10-RZ126PA035SC-M620F41 10-R0126PA035SC-M620F40 flow 90PACK 0 1200V/35A Features flow 90PACK 0 ● 90° PCB mounting for easy heat sink assembly ● Clip-in PCB mounting (optional) ● Open emitter for easy current sensing with clips without clips Target Applications Schematic ● Standard Drive ● Servo Drive ● Bookshelf Inverter Types ● 10-RZ126PA035SC-M620F41 ● 10-R0126PA035SC-M620F40 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 38 49 A tp limited by Tjmax 105 A VCE ≤ 1200V, Tj ≤ Top max 70 A 101 153 W ±20 V 10 800 µs V Tjmax 175 °C VRRM 1200 V 31 40 A 50 A 64 97 W 175 °C Inverter Transistor Collector-emitter break down voltage DC collector current * Pulsed collector current VCE IC ICpulse Turn off safe operating area Power dissipation per IGBT * Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V * measured with phase-change material Inverter Diode Peak Repetitive Reverse Voltage DC forward current * IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode * Ptot Tj=Tjmax Maximum Junction Temperature Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C * measured with phase-change material Copyright by Vincotech 1 Revision: 2 10-RZ126PA035SC-M620F41 10-R0126PA035SC-M620F40 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+150 °C 4000 V Creepage distance min 12,7 mm Clearance min 10,93 mm Insulation Properties Insulation voltage Comparative tracking index Copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 2 10-RZ126PA035SC-M620F41 10-R0126PA035SC-M620F40 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,5 1,95 2,24 2,3 Inverter Transistor Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0012 35 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to heatsink per chip RthJH 0,015 200 Rgoff=16 Ω Rgon=16 Ω ±15 600 35 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 94 97 47 45 210 281 63 130 2,94 4,08 1,97 3,38 ns mWs 1950 f=1MHz 0 Tj=25°C 25 pF 155 115 ±15 40 270 nC Phase-Change Material 0,94 K/W Thermal grease thickness≤50um λ = 1 W/mK 1,10 K/W 960 Tj=25°C Inverter Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 25 IRRM trr Qrr Rgon=16 Ω ±15 600 di(rec)max /dt 35 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,2 1,90 1,88 15 21 333 565 2,69 5,50 114 86 1,07 2,27 2,3 V A ns µC A/µs Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Phase-Change Material 1,49 K/W Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK 1,75 K/W 4700 Ω mWs Thermistor Rated resistance R Tj=25°C Deviation of R25 ∆R/R Tj=25°C Power dissipation P Tj=25°C 200 mW Tj=25°C 2 mW/K Power dissipation constant B-value B(25/50) B-value B(25/100) Tol. ±3% Vincotech NTC Reference Copyright by Vincotech -5 5 % Tj=25°C 3500 K Tj=25°C 3560 K G 3 Revision: 2 10-RZ126PA035SC-M620F41 10-R0126PA035SC-M620F40 Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 100 IC (A) IC (A) 100 80 80 60 60 40 40 20 20 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 0 5 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 µs 250 150 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 100 Tj = 25°C IF (A) IC (A) 35 4 30 80 Tj = Tjmax-25°C 25 60 20 15 40 10 20 Tj = 25°C Tj = Tjmax-25°C 5 0 0 0 At tp = VCE = 2 250 10 4 6 8 10 V GE (V) 12 0 At tp = µs V Copyright by Vincotech 4 1 250 2 3 4 V F (V) 5 µs Revision: 2 10-RZ126PA035SC-M620F41 10-R0126PA035SC-M620F40 Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) E (mWs) 12 E (mWs) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eon High T 8 Eon High T 10 6 Eon Low T Eon Low T 8 6 4 Eoff High T Eoff High T 4 Eoff Low T Eoff Low T 2 2 0 0 0 15 30 45 60 I C (A) 75 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 30 45 60 RG( Ω ) 75 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 35 A Output inverter FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 3,0 3,0 E (mWs) E (mWs) 15 Erec Tj = 150°C 2,5 2,5 2,0 2,0 Tj = 150°C Erec 1,5 1,5 Erec Tj = 25°C Tj = 25°C 1,0 1,0 Erec 0,5 0,5 0,0 0,0 0 15 30 45 60 I C (A) 0 75 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 16 Ω Copyright by Vincotech 15 30 45 60 RG( Ω ) 75 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 35 A 5 Revision: 2 10-RZ126PA035SC-M620F41 10-R0126PA035SC-M620F40 Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 1,00 tdoff t ( µs) t ( µs) tdoff tdon tf tf 0,10 0,10 tr tdon tr 0,01 0,01 0,00 0,00 0 15 30 45 60 I C (A) 75 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 15 30 45 60 RG( Ω ) 75 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 35 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,75 trr t rr( µs) t rr( µs) 0,8 trr Tj = 150°C 0,6 0,6 Tj = 150°C trr 0,45 0,5 trr Tj = 25°C 0,3 0,3 Tj = 25°C 0,15 0,2 0,0 0 0 At Tj = VCE = VGE = Rgon = 15 25/150 600 ±15 16 30 45 60 I C (A) 75 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 6 15 25/150 600 35 ±15 30 45 60 R g on ( Ω ) 75 °C V A V Revision: 2 10-RZ126PA035SC-M620F41 10-R0126PA035SC-M620F40 Output Inverter Output inverter FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 8 Qrr( µC) Qrr( µC) 6 Qrr Tj = 150°C Qrr 5 6 Tj = 150°C 4 4 3 Tj = 25°C Qrr Qrr 2 Tj = 25°C 2 1 0 0 0 At At Tj = VCE = VGE = Rgon = 15 25/150 600 ±15 16 30 45 60 I C (A) 75 0 At Tj = VR = IF = VGE = °C V V Ω Output inverter FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 15 25/150 600 35 ±15 30 45 R g on ( Ω) 75 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 25 60 IrrM (A) IrrM (A) 35 Tj = 150°C 30 20 IRRM 25 15 Tj = 25°C 20 IRRM Tj=150°C 15 10 IRRM Tj=25°C 10 IRRM 5 5 0 0 0 15 At Tj = VCE = VGE = Rgon = 25/150 600 ±15 16 30 45 60 I C (A) 75 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 15 25/150 600 35 ±15 30 45 60 R gon ( Ω ) 75 °C V A V Revision: 2 10-RZ126PA035SC-M620F41 10-R0126PA035SC-M620F40 Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) direc / dt (A/ µs) 800 direc / dt (A/µ s) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt 700 dIrec/dt 3000 dI0/dt dIrec/dt 2500 600 2000 500 1500 400 300 1000 200 500 100 0 0 0 At Tj = VCE = VGE = Rgon = 10 20 30 25/150 600 ±15 16 °C V V Ω 40 50 60 I C (A) 0 70 At Tj = VR = IF = VGE = Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) Zth-JH (K/W) 10 10 -2 30 40 50 60 R gon ( Ω ) 70 °C V A V Output inverter FWD 101 100 -1 25/150 600 35 ±15 20 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 10110 At D= RthJH = tp / T 0,94 K/W RthJH = 1,10 K/W IGBT thermal model values Thermal grease Phase change interface R (C/W) Tau (s) R (C/W) Tau (s) 0,11 9,5E-01 0,13 9,5E-01 0,41 1,2E-01 0,49 1,2E-01 0,30 4,8E-02 0,35 4,8E-02 0,07 5,9E-03 0,08 5,9E-03 0,04 5,6E-04 0,04 5,6E-04 Copyright by Vincotech 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp / T 1,49 K/W RthJH = 1,75 K/W FWD thermal model values Thermal grease Phase change interface R (C/W) Tau (s) R (C/W) Tau (s) 0,06 3,1E+00 0,07 3,1E+00 0,12 4,3E-01 0,14 4,3E-01 0,70 7,0E-02 0,83 7,0E-02 0,32 1,9E-02 0,38 1,9E-02 0,16 4,2E-03 0,19 4,2E-03 0,11 5,7E-04 0,13 5,7E-04 8 Revision: 2 10-RZ126PA035SC-M620F41 10-R0126PA035SC-M620F40 Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 60 Ptot (W) IC (A) 200 50 160 40 120 30 80 20 40 10 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 125 150 100 40 75 30 50 20 25 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 9 50 175 100 150 T h ( o C) 200 °C Revision: 2 10-RZ126PA035SC-M620F41 10-R0126PA035SC-M620F40 Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(QGE) 3 17,5 IC (A) VGE (V) 10 Output inverter IGBT Figure 26 Gate voltage vs Gate charge 15 10 2 240V 12,5 100uS 100mS 10 10mS 960V 1mS 1 10 DC 7,5 10 0 5 10 -1 2,5 0 10 0 101 At D= Th = VGE = 103 102 0 V CE (V) At IC = single pulse ºC 80 ±15 V Tjmax ºC Tj = Output inverter IGBT Figure 27 25 50 35 75 100 125 175Q (nC)200 g A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) 150 Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) tsc (µS) IC (sc) 17,5 350 15 300 12,5 250 10 200 7,5 150 5 100 2,5 50 0 0 12 13 14 15 16 17 18 19 20 12 V GE (V) 13 14 15 At VCE = 1200 V At VCE ≤ 1200 V Tj ≤ 175 ºC Tj = 175 ºC Copyright by Vincotech 10 16 17 18 19 V GE (V) 20 Revision: 2 10-RZ126PA035SC-M620F41 10-R0126PA035SC-M620F40 IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 80 IC MAX 70 Ic CHIP 60 Ic VCE MAX MODULE 50 40 30 20 10 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3phase SPWM Thermistor Thermistor Figure 30 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 5000 4000 3000 2000 1000 0 25 45 65 Copyright by Vincotech 85 105 T (°C) 125 11 Revision: 2 10-RZ126PA035SC-M620F41 10-R0126PA035SC-M620F40 Switching Definitions Output Inverter General conditions = 150 °C Tj = 16 Ω Rgon Rgoff = 16 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 120 175 tdoff % % VCE IC 150 100 VGE 90% VCE 90% 125 80 VCE IC 100 VGE 60 75 40 tdon tEoff 50 20 25 IC 1% 0 -20 -0,2 VCE 3% IC10% VGE10% VGE 0 tEon -25 0 0,2 0,4 0,6 0,8 2,8 3 3,2 3,4 time(us) time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 35 0,28 0,66 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 -15 15 600 35 0,10 0,39 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,6 Turn-on Switching Waveforms & definition of tr 140 175 % % 120 IC Ic 150 VCE fitted 100 125 IC 90% VCE 80 100 IC90% IC 60% 60 75 tr 40 IC 40% 50 20 25 IC10% 0 IC10% tf 0 -20 -25 0,1 0,2 0,3 0,4 0,5 0,6 3 3,1 3,2 3,3 time (us) VC (100%) = IC (100%) = tf = 600 35 0,13 Copyright by Vincotech 3,4 3,5 time(us) VC (100%) = IC (100%) = tr = V A µs 12 600 35 0,05 V A µs Revision: 2 10-RZ126PA035SC-M620F41 10-R0126PA035SC-M620F40 Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 180 120 % Poff % Eoff 100 Pon 140 80 Eon 100 60 40 60 20 VGE 90% 20 VGE 10% 0 tEoff VCE 3% tEon IC 1% -20 -20 -0,2 0 0,2 0,4 0,6 2,8 0,8 3 3,2 3,4 time (us) Poff (100%) = Eoff (100%) = tEoff = 20,99 3,38 0,66 Pon (100%) = Eon (100%) = tEon = kW mJ µs Output inverter IGBT Figure 7 Gate voltage vs Gate charge (measured) 3,6 time(us) 20,99 4,08 0,39 kW mJ µs Output inverter FWD Figure 8 Turn-off Switching Waveforms & definition of trr 120 VGE (V) 20 % Id 15 80 trr 10 40 5 Vd fitted 0 IRRM10% 0 -40 IRRM90% -5 IRRM100% -80 -10 -120 -15 -20 30 80 130 180 230 2,5 280 3 3,5 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -15 15 600 35 252,70 Copyright by Vincotech Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 13 600 35 -21 0,57 4 time(us) 4,5 V A A µs Revision: 2 10-RZ126PA035SC-M620F41 10-R0126PA035SC-M620F40 Switching Definitions Output Inverter Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 % % 100 Erec 100 Qrr Id 80 tErec tQrr 50 60 40 0 20 -50 Prec 0 -100 -20 2,5 3 3,5 4 4,5 2,5 time(us) Id (100%) = Qrr (100%) = tQrr = 35 5,50 1,00 Copyright by Vincotech Prec (100%) = Erec (100%) = tErec = A µC µs 14 3 3,5 20,99 2,27 1,00 4 4,5 time(us) kW mJ µs Revision: 2 10-RZ126PA035SC-M620F41 10-R0126PA035SC-M620F40 Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as without thermal paste ,housing without clips without thermal paste ,housing with clips 10-RZ126PA035SC-M620F41 10-R0126PA035SC-M620F40 M620F41 M620F40 M620F41 M620F40 Outline without clips with clips Pinout Copyright by Vincotech 15 Revision: 2 10-RZ126PA035SC-M620F41 10-R0126PA035SC-M620F40 DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 16 Revision: 2