10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 flow 90PACK 0 1200V/25A Features flow 90PACK 0 ● 90° PCB mounting for easy heat sink assembly ● Clip-in PCB mounting (optional) ● Open emitter for easy current sensing without clips Target Applications with clips Schematic ● Standard Drive ● Servo Drive ● Bookshelf Inverter Types ● 10-RZ126PA025SC-M629F41 ● 10-R0126PA025SC-M629F40 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 29 38 A tp limited by Tjmax 75 A VCE ≤ 1200V, Tj ≤ Top max 50 A 81 123 W ±20 V 10 800 µs V Tjmax 175 °C VRRM 1200 V 32 42 A 50 A 63 96 W 175 °C Inverter Transistor Collector-emitter break down voltage DC collector current * Pulsed collector current VCE IC ICpulse Turn off safe operating area Power dissipation per IGBT * Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V * measured with phase-change material Inverter Diode Peak Repetitive Reverse Voltage DC forward current * IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode * Ptot Tj=Tjmax Maximum Junction Temperature Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C * measured with phase-change material Copyright by Vincotech 1 Revision: 2 10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 10,93 mm Insulation Properties Insulation voltage Comparative tracking index Copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 2 10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,5 1,96 2,28 2,4 Inverter Transistor Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,00085 25 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to heatsink per chip RthJH 0,01 200 Rgoff=16 Ω Rgon=16 Ω 600 ±15 25 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 66 67 42 43 196 264 71 138 2,13 3,15 1,47 2,48 ns mWs 1430 f=1MHz 0 25 115 Tj=25°C pF 85 15 960 120 nC Phase-Change Material 1,17 K/W Thermal grease thickness≤50um λ = 1 W/mK 1,38 K/W 40 Tj=25°C Inverter Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 25 IRRM trr Qrr Rgon=16 Ω 600 ±15 di(rec)max /dt 25 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,2 1,90 1,83 13 17 318 524 2,22 4,50 115 92 0,86 1,78 2,4 V A ns µC A/µs Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Phase-Change Material 1,51 K/W Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK 1,77 K/W 4700 Ω mWs Thermistor Rated resistance R Tj=25°C Deviation of R25 ∆R/R Tj=25°C Power dissipation P Tj=25°C 200 mW Tj=25°C 2 mW/K Power dissipation constant B-value B(25/50) B-value B(25/100) Tol. ±3% Vincotech NTC Reference Copyright by Vincotech 5 % Tj=25°C 3500 K Tj=25°C 3560 K Tj=25°C 3 -5 G Revision: 2 10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 80 IC (A) IC (A) 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 µs 250 150 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 25 4 IC (A) IF (A) 100 20 80 15 60 10 40 5 20 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 4 6 8 10 V GE (V) 12 0 At tp = µs V Copyright by Vincotech 4 1 250 2 3 V F (V) 4 µs Revision: 2 10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) E (mWs) 10 E (mWs) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eon High T 6 Eon High T 5 8 Eon Low T 4 6 Eon Low T 3 Eoff High T Eoff High T 4 2 Eoff Low T Eoff Low T 2 1 0 0 0 10 20 30 40 I C (A) 0 50 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 15 30 45 60 RG(Ω) 75 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 25 A Output inverter FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 2,5 E (mWs) 2,5 Erec 2,0 2,0 Tj = Tjmax -25°C Tj = Tjmax -25°C Erec 1,5 1,5 Tj = 25°C Erec 1,0 1,0 Tj = 25°C Erec 0,5 0,5 0,0 0,0 0 10 20 30 40 I C (A) 0 50 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 16 Ω Copyright by Vincotech 15 30 45 60 RG(Ω) 75 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 25 A 5 Revision: 2 10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t ( µs) t ( µs) 1,00 tdoff tdon tf tf 0,10 0,10 tr tdon tr 0,01 0,01 0,00 0,00 0 10 20 30 40 I C (A) 0 50 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 15 30 45 60 RG(Ω ) 75 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 25 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( µs) 0,8 t rr( µs) 0,8 trr Tj = Tjmax -25°C trr Tj = Tjmax -25°C 0,6 0,6 Tj = 25°C trr trr 0,4 0,4 Tj = 25°C 0,2 0,2 0,0 0,0 0 10 At Tj = VCE = VGE = Rgon = 25/150 600 ±15 16 20 30 40 I C (A) 0 50 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 6 15 25/150 600 25 ±15 30 45 60 R g on ( Ω ) 75 °C V A V Revision: 2 10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 Output Inverter Output inverter FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 8 5 Qrr( µC) Qrr( µC) Tj = Tjmax -25°C 4 Qrr 6 Qrr Tj = Tjmax -25°C 3 4 Tj = 25°C Qrr 2 Qrr Tj = 25°C 2 1 0 0 0 At At Tj = VCE = VGE = Rgon = 10 25/150 600 ±15 16 20 30 40 I C (A) 0 50 At Tj = VR = IF = VGE = °C V V Ω Output inverter FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 15 25/150 600 25 ±15 30 45 R g on ( Ω) 75 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 20 60 IrrM (A) IrrM (A) 30 Tj = Tjmax -25°C 25 15 Tj = Tjmax - 25°C IRRM 20 Tj = 25°C IRRM 10 15 IRRM 10 5 Tj = 25°C IRRM 5 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/150 600 ±15 16 20 30 40 I C (A) 50 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 15 25/150 600 25 ±15 30 45 60 R gon ( Ω ) 75 °C V A V Revision: 2 10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 2500 direc / dt (A/ µs) 700 direc / dt (A/µ s) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt dIrec/dt 600 dI0/dt dIrec/dt 2000 500 1500 400 300 1000 200 500 100 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/150 600 ±15 16 20 30 40 I C (A) 0 50 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/150 600 25 ±15 30 45 60 R gon ( Ω ) 75 °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 100 10 15 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10 -5 At D= RthJH = 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 1 10-5 1010 At D= RthJH = tp / T 1,17 K/W RthJH = 1,38 K/W IGBT thermal model values Thermal grease Phase change interface R (C/W) Tau (s) R (C/W) Tau (s) 0,10 1,4E+00 0,12 1,4E+00 0,44 1,8E-01 0,51 1,8E-01 0,44 5,7E-02 0,52 5,7E-02 0,14 9,8E-03 0,17 9,8E-03 0,05 1,3E-03 0,06 1,3E-03 Copyright by Vincotech 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp / T 1,51 K/W RthJH = 1,77 K/W FWD thermal model values Thermal grease Phase change interface R (C/W) Tau (s) R (C/W) Tau (s) 0,06 2,9E+00 0,07 2,9E+00 0,19 4,2E-01 0,22 4,2E-01 0,59 9,2E-02 0,70 9,2E-02 0,35 2,3E-02 0,41 2,3E-02 0,20 6,0E-03 0,24 6,0E-03 0,11 8,7E-04 0,13 8,7E-04 8 Revision: 2 10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 150 IC (A) Ptot (W) 50 125 40 100 30 75 20 50 10 25 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 120 150 100 40 80 30 60 20 40 10 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = °C Copyright by Vincotech 9 50 175 100 150 T h ( o C) 200 °C Revision: 2 10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 103 VGE (V) IC (A) 17,5 15 10 240V 2 100uS 12,5 960V 10 10mS 100mS 1 1mS 10 7,5 DC 100 5 10-1 2,5 0 10 0 101 At D= Th = VGE = 103 102 0 V CE (V) At IC = single pulse ºC 80 ±15 V Tjmax ºC Tj = Output inverter IGBT Figure 27 25 50 25 75 125 Q g (nC) 150 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) 100 Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 250 tsc (µS) IC (sc) 17,5 225 15 200 12,5 175 150 10 125 7,5 100 75 5 50 2,5 25 0 0 12 13 14 15 16 17 18 19 V GE (V) 20 12 14 16 At VCE = 600 V At VCE ≤ 600 V Tj ≤ 175 ºC Tj = 175 ºC Copyright by Vincotech 10 18 V GE (V) 20 Revision: 2 10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 60 IC MAX 50 Ic CHIP Ic MODULE 40 VCE MAX 30 20 10 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching Copyright by Vincotech 11 Revision: 2 10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 5000 4000 3000 2000 1000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 12 Revision: 2 10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 Switching Definitions Output Inverter General conditions = 150 °C Tj = 16 Ω Rgon Rgoff = 16 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 175 % tdoff % VCE IC 150 100 VGE 90% VCE 90% 125 VCE 75 100 IC VGE 75 50 tdon tEoff 50 25 25 IC 1% VGE VGE10% 0 VCE 3% IC10% 0 tEon -25 -25 -0,2 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 -15 15 600 25 0,26 0,68 0,4 0,6 time (us) 2,9 0,8 3 3,2 3,3 3,4 3,5 time(us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,1 -15 15 600 25 0,07 0,37 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 175 fitted % % VCE IC Ic 150 100 IC 90% 125 VCE 75 100 IC 60% IC 90% 75 50 tr IC 40% 50 25 25 IC10% 0 tf IC 0 10% -25 -25 0 0,1 0,2 0,3 0,4 0,5 2,9 0,6 3 3,1 3,2 time (us) VC (100%) = IC (100%) = tf = 600 25 0,14 Copyright by Vincotech 3,3 3,4 3,5 time(us) VC (100%) = IC (100%) = tr = V A µs 13 600 25 0,04 V A µs Revision: 2 10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 175 % % 100 Pon 150 Eoff Poff 125 75 Eon 100 50 75 IC 1% 50 25 25 VGE 90% VCE 3% VGE 10% 0 tEoff -25 -0,2 0 tEon -25 0 0,2 0,4 0,6 0,8 2,8 time (us) Poff (100%) = Eoff (100%) = tEoff = 15,00 2,48 0,68 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs Output inverter IGBT Figure 7 Gate voltage vs Gate charge (measured) 3,2 15,00 3,15 0,37 3,4 time(us) 3,6 kW mJ µs Output inverter FWD Figure 8 Turn-off Switching Waveforms & definition of trr 150 VGE (V) 20 % 15 Id 100 10 trr 50 5 Vd 0 0 fitted IRRM 10% -5 -50 IRRM 90% -10 IRRM 100% -100 -15 -150 -20 -50 0 50 100 150 3 200 3,2 3,4 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -15 15 600 25 177,97 Copyright by Vincotech Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 14 600 25 -17 0,52 3,6 time(us) 3,8 V A A µs Revision: 2 10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 Switching Definitions Output Inverter Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 125 % Id % Qrr 100 Erec 100 75 tQrr tErec 75 50 25 50 0 25 Prec -25 0 -50 -75 -25 3 3,2 3,4 3,6 3,8 4 4,2 3 time(us) Id (100%) = Qrr (100%) = tQrr = 25 4,50 1,00 Copyright by Vincotech 3,2 3,4 3,6 3,8 4 4,2 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 15 15,00 1,78 1,00 kW mJ µs Revision: 2 10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as without thermal paste ,housing without clips without thermal paste ,housing with clips 10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 M629F41 M629F40 M629F41 M629F40 Outline without clips with clips Pinout Copyright by Vincotech 16 Revision: 2 10-RZ126PA025SC-M629F41 10-R0126PA025SC-M629F40 DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 17 Revision: 2