V23990-P717-*-PM datasheet flow 90CON 1 1600 V / 35 A Features flow 90 housing ● 3~ phase input rectifier with or without BRC *optional half controlled ● Compatible with flow 90PACK 1 ● Support designs with 90° mounting angle between heatsink and PCB ● Clip-in PCB mounting Target Applications Schematic ● Motor drives ● Servo drives Types ● V23990-P717-G-PM ● V23990-P717-G10-PM ● V23990-P717-H-PM ● V23990-P717-H10-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Input Rectifier Diode Repetitive peak reverse voltage V RRM Forward current I FAV Surge (non-repetitive) forward current I FSM I2t-value I 2t Power dissipation P tot Maximum Junction Temperature DC current T s=80°C T c=80°C t p=10ms T j=45°C T j=T jmax T s=80°C T c=80°C T jmax 1600 V 39 53 A 600 A 1800 A2s 44 67 W 150 °C 1600 V 36 48 A Input Rectifier Thyristor Repetitive peak reverse voltage V RRM Mean forward current I FAV Surge (non-repetitive) forward current I FSM I2t-value I 2t Power dissipation P tot Maximum Junction Temperature copyright Vincotech sine,d=0.5 T j=T jmax T s=80°C T c=80°C t p=10ms T j=45°C T j=T jmax T jmax 1 T s=80°C T c=80°C 360 A 650 A2s 56 84 W 150 °C 19 May. 2016 / Revision 4 V23990-P717-*-PM datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 18 23 A 75 A 47 66 W Brake Switch Collector-emitter Break down voltage DC collector current Repetitive peak collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature T s=80°C T c=80°C T j=T jmax t p limited by T jmax T s=80°C T c=80°C T j=T jmax T j≤150°C V GE=15V T jmax ±20 V 10 1200 µs V 150 °C Brake Inverse Diode Peak Repetitive Reverse Voltage V RRM 1200 V T s=80°C T c=80°C 8 8 A 6 A T s=80°C T c=80°C 20 30 W 150 °C 1200 V 13 17 A 15 A 26 40 W T jmax 150 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C DC forward current Repetitive peak forward current Brake Inverse Diode Maximum Junction Temperature IF I FRM P tot T j=T jmax t p limited by T jmax T j=T jmax T jmax Brake Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature V RRM IF I FRM P tot T s=80°C T c=80°C T j=T jmax t p limited by T jmax T s=80°C T c=80°C T j=T jmax Thermal Properties Insulation Properties Insulation voltage V is t=2s DC voltage Creepage distance Clearance copyright Vincotech 2 4000 V min 12,7 mm 11,84 mm 19 May. 2016 / Revision 4 V23990-P717-*-PM datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Unit Min Typ Max 0,8 1,21 1,18 0,92 0,82 0,01 0,01 1,5 Input Rectifier Diode Forward voltage VF 42 Threshold voltage (for power loss calc. only) V to 42 Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance junction to sink R th(j-s) Thermal resistance junction to case R th(j-c) 42 1600 25 125 25 125 25 125 25 125 V Ω 0,02 Thermal grease thickness≤50um λ = 1 W/mK V mA 1,58 K/W 1,04 Input Rectifier Thyristor Forward voltage VF Threshold voltage (for power loss calc. only) V to Slope resistance (for power loss calc. only) rt Reverse current Ir Gate controlled delay time t GD Gate controlled rise time t GR Critical rate of rise of off-state voltage (dv /dt )cr Critical rate of rise of on-state current (di /dt )cr Circuit commutated turn-off time tq Holding current IH Latching current IL 35 V D=6 V 35 35 1200 I G=0,5A V D=1/2 V DRM V D=2/3 V DRM linear voltage rise V D=2/3 V DRM I G=0,3A; f=50Hz V D=2/3 V DRM t p=200 µs t p=200 µs 40 100 27 I G=0,3A t p=10 µs Gate trigger voltage V GT V D=6 Gate trigger current I GT V D=6 Gate non-trigger voltage V GD V D=2/3 V DRM Gate non-trigger current I GD V D=2/3 V DRM R th(j-s) Thermal resistance junction to case R th(j-c) Thermal grease thickness≤50um λ = 1 W/mK V GE(th) V CE=V GE 1 1,41 1,48 0,97 0,85 12,49 17,85 1,8 V 1000 500 25 125 25 125 25 125 25 125 25 125 25 125 25 125 mA µs µs tbd. 150 V mΩ 0,05 8 2 150 V D=6 V Thermal resistance junction to sink 25 125 25 125 25 125 25 150 25 125 25 125 V/µs A/µs µs 200 100 150 1,5 55 0,2 3 mA mA V mA V mA 1,26 K/W 0,83 Brake Switch Gate emitter threshold voltage Collector-emitter saturation voltage V CEsat 0,001 25 15 Collector-emitter cut-off incl diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge R th(j-s) Thermal resistance junction to case R th(j-c) copyright Vincotech R gon=32 Ω R goff=16 Ω 5,8 6,5 2,17 2,65 2,2 0,25 650 ±15 600 25 25 125 25 125 25 125 25 125 25 125 25 125 20,8 25,2 16,7 18 193 335 112 170 1,80 1,16 1,77 1,52 V V mA nA Ω ns mWs 1808 f=1MHz 0 25 25 95 pF 82 QG Thermal resistance junction to sink 5 1,3 8 t d(on) t d(off) 25 125 25 125 25 125 25 125 960 15 Thermal grease thickness≤50um λ = 1 W/mK 25 25 155 nC 1,6 K/W 1,06 3 19 May. 2016 / Revision 4 V23990-P717-*-PM datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Unit Typ Max 1,6 2,2 Brake Inverse Diode Diode forward voltage 25 VF Thermal resistance junction to sink R th(j-s) Thermal resistance junction to case R th(j-c) 3 1 125 V 1,57 Thermal grease thickness≤50um λ = 1 W/mK 3,49 K/W 2,30 K/W Brake Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir t rr Reverse recovered charge Q rr Reverse recovery energy 300 R gon=32 Ω R gon=32 Ω ±15 600 ( di rf/dt )max E rec Thermal resistance junction to sink R th(j-s) Thermal resistance junction to case R th(j-c) copyright Vincotech ±15 7,5 I RRM Reverse recovery time Peak rate of fall of recovery current 7,5 Thermal grease thickness≤50um λ = 1 W/mK 7,5 25 125 25 125 25 125 25 125 25 125 25 125 25 125 1 1,62 1,67 2,2 250 17 17 332 505 1,79 2,78 495 210 1,79 2,78 V µA A ns µC A/µs mWs 2,65 K/W 1,75 4 19 May. 2016 / Revision 4 V23990-P717-*-PM datasheet Brake Figure 1 Brake IGBT Figure 2 Typical output characteristics I C = f(V CE) Brake IGBT Typical output characteristics I C = f(V CE) 40 IC (A) IC (A) 40 30 30 20 20 10 10 0 0 0 1 At tp = Tj = V GE from 2 3 4 V CE (V) 5 0 1 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Brake IGBT 2 3 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical transfer characteristics I C = f(V GE) V CE (V) 4 Brake FWD Typical diode forward current as a function of forward voltage I F = f(V F) 16 IF (A) IC (A) 30 14 25 12 20 10 8 15 6 10 4 Tj = Tjmax-25°C 5 2 Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0 At tp = µs V 5 0,5 1 250 µs 1,5 2 2,5 V F (V) 3 19 May. 2016 / Revision 4 V23990-P717-*-PM datasheet Brake Figure 5 Brake IGBT Figure 6 Brake IGBT as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) 3 2,5 E (mWs) Typical switching energy losses E (mWs) Typical switching energy losses 2,5 Eon Tj = Tjmax -25°C 2 Eon Tj = Tjmax -25°C 2 Eoff Eoff Eon 1,5 Eoff 1,5 Eon Eoff 1 1 0,5 Tj = 25°C 0,5 Tj = 25°C 0 0 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at 25/125 Tj = 25/125 °C V CE = 600 V V GE = 15 V R gon = 32 Ω R goff = 16 Ω 20 40 60 80 100 120 R G ( Ω )140 With an inductive load at 25/125 Tj = 25/125 °C V CE = 600 V V GE = 15 V IC = 15 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) Brake IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) E (mWs) 1,4 Erec 1,2 1 Brake IGBT Tj = Tjmax -25°C Erec 0,8 1 0,6 0,8 Erec Tj = Tjmax - 25°C Tj = 25°C 0,6 Erec 0,4 Tj = 25°C 0,4 0,2 0,2 0 0 0 0 5 10 15 20 25 I C (A) With an inductive load at 25/125 Tj = 25/125 °C V CE = 600 V V GE = 15 V R gon = 32 Ω copyright Vincotech 20 40 30 60 80 100 120 RG (Ω ) 140 With an inductive load at 25/125 Tj = 25/125 °C V CE = 600 V V GE = 15 V IC = 15 A 6 19 May. 2016 / Revision 4 V23990-P717-*-PM datasheet Brake Figure 9 Brake IGBT Figure 10 Brake IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) t ( µs) 1 t ( µs) 1 tdoff tdoff tf tf 0,1 0,1 tdon tr tdon tr 0,01 0,01 0,001 0,001 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 125 °C V CE = 600 V V GE = 15 V R gon = 32 Ω R goff = 16 Ω 20 40 60 80 100 120 R G ( Ω ) 140 With an inductive load at Tj = 125 °C V CE = 600 V V GE = 15 V IC = 15 A Figure 11 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) Brake IGBT Figure 12 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) ZthJH (K/W) 101 ZthJH (K/W) 101 Brake FWD 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 101 10 10-5 At D = R thJH = tp/T 1,60 copyright Vincotech K/W 7 10-4 10-3 10-2 10-1 100 t p (s) 101 10 tp/T 2,65 K/W 19 May. 2016 / Revision 4 V23990-P717-*-PM datasheet Brake Figure 13 Brake IGBT Figure 14 Brake IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T h) function of heatsink temperature I C = f(T h) 30 IC (A) Ptot (W) 100 25 80 20 60 15 40 10 20 5 0 0 0 At Tj = 30 150 60 90 o 120 T h ( C) 150 0 At Tj = V GE = ºC Figure 15 Brake FWD 30 150 15 60 90 120 150 ºC V Figure 16 Power dissipation as a function of heatsink temperature P tot = f(T h) T h ( o C) Brake FWD Forward current as a function of heatsink temperature I F = f(T h) 25 IF (A) Ptot (W) 60 50 20 40 15 30 10 20 5 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 Th ( o C) 150 0 At Tj = ºC 8 30 150 60 90 120 Th ( o C) 150 ºC 19 May. 2016 / Revision 4 V23990-P717-*-PM datasheet Brake Inverse Diode Figure 1 Brake inverse diode Figure 2 Brake inverse diode Typical diode forward current as Diode transient thermal impedance a function of forward voltage I F = f(V F) as a function of pulse width Z thJH = f(t p) 25 ZthJC (K/W) IF (A) 101 20 Tj = 25°C 100 15 Tj = Tjmax-25°C 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 5 0 0 0,5 At tp = 1 250 1,5 2 2,5 3 3,5 4 VF (V) 10-2 4,5 µs Figure 3 Brake inverse diode 10-4 10-3 At D = R thJH = tp/T 3,49 10-2 10-1 100 t p (s) 10110 K/W Figure 4 Power dissipation as a function of heatsink temperature P tot = f(T h) Brake inverse diode Forward current as a function of heatsink temperature I F = f(T h) 45 8 IF (A) Ptot (W) 10-5 36 6 27 4 18 2 9 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 Th ( o C) 150 0 At Tj = ºC 9 30 150 60 90 120 Th ( o C) 150 ºC 19 May. 2016 / Revision 4 V23990-P717-*-PM datasheet Input Rectifier Diode Figure 1 Rectifier diode Figure 2 Rectifier diode Typical diode forward current as Diode transient thermal impedance a function of forward voltage I F= f(V F) as a function of pulse width Z thJH = f(t p) 101 ZthJC (K/W) IF (A) 100 80 100 60 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 20 Tj = Tjmax-25°C Tj = 25°C 0 0 At tp = 0,5 250 1 VF (V) 1,5 10-2 2 µs Figure 3 Rectifier diode 10-5 10-4 At D = R thJH = tp/T 10-3 1,58 10-2 10-1 t p (s) 10110 K/W Figure 4 Power dissipation as a function of heatsink temperature P tot = f(T h) 100 Rectifier diode Forward current as a function of heatsink temperature I F = f(T h) 70 Ptot (W) IF (A) 100 60 80 50 60 40 30 40 20 20 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T h ( o C) 150 0 At Tj = ºC 10 30 150 60 90 120 T h ( o C) 150 ºC 19 May. 2016 / Revision 4 V23990-P717-*-PM datasheet Thyristor Figure 1 Thyristor Figure 2 Thyristor Typical thyristor forward current as Thyristor transient thermal impedance a function of forward voltage I F= f(V F) as a function of pulse width Z thJH = f(t p) 101 50 ZthJC (K/W) IF (A) 60 40 100 30 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 20 10 Tj = Tjmax-25°C Tj = 25°C 0 10-2 0 At tp = 0,25 0,5 250 0,75 1 1,25 1,75 VF (V) 2 1,5 µs Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) Thyristor 10-5 10-4 At D = R thJH = tp/T 10-3 1,26 10-2 10-1 100 10110 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T h) Thyristor 60 Ptot (W) IF (A) 120 t p (s) 100 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T h ( o C) 150 0 At Tj = ºC 11 30 150 60 90 120 T h ( o C) 150 ºC 19 May. 2016 / Revision 4 V23990-P717-*-PM datasheet Thyristor Figure 5 Thyristor Gate trigger characteristics 10 VG(V) 2 75W (0,1ms) 20V;20 Ohm 10 1 PG(tp) VGT 10 0 TJ=125oC TJ=25oC 50W (0,5ms) TJ=-40oC 25W (8ms) VGD IGT 10- IGD 10- copyright Vincotech 10- 10- 100 12 10 10 1 2 IG(A) 19 May. 2016 / Revision 4 V23990-P717-*-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code without thermal paste flow 90 1 housing V23990-P717-G-PM without thermal paste flow 90 1 housing half controlled V23990-P717-G10-PM without thermal paste flow 90 1 housing w/o BRC V23990-P717-H-PM without thermal paste flow 90 1 housing half controlled w/o BRC V23990-P717-H10-PM VIN Date code Name&Ver UL Lot Serial VIN WWYY NNNNNNVV UL LLLLL SSSS Name&Ver Lot number Serial Date code NNNNNNVV LLLLL SSSS WWYY Text Datamatrix Outline Pin table Y Function Pin X 1 2 3 4 5 53 50,1 47,2 40,2 37,3 0 0 0 0 0 L3 L3 L3 L1 L1 6 7 34,4 27,4 0 0 L1 G3 8 9 10 24,5 21,6 18,7 0 0 0 G2 G1 DC+ 11 12 13 14 15 16 17 18 19 20 15,8 12,9 7,1 0 0 3 7 9,9 12,8 44 0 0 0 0 7 7 7 7 7 7 DC+ DC+ Br+ BrC BrE BrG DCDCDCL2 21 22 47 50 7 7 L2 L2 copyright Vincotech 13 19 May. 2016 / Revision 4 V23990-P717-*-PM datasheet Ordering Code and Marking - Outline - Pinout Pinout Type P717G P717G10 P717H P717H10 Half controlled - X D4 Y D5 Z D6 diodes Note x x T1 D4 T1 T2 D5 T2 T3 D6 T3 thyristors diodes thyristors Identification ID Component D1,D2,D3,D4,D5,D6 T1,T2,T3 T4 D7 D8 FWD Thyristor IGBT FWD FWD copyright Vincotech Voltage 1600 1600 1200 1200 1200 V V V V V Current Function 42 A 45 A 25 A 7,5 A 3A Input Rectifier Diodes Input Rectifier Thyristor Brake Switch Brake Diode Brake Inverse Diode 14 Comment 19 May. 2016 / Revision 4 V23990-P717-*-PM datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 80 Standard <SPQ Sample Handling instruction Handling instructions for flow 90 1 packages see vincotech.com website. Package data Package data for flow 90 1 packages see vincotech.com website. UL recognition and file number This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website. Document No.: Date: Modification: Pages V23990-P717-x-D4-14 19 May. 2016 New brand all DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 15 19 May. 2016 / Revision 4