V23990-P849-*4*-PM datasheet flow PIM 0 3rdgen 1200 V / 8 A flow PIM 0 3rdgen Features ● 2 Clips housing in 12 and 17mm height ● Trench Fieldstop Technology IGBT4 ● Optional w/o BRC Target Applications 12mm Press-fit pins 12mm Solder pins 17mm Press-fit pins 17mm Solder pins Schematic ● Industrial Drives ● Embedded Generation Types ● V23990-P849-A48(Y)-PM ● V23990-P849-A49(Y)-PM ● V23990-P849-C48(Y)-PM ● V23990-P849-C49(Y)-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 27 30 A 220 A 200 A 2s 33 50 W Input Rectifier Diode Repetitive peak reverse voltage V RRM DC forward current I FAV Surge forward current I FSM Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C I2t-value I 2t Power dissipation P tot Maximum Junction Temperature T jmax 150 °C V CE 1200 V 13 16 A tp limited by Tjmax 24 A VCE ≤ 1200V, Tj ≤ Top max 16 A 44 67 W ±20 V 10 800 µs V 175 °C Tj=Tjmax Th=80°C Tc=80°C Inverter Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC I CRM Turn off safe operating area Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V T jmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 15 20 A 20 A 35 54 W 175 °C Inverter Diode Peak Repetitive Reverse Voltage DC forward current V RRM IF Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax Th=80°C Tc=80°C Brake Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC I CRM Th=80°C Tc=80°C Tj=Tjmax tp limited by Tjmax VCE ≤ 1200V, Tj ≤ Top max Turn off safe operating area Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature 1200 V CE Th=80°C Tc=80°C Tj=Tjmax Tj≤150°C VGE=15V T jmax V 8 10 A 12 A 8 A 32 49 W ±20 V 10 360 µs V 175 °C Brake Diode Peak Repetitive Reverse Voltage DC forward current 1200 V RRM IF Th=80°C Tc=80°C Tj=Tjmax V 6 6 A 6 A 18 27 W Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax 150 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(Tjmax - 25) °C 4000 V min 12,7 mm 9,7/9,48/>12,7 mm Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage V is t=2s DC voltage Creepage distance 12mm solder pin/12mm Press-fit pin/ 17mm housing Clearance Comparative tracking index copyright Vincotech CTI >200 2 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Tj Min Unit Typ Max 1,2 1,17 0,93 0,8 11 15 1,8 Input Rectifier Diode Forward voltage VF Threshold voltage (for power loss calc. only) V to 30 Slope resistance (for power loss calc. only) rt 30 Reverse current Ir 30 1500 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mΩ 0,1 mA Thermal resistance chip to heatsink R th(j-s) Thermal grease thickness≤50um λ = 1 W/mK 2,13 K/W Thermal resistance chip to heatsink R th(j-s) Phase-Change Material ʎ=3,4W/mK 1,84 K/W V GE(th) VCE=VGE Inverter Transistor Gate emitter threshold voltage Collector-emitter saturation voltage 0,0003 V CEsat 8 Collector-emitter cut-off current incl. Diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG 5 5,8 6,5 1,6 1,87 2,20 2,35 0,05 200 Rgoff=32 Ω Rgon=32 Ω 15 600 8 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω none tr t d(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 71 71 19 23 194 236 79 108 0,50 0,75 0,43 0,62 ns mWs 490 f=1MHz 0 Vcc=960V ±15 25 Tj=25°C 50 pF Tj=25°C 53 nC 30 8 Thermal resistance chip to heatsink R th(j-s) Thermal grease thickness≤50um λ = 1 W/mK 2,16 K/W Thermal resistance chip to heatsink R th(j-s) Phase-Change Material ʎ=3,4W/mK 1,86 K/W Inverter Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy VF 10 I RRM t rr Q rr Rgon=32 Ω ( di rf/dt )max E rec Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,35 1,70 1,66 8,47 9,88 251 383 0,89 1,57 84 69 0,34 0,63 2,2 V A ns µC A/µs mWs Thermal resistance chip to heatsink R th(j-s) Thermal grease thickness≤50um λ = 1 W/mK 2,68 K/W Thermal resistance chip to heatsink R th(j-s) Phase-Change Material ʎ=3,4W/mK 2,33 K/W copyright Vincotech 3 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Tj Unit Min Typ Max 5 5,8 6,5 1,6 1,96 2,17 2,2 Brake Transistor Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) VCE=VGE V CEsat 0,00015 15 4 Collector-emitter cut-off incl diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG 0,05 200 none tr t d(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=64 Ω Rgon=64 Ω 600 15 4 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 93 90 19 24 184 226 71 99 0,25 0,34 0,22 0,30 ns mWs 250 f=1MHz 0 25 15 960 25 Tj=25°C pF 15 4 Tj=25°C 25 nC Thermal resistance chip to heatsink R th(j-s) Thermal grease thickness≤50um λ = 1 W/mK 2,93 K/W Thermal resistance chip to heatsink R th(j-s) Phase-Change Material ʎ=3,4W/mK 2,55 K/W Brake Diode Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovery energy VF 4 Ir 1200 I RRM t rr Q rr Rgon=64 Ω Rgon=64 Ω ( di rf/dt )max E rec Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 1,91 1,84 2,35 250 4,22 4,65 268 446 0,44 0,44 44 40 0,18 0,32 V µA A ns µC A/µs mWs Thermal resistance chip to heatsink R th(j-s) Thermal grease thickness≤50um λ = 1 W/mK 3,98 K/W Thermal resistance chip to heatsink R th(j-s) Phase-Change Material ʎ=3,4W/mK 3,49 K/W 22000 Ω Thermistor Rated resistance T=25°C R Deviation of R100 Δ R/R Power dissipation P R100=1486 Ω T=100°C Power dissipation constant -5 5 % T=25°C 210 mW T=25°C 3,5 mW/K B-value B (25/50) Tol. ±3% T=25°C 3940 K B-value B (25/100) Tol. ±3% T=25°C 4000 K Vincotech NTC Reference copyright Vincotech A 4 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Output Inverter Figure 1 Typical output characteristics I C = f(V CE) Output inverter IGBT Figure 2 Typical output characteristics I C = f(V CE) 30 IC (A) IC (A) 30 Output inverter IGBT 25 25 20 20 15 15 10 10 5 5 0 0 0 1 At tp = Tj = V GE from 2 3 V CE (V) 4 5 0 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) Output inverter IGBT 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) Output inverter FWD 30 IF (A) IC (A) 10 V CE (V) 25 8 20 6 15 4 Tj = Tjmax-25°C 10 2 Tj = Tjmax-25°C 5 Tj = 25°C Tj = 25°C 0 0 0 At tp = V CE = 2 4 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 12 0,0 At tp = 5 0,5 1,0 250 µs 1,5 2,0 2,5 V F (V) 3,0 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Output Inverter Figure 5 Typical switching energy losses as a function of collector current E = f(I C) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) E (mWs) 1,6 E (mWs) 1,6 Output inverter IGBT Eon High T Eon High T 1,2 1,2 Eoff High T Eon Low T Eon Low T 0,8 0,8 Eoff Low T Eoff High T Eoff Low T 0,4 0,4 0 0 0 4 8 12 I C (A) 0 16 With an inductive load at Tj = °C 25/125 25/125 V CE = 600 V V GE = ±15 V R gon = 32 Ω R goff = 32 Ω 40 80 120 RG( Ω ) 160 With an inductive load at Tj = °C 25/125 25/125 V CE = 600 V V GE = ±15 V IC = 8 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) E (mWs) 1 Erec Output inverter FWD 0,7 Tj = Tjmax -25°C 0,6 Tj = Tjmax -25°C Erec 0,8 0,5 0,6 0,4 Tj = 25°C Erec Tj = 25°C Erec 0,3 0,4 0,2 0,2 0,1 0 0 0 4 8 12 I C (A) 16 0 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V R gon = 32 Ω copyright Vincotech 20 40 60 80 100 120 R G ( Ω ) 140 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V IC = 8 A 6 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Output Inverter Figure 9 Typical switching times as a function of collector current t = f(I C) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1,00 t ( µs) t ( µs) 1,00 Output inverter IGBT tdoff tdoff tf tdon 0,10 tdon tf 0,10 tr tr 0,01 0,01 0,00 0,00 0 2 4 6 8 10 12 14 I C (A) 16 0 With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V R gon = 32 Ω R goff = 32 Ω 20 40 60 80 100 120 R G ( Ω ) 140 With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V IC = 8 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I C) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,6 Output inverter FWD t rr( µs) t rr( µs) 0,8 trr 0,5 trr Tj = Tjmax -25°C 0,6 Tj = Tjmax -25°C 0,4 trr trr 0,4 0,3 Tj = 25°C Tj = 25°C 0,2 0,2 0,1 0,0 0,0 0 At Tj = V CE = V GE = R gon = 2 4 25/125 25/125 600 ±15 32 copyright Vincotech 6 8 10 12 14I C (A) 0 20 40 60 16 At Tj = VR= IF= V GE = °C V V Ω 7 25/125 25/125 600 8 ±15 80 100 120 R gon ( Ω ) 140 °C V A V 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Output Inverter Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) 2,5 Output inverter FWD Qrr( µC) Qrr( µC) 2 Qrr 2 Tj = Tjmax -25°C 1,6 Qrr Tj = Tjmax -25°C 1,5 1,2 Qrr Tj = 25°C Tj = 25°C Qrr 1 0,8 0,5 0,4 0 0 0 At At Tj = V CE = V GE = R gon = 2 4 25/125 25/125 600 ±15 32 6 8 10 12 14 I C (A) 16 0 At Tj = VR= IF= V GE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) Output inverter FWD 20 40 25/125 25/125 600 8 ±15 60 80 100 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) Output inverter FWD IrrM (A) 25 IrrM (A) 12 120 R gon ( Ω) 140 Tj = Tjmax -25°C 10 20 IRRM Tj = 25°C IRRM 8 15 6 10 4 Tj = Tjmax - 25°C IRRM 5 Tj = 25°C 2 0 0 0 At Tj = V CE = V GE = R gon = IRRM 4 25/125 25/125 600 ±15 32 copyright Vincotech 8 12 I C (A) 16 0 At Tj = VR= IF= V GE = °C V V Ω 8 20 25/125 25/125 600 8 ±15 40 60 80 100 120 R gon ( Ω ) 140 °C V A V 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Output Inverter Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 600 direc / dt (A/ µs) direc / dt (A/µ s) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I C) dI0/dt dIrec/dt 500 Output inverter FWD 3000 dI0/dt dIrec/dt 2500 dIo/dtLow T 2000 400 di0/dtHigh T 1500 300 1000 200 500 100 dIrec/dtLow T dIrec/dtHigh T 0 0 0 At Tj = V CE = V GE = R gon = 2 25/125 25/125 600 ±15 32 4 6 8 10 0 14 I C (A) 16 12 At Tj = VR= IF= V GE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) Output inverter IGBT 20 40 25/125 25/125 600 8 ±15 °C V A V 60 80 Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) 100 120 R gon ( Ω ) 140 Output inverter FWD 101 10 ZthJH (K/W) Zth-JH (K/W) 1 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-2 101 tp/T 2,16 K/W R thJH = 1,86 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 K/W 10-5 10-4 At D = R thJH = tp/T 2,68 10-3 K/W 10-2 R thJH = 10-1 2,33 t p (s) 100 K/W IGBT thermal model values Thermal grease Phase change material FWD thermal model values Thermal grease Phase change material R (K/W) 0,05 0,25 0,99 0,45 0,24 0,18 R (K/W) 0,05 0,27 1,07 0,69 0,36 0,25 Tau (s) 4,1E+00 5,5E-01 1,0E-01 1,9E-02 3,3E-03 4,0E-04 copyright Vincotech R (K/W) 0,04 0,21 0,85 0,39 0,21 0,16 Tau (s) 4,1E+00 5,5E-01 1,0E-01 1,9E-02 3,3E-03 4,0E-04 9 Tau (s) 7,9E+00 7,3E-01 1,3E-01 2,5E-02 3,6E-03 4,3E-04 R (K/W) 0,04 0,23 0,92 0,59 0,31 0,21 101 Tau (s) 7,9E+00 7,3E-01 1,3E-01 2,5E-02 3,6E-03 4,3E-04 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Output Inverter Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T h) 20 IC (A) Ptot (W) 100 Output inverter IGBT 80 16 60 12 40 8 20 4 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = °C Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) Output inverter FWD 50 175 15 100 T h ( o C) 200 °C V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) Output inverter FWD 40 IF (A) Ptot (W) 70 150 60 30 50 40 20 30 20 10 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 175 100 150 T h ( o C) 200 °C 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Output Inverter Figure 25 Safe operating area as a function of collector-emitter voltage I C = f(V CE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge Output inverter IGBT V GE = f(Q GE) 103 IC (A) VGE (V) 17,5 15 10 240V 2 12,5 100uS 960V 1mS 10 10mS 101 7,5 100mS DC 10 5 0 2,5 0 10-1 10 0 At D = Th = V GE = Tj = 10 1 10 2 10 3 0 V CE (V) At IC = single pulse 80 ºC ±15 V T jmax ºC Figure 27 Output inverter IGBT 5 8 10 15 25 Q g (nC) 30 A Figure 28 Short circuit withstand time as a function of gate-emitter voltage t sc = f(V GE) 20 Output inverter IGBT Typical short circuit collector current as a function of gate-emitter voltage V GE = f(Q GE) tsc (µS) IC (sc) 17,5 70 15 60 12,5 50 10 40 7,5 30 5 20 2,5 10 0 0 12 At V CE = Tj ≤ 13 14 1200 V 175 ºC copyright Vincotech 15 16 V GE (V) 17 12 At V CE ≤ Tj = 11 13 14 1200 V 175 ºC 15 16 17 V GE (V) 18 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Figure 29 Reverse bias safe operating area Output inverter IGBT I C = f(V CE) IC (A) 18 IC MAX 16 14 MODULE 10 Ic 8 Ic CHIP 12 6 VCE MAX 4 2 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = T jmax-25 ºC Uccminus=Uccplus Switching mode : copyright Vincotech 3 level switching 12 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Brake Figure 1 Typical output characteristics I C = f(V CE) Brake IGBT Figure 2 Typical output characteristics I C = f(V CE) IC (A) 15 IC (A) 15 12 12 9 9 6 6 3 3 Brake IGBT 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 0 5 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) Brake IGBT 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) Brake FWD 15 IC (A) IF (A) 6 V CE (V) 5 12 4 9 3 6 2 3 1 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 10 12 V GE (V) 14 0 At tp = µs V 13 1 250 1 2 2 3 3 V F (V) 4 µs 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Brake Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) 0,8 Brake IGBT 0,75 Eon E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(I C) 0,7 Eon 0,6 Tj = Tjmax -25°C 0,60 Tj = Tjmax -25°C Eon Eoff 0,5 0,45 Eon 0,4 Eoff Eoff 0,30 0,3 Eoff 0,2 0,15 Tj = 25°C 0,1 Tj = 25°C 0,00 0,0 0 1 2 3 4 5 6 7 I C (A) 0 8 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V R gon = 64 Ω R goff = 64 Ω 50 100 150 200 250 R ( Ω ) 300 G With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V IC = 4 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) 0,5 Brake FWD 0,4 E (mWs) Erec Tj = Tjmax - 25°C 0,35 0,4 Erec Tj = Tjmax -25°C 0,3 0,25 0,3 0,2 Erec Erec Tj = 25°C 0,2 0,15 Tj = 25°C 0,1 0,1 0,05 0 0 0 2 4 6 I C (A) 0 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V R gon = 64 Ω copyright Vincotech 50 100 8 150 200 250 RG (Ω ) 300 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V IC = 4 A 14 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Brake Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1,00 1,00 t ( µs) Brake IGBT t ( µs) Figure 9 Typical switching times as a function of collector current t = f(I C) Brake IGBT tdoff tdon tdoff tf 0,10 tf 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 1 2 3 4 5 7 I C (A) 6 8 0 With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V R gon = 64 Ω R goff = 64 Ω 50 100 150 200 250 R G ( Ω ) 300 With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V IC = 4 A Figure 11 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) Brake IGBT Figure 12 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) ZthJH (K/W) 101 ZthJH (K/W) 101 Brake FWD 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 10-4 At Thermal grease R thJH = 2,93 copyright Vincotech 10-3 10-2 10-1 100 t p (s) D = tp/T K/W Phase change material R thJH = 2,55 K/W D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 101 10-5 10-4 At Thermal grease R thJH = 3,98 15 10-3 10-2 10-1 100 t p (s) D = tp/T K/W Phase change material R thJH = 3,49 K/W 101 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Brake Figure 13 Power dissipation as a function of heatsink temperature P tot = f(T h) Brake IGBT Figure 14 Collector current as a function of heatsink temperature I C = f(T h) IC (A) 12 Ptot (W) 60 50 10 40 8 30 6 20 4 10 2 0 Brake IGBT 0 0 50 At Tj = 175 100 150 T h ( o C) 200 0 At Tj = V GE = ºC Figure 15 Power dissipation as a function of heatsink temperature P tot = f(T h) Brake FWD 50 175 15 100 150 200 ºC V Figure 16 Forward current as a function of heatsink temperature I F = f(T h) Brake FWD 12 IF (A) Ptot (W) 40 T h ( o C) 10 30 8 20 6 4 10 2 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 16 50 150 100 150 Th ( o C) 200 ºC 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Input Rectifier Bridge Figure 1 Typical diode forward current as a function of forward voltage I F= f(V F) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) 100 Rectifier diode IF (A) ZthJC (K/W) 101 80 10 0 10 -1 60 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 20 Tj = Tjmax-25°C Tj = 25°C 0 0,0 At tp = 0,3 0,5 250 0,8 1,0 1,3 10-2 1,8 V F (V) 2,0 1,5 10-5 µs Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) Rectifier diode 10-4 10-3 10-2 At Thermal grease tp/T D = D = tp/T R thJH = K/W D = R thJH = 2,13 10-1 101 Phase change material tp/T 1,84 Figure 4 Forward current as a function of heatsink temperature I F = f(T h) K/W Rectifier diode 50 IF (A) Ptot (W) 80 t p (s) 100 40 60 30 40 20 20 10 0 0 0 At Tj = 25 150 copyright Vincotech 50 75 100 125 T h ( o C) 150 0 At Tj = ºC 17 25 50 150 ºC 75 100 125 T h ( o C) 150 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) Thermistor Figure 2 Typical NTC resistance values Thermistor B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic R(T ) = R25 ⋅ e R (Ω) 25000 [Ω] 20000 15000 10000 5000 0 25 45 copyright Vincotech 65 85 105 T (°C) 125 18 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Switching Definitions Output Inverter General Tj R gon R goff conditions = 125 °C = 32 Ω = 32 Ω Figure 1 Output inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) 120 250 tdoff % Figure 2 Output inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) % VCE IC 100 VGE 90% 200 VCE 90% 80 150 60 IC 40 VCE 100 tEoff VGE tdon 20 50 IC 1% 0 VCE 3% IC10% VGE10% VGE -20 0 tEon -40 -0,4 -50 -0,2 0 0,2 0,4 0,6 0,8 2,9 3 3,1 3,2 time (us) V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = -15 15 600 8 0,24 0,50 V V V A µs µs V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = F i gure 3 Output inverter IGBT Turn-off Switching Waveforms & definition of t f 3,3 V V V A µs µs Figure 4 Output inverter IGBT Turn-on Switching Waveforms & definition of t r 120 250 fitted % -15 15 600 8 0,07 0,27 time(us) % VCE IC 100 Ic 200 IC 90% 80 150 IC 60% 60 VCE 100 40 IC90% IC 40% tr 50 20 IC10% IC10% 0 0 tf -20 0 0,1 0,2 0,3 0,4 -50 0,5 3 3,05 3,1 V C (100%) = I C (100%) = tf = copyright Vincotech 600 8 0,11 3,15 3,2 time(us) time (us) V A µs V C (100%) = I C (100%) = tr = 19 600 8 0,02 V A µs 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Switching Definitions Output Inverter Figure 5 Output inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Output inverter IGBT Turn-on Switching Waveforms & definition of t Eon 200 120 % Eoff Pon % 100 Poff 150 80 Eon 100 60 40 50 20 VGE 10% VGE 90% IC 1% VCE 3% 0 tEon 0 tEoff -20 -0,1 -50 0,1 0,3 0,5 2,9 0,7 3 3,1 3,2 3,3 time (us) P off (100%) = E off (100%) = t E off = 4,93 0,62 0,50 time(us) kW mJ µs P on (100%) = E on (100%) = t E on = 4,93 0,75 0,27 kW mJ µs Figure 7 Output inverter FWD Turn-off Switching Waveforms & definition of t rr 100 Id % trr 40 fitted Vd IRRM10% -20 -80 IRRM90% IRRM100% -140 3 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 20 3,2 600 8 -10 0,38 3,4 time(us) 3,6 V A A µs 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Switching Definitions Output Inverter Figure 8 Output inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 120 150 % % Qrr Erec 100 100 Id 80 tQrr tErec 50 60 0 40 Prec -50 20 -100 0 -150 -20 3 3,4 3,8 4,2 3 3,2 3,4 3,6 4,93 0,63 0,80 kW mJ µs time(us) I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 8 1,57 0,80 A µC µs P rec (100%) = E rec (100%) = t E rec = 21 3,8 4 time(us) 4,2 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Ordering Code and Marking - Outline Ordering Code & Marking Ordering Code in DataMatrix as in packaging barcode as without thermal paste 12mm housing with Solder pins ''A'' topology Version V23990-P849-A48-PM P849A48 P849A48 without thermal paste 12mm housing with Solder pins ''C'' topology V23990-P849-C48-PM P849C48 P849C48 without thermal paste 17mm housing with Solder pins "A" topology V23990-P849-A49-PM P849A49 P849A49 without thermal paste 17mm housing with Solder pins "C" topology V23990-P849-C49-PM P849C49 P849C49 without thermal paste 17mm housing with Press-fit pins "A" topology V23990-P849-A49Y-PM P849A49Y P849A49Y without thermal paste 17mm housing with Press-fit pins "C" topology V23990-P849-C49Y-PM P849C49Y P849C49Y without thermal paste 12mm housing with Press-fit pins "A" topology V23990-P849-A48Y-PM P849A48Y P849A48Y without thermal paste 12mm housing with Press-fit pins "C" topology V23990-P849-C48Y-PM P849C48Y P849C48Y with phase change material 12mm housing with Solder pins "A" topology V23990-P849-A48-/3/-PM P849A48 P849A48-/3/ with phase change material 12mm housing with Solder pins "C" topology V23990-P849-C48-/3/-PM P849C48 P849C48-/3/ with phase change material 17mm housing with Solder pins "A" topology V23990-P849-A49-/3/-PM P849A49 P849A49-/3/ with phase change material 17mm housing with Solder pins "C" topology V23990-P849-C49-/3/-PM P849C49 P849C49-/3/ with phase change material 17mm housing with Press-fit pins "A" topology V23990-P849-A49Y-/3/-PM P849A49Y P849A49Y-/3/ with phase change material 17mm housing with Press-fit pins "C" topology V23990-P849-C49Y-/3/-PM P849C49Y P849C49Y-/3/ with phase change material 12mm housing with Press-fit pins "A" topology V23990-P849-A48Y-/3/-PM P849A48Y P849A48Y-/3/ with phase change material 12mm housing with Press-fit pins "C" topology V23990-P849-C48Y-/3/-PM P849C48Y P849C48Y-/3/ Outline Pin Pin table X Y 1 2 3 4 5 6 7 8 25,5 25,5 22,8 20,1 16,2 13,5 10,8 8,1 2,7 0 0 0 0 0 0 0 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 5,4 2,7 0 0 0 7,5 7,5 15 15 22,8 25,5 33,5 33,5 33,5 33,5 0 0 0 19,8 22,5 19,8 22,5 19,8 22,5 22,5 22,5 22,5 15 7,5 0 copyright Vincotech 22 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet Pinout - Identification Pinout copyright Vincotech 23 3 Jul. 2015 / Revision 7 V23990-P849-*4*-PM datasheet DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 24 3 Jul. 2015 / Revision 7