V23990 P717 x D4 14

V23990-P717-*-PM
datasheet
flow 90CON 1
1600 V / 35 A
Features
flow 90 housing
● 3~ phase input rectifier with or without BRC
*optional half controlled
● Compatible with flow 90PACK 1
● Support designs with 90° mounting angle between
heatsink and PCB
● Clip-in PCB mounting
Target Applications
Schematic
● Motor drives
● Servo drives
Types
● V23990-P717-G-PM
● V23990-P717-G10-PM
● V23990-P717-H-PM
● V23990-P717-H10-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Input Rectifier Diode
Repetitive peak reverse voltage
V RRM
Forward current
I FAV
Surge (non-repetitive) forward current
I FSM
I2t-value
I 2t
Power dissipation
P tot
Maximum Junction Temperature
DC current
T s=80°C
T c=80°C
t p=10ms
T j=45°C
T j=T jmax
T s=80°C
T c=80°C
T jmax
1600
V
39
53
A
600
A
1800
A2s
44
67
W
150
°C
1600
V
36
48
A
Input Rectifier Thyristor
Repetitive peak reverse voltage
V RRM
Mean forward current
I FAV
Surge (non-repetitive) forward current
I FSM
I2t-value
I 2t
Power dissipation
P tot
Maximum Junction Temperature
copyright Vincotech
sine,d=0.5
T j=T jmax
T s=80°C
T c=80°C
t p=10ms
T j=45°C
T j=T jmax
T jmax
1
T s=80°C
T c=80°C
360
A
650
A2s
56
84
W
150
°C
19 May. 2016 / Revision 4
V23990-P717-*-PM
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
18
23
A
75
A
47
66
W
Brake Switch
Collector-emitter Break down voltage
DC collector current
Repetitive peak collector current
V CE
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
T s=80°C
T c=80°C
T j=T jmax
t p limited by T jmax
T s=80°C
T c=80°C
T j=T jmax
T j≤150°C
V GE=15V
T jmax
±20
V
10
1200
µs
V
150
°C
Brake Inverse Diode
Peak Repetitive Reverse Voltage
V RRM
1200
V
T s=80°C
T c=80°C
8
8
A
6
A
T s=80°C
T c=80°C
20
30
W
150
°C
1200
V
13
17
A
15
A
26
40
W
T jmax
150
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
DC forward current
Repetitive peak forward current
Brake Inverse Diode
Maximum Junction Temperature
IF
I FRM
P tot
T j=T jmax
t p limited by T jmax
T j=T jmax
T jmax
Brake Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
V RRM
IF
I FRM
P tot
T s=80°C
T c=80°C
T j=T jmax
t p limited by T jmax
T s=80°C
T c=80°C
T j=T jmax
Thermal Properties
Insulation Properties
Insulation voltage
V is
t=2s
DC voltage
Creepage distance
Clearance
copyright Vincotech
2
4000
V
min 12,7
mm
11,84
mm
19 May. 2016 / Revision 4
V23990-P717-*-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Unit
Min
Typ
Max
0,8
1,21
1,18
0,92
0,82
0,01
0,01
1,5
Input Rectifier Diode
Forward voltage
VF
42
Threshold voltage (for power loss calc. only)
V to
42
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance junction to sink
R th(j-s)
Thermal resistance junction to case
R th(j-c)
42
1600
25
125
25
125
25
125
25
125
V
Ω
0,02
Thermal grease
thickness≤50um
λ = 1 W/mK
V
mA
1,58
K/W
1,04
Input Rectifier Thyristor
Forward voltage
VF
Threshold voltage (for power loss calc. only)
V to
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Gate controlled delay time
t GD
Gate controlled rise time
t GR
Critical rate of rise of off-state voltage
(dv /dt )cr
Critical rate of rise of on-state current
(di /dt )cr
Circuit commutated turn-off time
tq
Holding current
IH
Latching current
IL
35
V D=6 V
35
35
1200
I G=0,5A
V D=1/2 V DRM
V D=2/3 V DRM
linear voltage rise
V D=2/3 V DRM
I G=0,3A; f=50Hz
V D=2/3 V DRM
t p=200 µs
t p=200 µs
40
100
27
I G=0,3A
t p=10 µs
Gate trigger voltage
V GT
V D=6
Gate trigger current
I GT
V D=6
Gate non-trigger voltage
V GD
V D=2/3 V DRM
Gate non-trigger current
I GD
V D=2/3 V DRM
R th(j-s)
Thermal resistance junction to case
R th(j-c)
Thermal grease
thickness≤50um
λ = 1 W/mK
V GE(th)
V CE=V GE
1
1,41
1,48
0,97
0,85
12,49
17,85
1,8
V
1000
500
25
125
25
125
25
125
25
125
25
125
25
125
25
125
mA
µs
µs
tbd.
150
V
mΩ
0,05
8
2
150
V D=6 V
Thermal resistance junction to sink
25
125
25
125
25
125
25
150
25
125
25
125
V/µs
A/µs
µs
200
100
150
1,5
55
0,2
3
mA
mA
V
mA
V
mA
1,26
K/W
0,83
Brake Switch
Gate emitter threshold voltage
Collector-emitter saturation voltage
V CEsat
0,001
25
15
Collector-emitter cut-off incl diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
R th(j-s)
Thermal resistance junction to case
R th(j-c)
copyright Vincotech
R gon=32 Ω
R goff=16 Ω
5,8
6,5
2,17
2,65
2,2
0,25
650
±15
600
25
25
125
25
125
25
125
25
125
25
125
25
125
20,8
25,2
16,7
18
193
335
112
170
1,80
1,16
1,77
1,52
V
V
mA
nA
Ω
ns
mWs
1808
f=1MHz
0
25
25
95
pF
82
QG
Thermal resistance junction to sink
5
1,3
8
t d(on)
t d(off)
25
125
25
125
25
125
25
125
960
15
Thermal grease
thickness≤50um
λ = 1 W/mK
25
25
155
nC
1,6
K/W
1,06
3
19 May. 2016 / Revision 4
V23990-P717-*-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Unit
Typ
Max
1,6
2,2
Brake Inverse Diode
Diode forward voltage
25
VF
Thermal resistance junction to sink
R th(j-s)
Thermal resistance junction to case
R th(j-c)
3
1
125
V
1,57
Thermal grease
thickness≤50um
λ = 1 W/mK
3,49
K/W
2,30
K/W
Brake Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
t rr
Reverse recovered charge
Q rr
Reverse recovery energy
300
R gon=32 Ω
R gon=32 Ω
±15
600
( di rf/dt )max
E rec
Thermal resistance junction to sink
R th(j-s)
Thermal resistance junction to case
R th(j-c)
copyright Vincotech
±15
7,5
I RRM
Reverse recovery time
Peak rate of fall of recovery current
7,5
Thermal grease
thickness≤50um
λ = 1 W/mK
7,5
25
125
25
125
25
125
25
125
25
125
25
125
25
125
1
1,62
1,67
2,2
250
17
17
332
505
1,79
2,78
495
210
1,79
2,78
V
µA
A
ns
µC
A/µs
mWs
2,65
K/W
1,75
4
19 May. 2016 / Revision 4
V23990-P717-*-PM
datasheet
Brake
Figure 1
Brake IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
Brake IGBT
Typical output characteristics
I C = f(V CE)
40
IC (A)
IC (A)
40
30
30
20
20
10
10
0
0
0
1
At
tp =
Tj =
V GE from
2
3
4
V CE (V)
5
0
1
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Brake IGBT
2
3
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical transfer characteristics
I C = f(V GE)
V CE (V)
4
Brake FWD
Typical diode forward current as
a function of forward voltage
I F = f(V F)
16
IF (A)
IC (A)
30
14
25
12
20
10
8
15
6
10
4
Tj = Tjmax-25°C
5
2
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
V GE (V) 10
0
At
tp =
µs
V
5
0,5
1
250
µs
1,5
2
2,5
V F (V)
3
19 May. 2016 / Revision 4
V23990-P717-*-PM
datasheet
Brake
Figure 5
Brake IGBT
Figure 6
Brake IGBT
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
3
2,5
E (mWs)
Typical switching energy losses
E (mWs)
Typical switching energy losses
2,5
Eon
Tj = Tjmax -25°C
2
Eon
Tj = Tjmax -25°C
2
Eoff
Eoff
Eon
1,5
Eoff
1,5
Eon
Eoff
1
1
0,5
Tj = 25°C
0,5
Tj = 25°C
0
0
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
25/125
Tj =
25/125
°C
V CE =
600
V
V GE =
15
V
R gon =
32
Ω
R goff =
16
Ω
20
40
60
80
100
120
R G ( Ω )140
With an inductive load at
25/125
Tj =
25/125
°C
V CE =
600
V
V GE =
15
V
IC =
15
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
Brake IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
E (mWs)
1,4
Erec
1,2
1
Brake IGBT
Tj = Tjmax -25°C
Erec
0,8
1
0,6
0,8
Erec
Tj = Tjmax - 25°C
Tj = 25°C
0,6
Erec
0,4
Tj = 25°C
0,4
0,2
0,2
0
0
0
0
5
10
15
20
25
I C (A)
With an inductive load at
25/125
Tj =
25/125
°C
V CE =
600
V
V GE =
15
V
R gon =
32
Ω
copyright Vincotech
20
40
30
60
80
100
120
RG (Ω )
140
With an inductive load at
25/125
Tj =
25/125
°C
V CE =
600
V
V GE =
15
V
IC =
15
A
6
19 May. 2016 / Revision 4
V23990-P717-*-PM
datasheet
Brake
Figure 9
Brake IGBT
Figure 10
Brake IGBT
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
t ( µs)
1
t ( µs)
1
tdoff
tdoff
tf
tf
0,1
0,1
tdon
tr
tdon
tr
0,01
0,01
0,001
0,001
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
15
V
R gon =
32
Ω
R goff =
16
Ω
20
40
60
80
100
120 R G ( Ω ) 140
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
15
V
IC =
15
A
Figure 11
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Brake IGBT
Figure 12
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
ZthJH (K/W)
101
ZthJH (K/W)
101
Brake FWD
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
101 10
10-5
At
D =
R thJH =
tp/T
1,60
copyright Vincotech
K/W
7
10-4
10-3
10-2
10-1
100
t p (s)
101 10
tp/T
2,65
K/W
19 May. 2016 / Revision 4
V23990-P717-*-PM
datasheet
Brake
Figure 13
Brake IGBT
Figure 14
Brake IGBT
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T h)
function of heatsink temperature
I C = f(T h)
30
IC (A)
Ptot (W)
100
25
80
20
60
15
40
10
20
5
0
0
0
At
Tj =
30
150
60
90
o
120 T h ( C)
150
0
At
Tj =
V GE =
ºC
Figure 15
Brake FWD
30
150
15
60
90
120
150
ºC
V
Figure 16
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
T h ( o C)
Brake FWD
Forward current as a
function of heatsink temperature
I F = f(T h)
25
IF (A)
Ptot (W)
60
50
20
40
15
30
10
20
5
10
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
Th ( o C)
150
0
At
Tj =
ºC
8
30
150
60
90
120
Th ( o C)
150
ºC
19 May. 2016 / Revision 4
V23990-P717-*-PM
datasheet
Brake Inverse Diode
Figure 1
Brake inverse diode
Figure 2
Brake inverse diode
Typical diode forward current as
Diode transient thermal impedance
a function of forward voltage
I F = f(V F)
as a function of pulse width
Z thJH = f(t p)
25
ZthJC (K/W)
IF (A)
101
20
Tj = 25°C
100
15
Tj = Tjmax-25°C
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
5
0
0
0,5
At
tp =
1
250
1,5
2
2,5
3
3,5
4
VF (V)
10-2
4,5
µs
Figure 3
Brake inverse diode
10-4
10-3
At
D =
R thJH =
tp/T
3,49
10-2
10-1
100
t p (s)
10110
K/W
Figure 4
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Brake inverse diode
Forward current as a
function of heatsink temperature
I F = f(T h)
45
8
IF (A)
Ptot (W)
10-5
36
6
27
4
18
2
9
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
Th ( o C)
150
0
At
Tj =
ºC
9
30
150
60
90
120
Th ( o C)
150
ºC
19 May. 2016 / Revision 4
V23990-P717-*-PM
datasheet
Input Rectifier Diode
Figure 1
Rectifier diode
Figure 2
Rectifier diode
Typical diode forward current as
Diode transient thermal impedance
a function of forward voltage
I F= f(V F)
as a function of pulse width
Z thJH = f(t p)
101
ZthJC (K/W)
IF (A)
100
80
100
60
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
20
Tj = Tjmax-25°C
Tj = 25°C
0
0
At
tp =
0,5
250
1
VF (V)
1,5
10-2
2
µs
Figure 3
Rectifier diode
10-5
10-4
At
D =
R thJH =
tp/T
10-3
1,58
10-2
10-1
t p (s)
10110
K/W
Figure 4
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
100
Rectifier diode
Forward current as a
function of heatsink temperature
I F = f(T h)
70
Ptot (W)
IF (A)
100
60
80
50
60
40
30
40
20
20
10
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T h ( o C)
150
0
At
Tj =
ºC
10
30
150
60
90
120
T h ( o C)
150
ºC
19 May. 2016 / Revision 4
V23990-P717-*-PM
datasheet
Thyristor
Figure 1
Thyristor
Figure 2
Thyristor
Typical thyristor forward current as
Thyristor transient thermal impedance
a function of forward voltage
I F= f(V F)
as a function of pulse width
Z thJH = f(t p)
101
50
ZthJC (K/W)
IF (A)
60
40
100
30
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
20
10
Tj = Tjmax-25°C
Tj = 25°C
0
10-2
0
At
tp =
0,25
0,5
250
0,75
1
1,25
1,75 VF (V) 2
1,5
µs
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Thyristor
10-5
10-4
At
D =
R thJH =
tp/T
10-3
1,26
10-2
10-1
100
10110
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T h)
Thyristor
60
Ptot (W)
IF (A)
120
t p (s)
100
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T h ( o C)
150
0
At
Tj =
ºC
11
30
150
60
90
120
T h ( o C) 150
ºC
19 May. 2016 / Revision 4
V23990-P717-*-PM
datasheet
Thyristor
Figure 5
Thyristor
Gate trigger characteristics
10
VG(V)
2
75W
(0,1ms)
20V;20 Ohm
10
1
PG(tp)
VGT
10
0
TJ=125oC
TJ=25oC
50W
(0,5ms)
TJ=-40oC
25W
(8ms)
VGD
IGT
10-
IGD
10-
copyright Vincotech
10-
10-
100
12
10
10
1
2
IG(A)
19 May. 2016 / Revision 4
V23990-P717-*-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
without thermal paste flow 90 1 housing
V23990-P717-G-PM
without thermal paste flow 90 1 housing half controlled
V23990-P717-G10-PM
without thermal paste flow 90 1 housing w/o BRC
V23990-P717-H-PM
without thermal paste flow 90 1 housing half controlled w/o BRC
V23990-P717-H10-PM
VIN
Date code
Name&Ver
UL
Lot
Serial
VIN
WWYY
NNNNNNVV
UL
LLLLL
SSSS
Name&Ver
Lot number
Serial
Date code
NNNNNNVV
LLLLL
SSSS
WWYY
Text
Datamatrix
Outline
Pin table
Y
Function
Pin
X
1
2
3
4
5
53
50,1
47,2
40,2
37,3
0
0
0
0
0
L3
L3
L3
L1
L1
6
7
34,4
27,4
0
0
L1
G3
8
9
10
24,5
21,6
18,7
0
0
0
G2
G1
DC+
11
12
13
14
15
16
17
18
19
20
15,8
12,9
7,1
0
0
3
7
9,9
12,8
44
0
0
0
0
7
7
7
7
7
7
DC+
DC+
Br+
BrC
BrE
BrG
DCDCDCL2
21
22
47
50
7
7
L2
L2
copyright Vincotech
13
19 May. 2016 / Revision 4
V23990-P717-*-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Pinout
Type
P717G
P717G10
P717H
P717H10
Half controlled
-
X
D4
Y
D5
Z
D6
diodes
Note
x
x
T1
D4
T1
T2
D5
T2
T3
D6
T3
thyristors
diodes
thyristors
Identification
ID
Component
D1,D2,D3,D4,D5,D6
T1,T2,T3
T4
D7
D8
FWD
Thyristor
IGBT
FWD
FWD
copyright Vincotech
Voltage
1600
1600
1200
1200
1200
V
V
V
V
V
Current
Function
42 A
45 A
25 A
7,5 A
3A
Input Rectifier Diodes
Input Rectifier Thyristor
Brake Switch
Brake Diode
Brake Inverse Diode
14
Comment
19 May. 2016 / Revision 4
V23990-P717-*-PM
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
80
Standard
<SPQ
Sample
Handling instruction
Handling instructions for flow 90 1 packages see vincotech.com website.
Package data
Package data for flow 90 1 packages see vincotech.com website.
UL recognition and file number
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.
Document No.:
Date:
Modification:
Pages
V23990-P717-x-D4-14
19 May. 2016
New brand
all
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be
accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes
without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or
completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or
that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for
reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform
when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.
copyright Vincotech
15
19 May. 2016 / Revision 4