10-R01126PA008SC-M627F40 10-RZ1126PA008SC-M627F41 flow 90PACK 0 1200V/8A Features flow 90PACK 0 ● 90° PCB mounting for easy heat sink assembly ● Clip-in PCB mounting (optional) ● Open emitter for easy current sensing without clips Target Applications with clips Schematic ● Standard Drive ● Servo Drive ● Bookshelf Inverter Types ● 10-RZ126PA008SC-M627F41 ● 10-R0126PA008SC-M627F40 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 12 12 A tp limited by Tjmax 24 A VCE ≤ 1200V, Tj ≤ Top max 16 A 51 78 W ±20 V 10 800 µs V Tjmax 175 °C VRRM 1200 V 22 29 A 20 A 49 74 W 175 °C Inverter Transistor Collector-emitter break down voltage DC collector current * Pulsed collector current VCE IC ICpulse Turn off safe operating area Power dissipation per IGBT * Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V * measured with phase-change material Inverter Diode Peak Repetitive Reverse Voltage DC forward current * IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode * Ptot Tj=Tjmax Maximum Junction Temperature Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C * measured with phase-change material Copyright by Vincotech 1 Revision: 2 10-R01126PA008SC-M627F40 10-RZ1126PA008SC-M627F41 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+150 °C 4000 V Creepage distance min 12,7 mm Clearance min 10,93 mm Insulation Properties Insulation voltage Comparative tracking index Copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 2 10-R01126PA008SC-M627F40 10-RZ1126PA008SC-M627F41 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5,0 5,8 6,5 1,5 1,91 2,21 2,3 Inverter Transistor Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0003 8 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to heatsink per chip RthJH 200 Rgoff=32 Ω Rgon=32 Ω ±15 600 8 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V µA nA Ω none tr td(off) 10 V 55 54 23 24 177 240 67 121 0,556 0,870 0,434 0,733 ns mWs 490 f=1MHz 0 Tj=25°C 25 pF 50 30 53 nC Phase-Change Material 1,85 K/W Thermal grease thickness≤50um λ = 1 W/mK 2,18 K/W 15 960 8 Tj=25°C Inverter Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 8 IRRM trr Qrr Rgon=32 Ω ±15 600 di(rec)max /dt 8 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,2 1,69 1,59 7 9 247 428 0,85 1,77 80 44 0,328 0,714 2,30 V A ns µC A/µs Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Phase-Change Material 1,95 K/W Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK 2,30 K/W 4700 Ω mWs Thermistor Rated resistance R Deviation of R25 ∆R/R Tj=25°C Power dissipation P Tj=25°C 200 mW Tj=25°C 2 mW/K Tj=25°C Power dissipation constant B-value B(25/50) B-value B(25/100) Tol. ±3% Vincotech NTC Reference Copyright by Vincotech 5 % Tj=25°C 3500 K Tj=25°C 3560 K Tj=25°C 3 -5 G Revision: 2 10-R01126PA008SC-M627F40 10-RZ1126PA008SC-M627F41 Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 25 IC (A) IC (A) 25 20 20 15 15 10 10 5 5 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 µs 250 150 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 8 IF (A) IC (A) 8 4 6 6 4 4 Tj = 150°C 2 Tj = 25°C 2 Tj = 150°C Tj = 25°C 0 0 0 At tp = VCE = 2 4 250 10 µs V Copyright by Vincotech 6 8 10 V GE (V) 12 0 At tp = 4 0,4 250 0,8 1,2 1,6 V F (V) 2 µs Revision: 2 10-R01126PA008SC-M627F40 10-RZ1126PA008SC-M627F41 Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 2 E (mWs) 2 Eon High T 1,6 1,6 Eon High T 1,2 1,2 Eoff High T Eon Low T Eon Low T 0,8 0,8 Eoff High T Eoff Low T Eoff Low T 0,4 0,4 0 0 0 5 I C (A) 10 15 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 20 40 60 80 120 R G ( Ω ) 140 100 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 8 A Output inverter FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) E (mWs) 1 E (mWs) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) Erec 0,8 1 0,8 Tj = 150°C Tj = 150°C 0,6 Erec 0,6 Erec Tj = 25°C 0,4 0,4 Tj = 25°C 0,2 Erec 0,2 0 0 0 3 6 9 12 I C (A) 15 0 With an inductive load at 25/150 Tj = °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Copyright by Vincotech 32 64 96 RG(Ω) 128 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 8 A 5 Revision: 2 10-R01126PA008SC-M627F40 10-RZ1126PA008SC-M627F41 Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 1,00 t ( µs) 1,00 tdoff tf 0,10 tdoff tf 0,10 tdon tdon tr 0,01 0,01 tr 0,00 0,00 0 3 6 9 12 I C (A) 15 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 32 64 96 RG(Ω ) 128 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 8 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,8 t rr( µs) t rr( µs) 0,7 Output inverter FWD 0,6 trr trr 0,6 0,5 Tj = 150°C Tj = 150°C 0,4 0,4 trr trr 0,3 Tj = 25°C 0,2 0,2 Tj = 25°C 0,1 0,0 0 0 At Tj = VCE = VGE = Rgon = 3 25/150 600 ±15 32 6 9 12 I C (A) 0 15 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech copyright Vincotech 6 32 25/150 600 8 ±15 64 96 R g on ( Ω ) 128 °C V A V Revision: 2 10-R01126PA008SC-M627F40 10-RZ1126PA008SC-M627F41 Output Inverter Output inverter FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 2,5 Output inverter FWD 2,0 Qrr Qrr( µC) Qrr( µC) Qrr Tj = 150°C 2 1,5 Tj = 150°C 1,5 1,0 Tj = 25°C Qrr Qrr 1 0,5 Tj = 25°C 0,5 0,0 0 0 At At Tj = VCE = VGE = Rgon = 3 25/150 600 ±15 32 6 9 12 I C (A) 0 15 At Tj = VR = IF = VGE = °C V V Ω Output inverter FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 32 25/150 600 8 ±15 64 R g on ( Ω) 128 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) Output inverter FWD IrrM (A) 20 IrrM (A) 10 96 Tj = 150°C IRRM IRRM 8 15 Tj = 25°C IRRM IRRM 6 10 4 Tj = 150°C 5 2 Tj = 25°C 0 0 0 At Tj = VCE = VGE = Rgon = 3 25/150 600 ±15 32 6 9 12 I C (A) 15 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech copyright Vincotech 7 32 25/150 600 8 ±15 64 96 R gon ( Ω ) 128 °C V A V Revision: 2 10-R01126PA008SC-M627F40 10-RZ1126PA008SC-M627F41 Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 3000 direc / dt (A/ µs) 400 direc / dt (A/µ s) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt dIrec/dt 320 dI0/dt dIrec/dt 2500 2000 240 1500 160 1000 80 500 0 0 0 At Tj = VCE = VGE = Rgon = 3 25/150 600 ±15 32 6 9 I C (A) 12 0 15 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 32 25/150 600 8 ±15 64 96 R gon ( Ω ) 128 °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 10 0 10 -1 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10 -5 At D= RthJH = 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 1 10-5 10 10 At D= RthJH = tp / T 1,85 K/W RthJH = 2,18 K/W IGBT thermal model values Thermal grease Phase change interface R (C/W) Tau (s) R (C/W) Tau (s) 0,11 1,4E+00 0,13 1,4E+00 0,31 1,6E-01 0,36 1,6E-01 0,82 4,8E-02 0,96 4,8E-02 0,30 1,0E-02 0,35 1,0E-02 0,17 2,8E-03 0,20 2,8E-03 0,15 4,9E-04 0,18 4,9E-04 Copyright by Vincotech copyright Vincotech 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp / T 1,95 K/W RthJH = 2,30 K/W FWD thermal model values Thermal grease Phase change interface R (C/W) Tau (s) R (C/W) Tau (s) 0,05 4,1E+00 0,06 4,1E+00 0,13 5,3E-01 0,15 5,3E-01 0,69 7,6E-02 0,81 7,6E-02 0,53 1,7E-02 0,62 1,7E-02 0,33 4,0E-03 0,39 4,0E-03 0,23 7,3E-04 0,27 7,3E-04 8 Revision: 2 10-R01126PA008SC-M627F40 10-RZ1126PA008SC-M627F41 Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 14 Ptot (W) IC (A) 100 12 80 10 60 8 6 40 4 20 2 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 35 Ptot (W) IF (A) 100 150 30 80 25 60 20 15 40 10 20 5 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech copyright Vincotech 9 50 175 100 150 T h ( o C) 200 °C Revision: 2 10-R01126PA008SC-M627F40 10-RZ1126PA008SC-M627F41 Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 20 IC (A) VGE (V) 102 18 240V 100uS 10 10uS 16 1 14 1mS 960V 12 10mS 10 10 0 100mS 8 DC 6 10-1 4 2 0 10 0 At D= Th = VGE = Tj = 101 102 10 3 0 V CE (V) At IC = single pulse ºC 80 ±15 V Tjmax ºC Output inverter IGBT Figure 27 20 8 40 Q g (nC) 80 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) 60 Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 100 IC (sc) tsc (µS) 16 14 80 12 10 60 8 40 6 4 20 2 0 12 13 14 15 16 0 17 12 V GE (V) 14 16 At VCE = 1200 V At VCE ≤ 1200 V Tj ≤ 175 ºC Tj = 175 ºC Copyright by Vincotech copyright Vincotech 10 18 V GE (V) 20 Revision: 2 10-R01126PA008SC-M627F40 10-RZ1126PA008SC-M627F41 IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 18 IC MAX 15 Ic CHIP Ic MODULE 12 VCE MAX 9 6 3 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3phase SPWM Copyright by Vincotech copyright Vincotech 11 Revision: 2 10-R01126PA008SC-M627F40 10-RZ1126PA008SC-M627F41 Thermistor Thermistor R/Ω Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic 6000 5000 4000 3000 2000 1000 0 25 45 Copyright by Vincotech copyright Vincotech 65 85 105 T (°C) 125 12 Revision: 2 10-R01126PA008SC-M627F40 10-RZ1126PA008SC-M627F41 Switching Definitions Output Inverter General conditions = 150 °C Tj = 32 Ω Rgon Rgoff = 32 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 125 % tdoff % VCE IC 100 200 VGE 90% VCE 90% 75 150 IC VCE 50 VGE 100 tEoff tdon 25 50 IC 1% VGE 0 VGE10% 0 -25 -0,2 VCE 3% IC10% tEon -50 0 0,2 0,4 0,6 2,9 3 3,1 3,2 3,3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 8 0,24 0,61 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,4 time(us) time (us) -15 15 600 8 0,05 0,28 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 250 fitted % % VCE IC Ic 200 100 IC 90% 150 75 IC 60% VCE 100 50 IC90% IC 40% tr 50 25 IC10% 0 IC10% 0 tf -50 -25 0 0,1 0,2 0,3 0,4 3 0,5 3,1 3,2 VC (100%) = IC (100%) = tf = 600 8 0,12 Copyright by Vincotech copyright Vincotech 3,3 3,4 time(us) time (us) VC (100%) = IC (100%) = tr = V A µs 13 600 8 0,02 V A µs Revision: 2 10-R01126PA008SC-M627F40 10-RZ1126PA008SC-M627F41 Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 200 % IC 1% Pon % Eoff 100 Poff 150 75 Eon 100 50 50 25 0 0 -25 -0,2 VCE 3% VGE 10% VGE 90% tEon tEoff 0 0,2 0,4 0,6 -50 2,95 0,8 3,05 3,15 3,25 3,35 time (us) Poff (100%) = Eoff (100%) = tEoff = 4,80 0,73 0,61 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs Output inverter IGBT Figure 7 Gate voltage vs Gate charge (measured) 4,80 0,87 0,28 kW mJ µs Output inverter FWD Figure 8 Turn-off Switching Waveforms & definition of trr 120 VGE (V) 20 Id % 15 80 trr 10 40 5 Vd 0 fitted 0 IRRM 10% -40 -5 -80 -10 IRRM 90% IRRM 100% -120 -15 -160 -20 -20 0 20 40 60 2,8 80 3 3,2 3,4 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -15 15 600 8 67,73 Copyright by Vincotech copyright Vincotech 3,6 3,8 time(us) Qg (nC) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 14 600 8 -9 0,43 V A A µs Revision: 2 10-R01126PA008SC-M627F40 10-RZ1126PA008SC-M627F41 Switching Definitions Output Inverter Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 150 % % Erec Qrr Id 100 100 tQrr 50 75 0 50 -50 25 tErec Prec 0 -100 -25 -150 2,5 Id (100%) = Qrr (100%) = tQrr = 3 3,5 8 1,77 1,00 Copyright by Vincotech copyright Vincotech 4 time(us) 3 4,5 3,2 3,4 3,6 3,8 4 4,2 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 15 4,80 0,71 1,00 kW mJ µs Revision: 2 10-R01126PA008SC-M627F40 10-RZ1126PA008SC-M627F41 Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as without thermal paste ,housing without clips without thermal paste ,housing with clips 10-RZ126PA025SC-M627F41 10-R0126PA025SC-M627F40 M627F41 M627F40 M627F41 M627F40 Outline without clips with clips Pinout Copyright by Vincotech copyright Vincotech 16 Revision: 2 10-R01126PA008SC-M627F40 10-RZ1126PA008SC-M627F41 DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech copyright Vincotech 17 Revision: 2