteristics
I C = f(V CE)
Output inverter IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
30
IC (A)
IC (A)
30
Output inverter IGBT
25
25
20
20
15
15
10
10
5
5
0
0
0
1
At
tp =
Tj =
V GE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
Output inverter IGBT
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Output inverter FWD
30
IF (A)
IC (A)
10
V CE (V)
25
8
20
6
15
4
Tj = Tjmax-25°C
10
2
Tj = Tjmax-25°C
5
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
V CE =
2
4
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
12
0,0
At
tp =
5
0,5
1,0
250
µs
1,5
2,0
2,5
V F (V) 3,0
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Output Inverter
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
E (mWs)
1,6
E (mWs)
1,6
Output inverter IGBT
Eon High T
Eon High T
1,2
1,2
Eoff High T
Eon Low T
Eon Low T
0,8
0,8
Eoff Low T
Eoff High T
Eoff Low T
0,4
0,4
0
0
0
4
8
12
I C (A)
0
16
With an inductive load at
Tj =
°C
25/125
25/125
V CE =
600
V
V GE =
±15
V
R gon =
32
Ω
R goff =
32
Ω
40
80
120
RG( Ω )
160
With an inductive load at
Tj =
°C
25/125
25/125
V CE =
600
V
V GE =
±15
V
IC =
8
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
E (mWs)
1
Erec
Output inverter FWD
0,7
Tj = Tjmax -25°C
0,6
Tj = Tjmax -25°C
Erec
0,8
0,5
0,6
0,4
Tj = 25°C
Erec
Tj = 25°C
Erec
0,3
0,4
0,2
0,2
0,1
0
0
0
4
8
12
I C (A)
16
0
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
R gon =
32
Ω
copyright Vincotech
20
40
60
80
100
120 R G ( Ω ) 140
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
IC =
8
A
6
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Output Inverter
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1,00
t ( µs)
t ( µs)
1,00
Output inverter IGBT
tdoff
tdoff
tf
tdon
0,10
tdon
tf
0,10
tr
tr
0,01
0,01
0,00
0,00
0
2
4
6
8
10
12
14 I C (A)
16
0
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
±15
V
R gon =
32
Ω
R goff =
32
Ω
20
40
60
80
100
120 R G ( Ω ) 140
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
±15
V
IC =
8
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,6
Output inverter FWD
t rr( µs)
t rr( µs)
0,8
trr
0,5
trr
Tj = Tjmax -25°C
0,6
Tj = Tjmax -25°C
0,4
trr
trr
0,4
0,3
Tj = 25°C
Tj = 25°C
0,2
0,2
0,1
0,0
0,0
0
At
Tj =
V CE =
V GE =
R gon =
2
4
25/125
25/125
600
±15
32
copyright Vincotech
6
8
10
12
14I C (A)
0
20
40
60
16
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
25/125
25/125
600
8
±15
80
100
120
R gon ( Ω )
140
°C
V
A
V
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Output Inverter
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
2,5
Output inverter FWD
Qrr( µC)
Qrr( µC)
2
Qrr
2
Tj = Tjmax -25°C
1,6
Qrr
Tj = Tjmax -25°C
1,5
1,2
Qrr
Tj = 25°C
Tj = 25°C
Qrr
1
0,8
0,5
0,4
0
0
0
At
At
Tj =
V CE =
V GE =
R gon =
2
4
25/125
25/125
600
±15
32
6
8
10
12
14 I C (A) 16
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
Output inverter FWD
20
40
25/125
25/125
600
8
±15
60
80
100
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
Output inverter FWD
IrrM (A)
25
IrrM (A)
12
120 R gon ( Ω) 140
Tj = Tjmax -25°C
10
20
IRRM
Tj = 25°C
IRRM
8
15
6
10
4
Tj = Tjmax - 25°C
IRRM
5
Tj = 25°C
2
0
0
0
At
Tj =
V CE =
V GE =
R gon =
IRRM
4
25/125
25/125
600
±15
32
copyright Vincotech
8
12
I C (A)
16
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
8
20
25/125
25/125
600
8
±15
40
60
80
100
120 R gon ( Ω ) 140
°C
V
A
V
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Output Inverter
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
600
direc / dt (A/ µs)
direc / dt (A/µ s)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I C)
dI0/dt
dIrec/dt
500
Output inverter FWD
3000
dI0/dt
dIrec/dt
2500
dIo/dtLow T
2000
400
di0/dtHigh T
1500
300
1000
200
500
100
dIrec/dtLow T
dIrec/dtHigh T
0
0
0
At
Tj =
V CE =
V GE =
R gon =
2
25/125
25/125
600
±15
32
4
6
8
10
0
14 I C (A) 16
12
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Output inverter IGBT
20
40
25/125
25/125
600
8
±15
°C
V
A
V
60
80
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
100
120
R gon ( Ω )
140
Output inverter FWD
101
10
ZthJH (K/W)
Zth-JH (K/W)
1
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-2
101
tp/T
2,16
K/W
R thJH =
1,86
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
K/W
10-5
10-4
At
D =
R thJH =
tp/T
2,68
10-3
K/W
10-2
R thJH =
10-1
2,33
t p (s)
100
K/W
IGBT thermal model values
Thermal grease
Phase change material
FWD thermal model values
Thermal grease
Phase change material
R (K/W)
0,05
0,25
0,99
0,45
0,24
0,18
R (K/W)
0,05
0,27
1,07
0,69
0,36
0,25
Tau (s)
4,1E+00
5,5E-01
1,0E-01
1,9E-02
3,3E-03
4,0E-04
copyright Vincotech
R (K/W)
0,04
0,21
0,85
0,39
0,21
0,16
Tau (s)
4,1E+00
5,5E-01
1,0E-01
1,9E-02
3,3E-03
4,0E-04
9
Tau (s)
7,9E+00
7,3E-01
1,3E-01
2,5E-02
3,6E-03
4,3E-04
R (K/W)
0,04
0,23
0,92
0,59
0,31
0,21
101
Tau (s)
7,9E+00
7,3E-01
1,3E-01
2,5E-02
3,6E-03
4,3E-04
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Output Inverter
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
20
IC (A)
Ptot (W)
100
Output inverter IGBT
80
16
60
12
40
8
20
4
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Output inverter FWD
50
175
15
100
T h ( o C)
200
°C
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
Output inverter FWD
40
IF (A)
Ptot (W)
70
150
60
30
50
40
20
30
20
10
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T h ( o C)
200
°C
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Output Inverter
Figure 25
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
Output inverter IGBT
V GE = f(Q GE)
103
IC (A)
VGE (V)
17,5
15
10
240V
2
12,5
100uS
960V
1mS
10
10mS
101
7,5
100mS
DC
10
5
0
2,5
0
10-1
10
0
At
D =
Th =
V GE =
Tj =
10
1
10
2
10
3
0
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
T jmax
ºC
Figure 27
Output inverter IGBT
5
8
10
15
25
Q g (nC)
30
A
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
t sc = f(V GE)
20
Output inverter IGBT
Typical short circuit collector current as a function of
gate-emitter voltage
V GE = f(Q GE)
tsc (µS)
IC (sc)
17,5
70
15
60
12,5
50
10
40
7,5
30
5
20
2,5
10
0
0
12
At
V CE =
Tj ≤
13
14
1200
V
175
ºC
copyright Vincotech
15
16
V GE (V)
17
12
At
V CE ≤
Tj =
11
13
14
1200
V
175
ºC
15
16
17
V GE (V)
18
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Figure 29
Reverse bias safe operating area
Output inverter IGBT
I C = f(V CE)
IC (A)
18
IC MAX
16
14
MODULE
10
Ic
8
Ic CHIP
12
6
VCE MAX
4
2
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
T jmax-25
ºC
Uccminus=Uccplus
Switching mode :
copyright Vincotech
3 level switching
12
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Brake
Figure 1
Typical output characteristics
I C = f(V CE)
Brake IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
IC (A)
15
IC (A)
15
12
12
9
9
6
6
3
3
Brake IGBT
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
0
5
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
Brake IGBT
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Brake FWD
15
IC (A)
IF (A)
6
V CE (V)
5
12
4
9
3
6
2
3
1
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
10
12
V GE (V) 14
0
At
tp =
µs
V
13
1
250
1
2
2
3
3
V F (V)
4
µs
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Brake
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
0,8
Brake IGBT
0,75
Eon
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
0,7
Eon
0,6
Tj = Tjmax -25°C
0,60
Tj = Tjmax -25°C
Eon
Eoff
0,5
0,45
Eon
0,4
Eoff
Eoff
0,30
0,3
Eoff
0,2
0,15
Tj = 25°C
0,1
Tj = 25°C
0,00
0,0
0
1
2
3
4
5
6
7 I C (A)
0
8
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
R gon =
64
Ω
R goff =
64
Ω
50
100
150
200
250 R ( Ω ) 300
G
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
IC =
4
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
0,5
Brake FWD
0,4
E (mWs)
Erec
Tj = Tjmax - 25°C
0,35
0,4
Erec
Tj = Tjmax -25°C
0,3
0,25
0,3
0,2
Erec
Erec
Tj = 25°C
0,2
0,15
Tj = 25°C
0,1
0,1
0,05
0
0
0
2
4
6
I C (A)
0
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
R gon =
64
Ω
copyright Vincotech
50
100
8
150
200
250
RG (Ω )
300
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
IC =
4
A
14
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Brake
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1,00
1,00
t ( µs)
Brake IGBT
t ( µs)
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Brake IGBT
tdoff
tdon
tdoff
tf
0,10
tf
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
1
2
3
4
5
7 I C (A)
6
8
0
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
±15
V
R gon =
64
Ω
R goff =
64
Ω
50
100
150
200
250
R G ( Ω ) 300
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
±15
V
IC =
4
A
Figure 11
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Brake IGBT
Figure 12
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
ZthJH (K/W)
101
ZthJH (K/W)
101
Brake FWD
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
10-4
At
Thermal grease
R thJH =
2,93
copyright Vincotech
10-3
10-2
10-1
100
t p (s)
D =
tp/T
K/W
Phase change material
R thJH =
2,55
K/W
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
101
10-5
10-4
At
Thermal grease
R thJH =
3,98
15
10-3
10-2
10-1
100
t p (s)
D =
tp/T
K/W
Phase change material
R thJH =
3,49
K/W
101
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Brake
Figure 13
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
I C = f(T h)
IC (A)
12
Ptot (W)
60
50
10
40
8
30
6
20
4
10
2
0
Brake IGBT
0
0
50
At
Tj =
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
ºC
Figure 15
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Brake FWD
50
175
15
100
150
200
ºC
V
Figure 16
Forward current as a
function of heatsink temperature
I F = f(T h)
Brake FWD
12
IF (A)
Ptot (W)
40
T h ( o C)
10
30
8
20
6
4
10
2
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
16
50
150
100
150
Th ( o C)
200
ºC
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Input Rectifier Bridge
Figure 1
Typical diode forward current as
a function of forward voltage
I F= f(V F)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
100
Rectifier diode
IF (A)
ZthJC (K/W)
101
80
10
0
10
-1
60
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
20
Tj = Tjmax-25°C
Tj = 25°C
0
0,0
At
tp =
0,3
0,5
250
0,8
1,0
1,3
10-2
1,8 V F (V) 2,0
1,5
10-5
µs
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Rectifier diode
10-4
10-3
10-2
At
Thermal grease
tp/T
D =
D =
tp/T
R thJH =
K/W
D =
R thJH =
2,13
10-1
101
Phase change material
tp/T
1,84
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T h)
K/W
Rectifier diode
50
IF (A)
Ptot (W)
80
t p (s)
100
40
60
30
40
20
20
10
0
0
0
At
Tj =
25
150
copyright Vincotech
50
75
100
125
T h ( o C)
150
0
At
Tj =
ºC
17
25
50
150
ºC
75
100
125
T h ( o C) 150
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
Thermistor
Figure 2
Typical NTC resistance values
Thermistor



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
R(T ) = R25 ⋅ e
R (Ω)
25000
[Ω]
20000
15000
10000
5000
0
25
45
copyright Vincotech
65
85
105
T (°C) 125
18
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Switching Definitions Output Inverter
General
Tj
R gon
R goff
conditions
= 125 °C
= 32 Ω
= 32 Ω
Figure 1
Output inverter IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
120
250
tdoff
%
Figure 2
Output inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
%
VCE
IC
100
VGE 90%
200
VCE 90%
80
150
60
IC
40
VCE
100
tEoff
VGE
tdon
20
50
IC 1%
0
VCE 3%
IC10%
VGE10%
VGE
-20
0
tEon
-40
-0,4
-50
-0,2
0
0,2
0,4
0,6
0,8
2,9
3
3,1
3,2
time (us)
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
-15
15
600
8
0,24
0,50
V
V
V
A
µs
µs
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
F i gure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
3,3
V
V
V
A
µs
µs
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of t r
120
250
fitted
%
-15
15
600
8
0,07
0,27
time(us)
%
VCE
IC
100
Ic
200
IC 90%
80
150
IC 60%
60
VCE
100
40
IC90%
IC 40%
tr
50
20
IC10%
IC10%
0
0
tf
-20
0
0,1
0,2
0,3
0,4
-50
0,5
3
3,05
3,1
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
600
8
0,11
3,15
3,2
time(us)
time (us)
V
A
µs
V C (100%) =
I C (100%) =
tr =
19
600
8
0,02
V
A
µs
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
200
120
%
Eoff
Pon
%
100
Poff
150
80
Eon
100
60
40
50
20
VGE 10%
VGE 90%
IC 1%
VCE 3%
0
tEon
0
tEoff
-20
-0,1
-50
0,1
0,3
0,5
2,9
0,7
3
3,1
3,2
3,3
time (us)
P off (100%) =
E off (100%) =
t E off =
4,93
0,62
0,50
time(us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
4,93
0,75
0,27
kW
mJ
µs
Figure 7
Output inverter FWD
Turn-off Switching Waveforms & definition of t rr
100
Id
%
trr
40
fitted
Vd
IRRM10%
-20
-80
IRRM90%
IRRM100%
-140
3
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
20
3,2
600
8
-10
0,38
3,4
time(us)
3,6
V
A
A
µs
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Switching Definitions Output Inverter
Figure 8
Output inverter FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
120
150
%
%
Qrr
Erec
100
100
Id
80
tQrr
tErec
50
60
0
40
Prec
-50
20
-100
0
-150
-20
3
3,4
3,8
4,2
3
3,2
3,4
3,6
4,93
0,63
0,80
kW
mJ
µs
time(us)
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
8
1,57
0,80
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
21
3,8
4
time(us)
4,2
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Ordering Code and Marking - Outline
Ordering Code & Marking
Ordering Code
in DataMatrix as
in packaging barcode as
without thermal paste 12mm housing
with Solder pins ''A'' topology
Version
V23990-P849-A48-PM
P849A48
P849A48
without thermal paste 12mm housing
with Solder pins ''C'' topology
V23990-P849-C48-PM
P849C48
P849C48
without thermal paste 17mm housing
with Solder pins "A" topology
V23990-P849-A49-PM
P849A49
P849A49
without thermal paste 17mm housing
with Solder pins "C" topology
V23990-P849-C49-PM
P849C49
P849C49
without thermal paste 17mm housing
with Press-fit pins "A" topology
V23990-P849-A49Y-PM
P849A49Y
P849A49Y
without thermal paste 17mm housing
with Press-fit pins "C" topology
V23990-P849-C49Y-PM
P849C49Y
P849C49Y
without thermal paste 12mm housing
with Press-fit pins "A" topology
V23990-P849-A48Y-PM
P849A48Y
P849A48Y
without thermal paste 12mm housing
with Press-fit pins "C" topology
V23990-P849-C48Y-PM
P849C48Y
P849C48Y
with phase change material 12mm housing
with Solder pins "A" topology
V23990-P849-A48-/3/-PM
P849A48
P849A48-/3/
with phase change material 12mm housing
with Solder pins "C" topology
V23990-P849-C48-/3/-PM
P849C48
P849C48-/3/
with phase change material 17mm housing
with Solder pins "A" topology
V23990-P849-A49-/3/-PM
P849A49
P849A49-/3/
with phase change material 17mm housing
with Solder pins "C" topology
V23990-P849-C49-/3/-PM
P849C49
P849C49-/3/
with phase change material 17mm housing
with Press-fit pins "A" topology
V23990-P849-A49Y-/3/-PM
P849A49Y
P849A49Y-/3/
with phase change material 17mm housing
with Press-fit pins "C" topology
V23990-P849-C49Y-/3/-PM
P849C49Y
P849C49Y-/3/
with phase change material 12mm housing
with Press-fit pins "A" topology
V23990-P849-A48Y-/3/-PM
P849A48Y
P849A48Y-/3/
with phase change material 12mm housing
with Press-fit pins "C" topology
V23990-P849-C48Y-/3/-PM
P849C48Y
P849C48Y-/3/
Outline
Pin
Pin table
X
Y
1
2
3
4
5
6
7
8
25,5
25,5
22,8
20,1
16,2
13,5
10,8
8,1
2,7
0
0
0
0
0
0
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
5,4
2,7
0
0
0
7,5
7,5
15
15
22,8
25,5
33,5
33,5
33,5
33,5
0
0
0
19,8
22,5
19,8
22,5
19,8
22,5
22,5
22,5
22,5
15
7,5
0
copyright Vincotech
22
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
Pinout - Identification
Pinout
copyright Vincotech
23
3 Jul. 2015 / Revision 7
V23990-P849-*4*-PM
datasheet
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are
presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete
and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any
changes without further notice to any products to improve reliability, function or design. No representation, guarantee
or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application
or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or
that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and
determine the suitability of the information and the product for reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
24
3 Jul. 2015 / Revision 7