V23990 P707 F40 P1 14

V23990-P707-F40-PM
preliminary datasheet
flow90PACK 1 2nd gen
1200V/8A
Features
flow90PACK 1 2nd gen
● Trench Fieldstop IGBT4 Technology
● Supports designs with 90° mounting angle between
heatsink and PCB
● Clip-in PCB mounting
● Clip or screw hetasink mounting
Target Applications
Schematic
● Motor Drives
Types
● V23990-P707-F40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
14
17
A
tp limited by Tjmax
24
A
VCE ≤ 1200V, Tj ≤ Top max
24
A
50
76
W
±20
V
10
800
μs
V
175
°C
1200
V
13
16
A
20
A
40
61
W
175
°C
Inverter IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Inverter FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
V23990-P707-F40-PM
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 1
V23990-P707-F40-PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,3
1,88
2,16
2,3
Inverter IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0003
8
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,001
120
Rgoff=64 Ω
Rgon=64 Ω
±15
600
8
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
106
104
25
28
227
297
68
140
0,66
1,01
0,48
0,81
ns
mWs
490
f=1MHz
0
25
50
Tj=25°C
pF
30
±15
960
8
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
45
nC
1,90
K/W
Inverter FWD
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
10
Rgon=64 Ω
±15
600
di(rec)max
/dt
Erec
RthJH
8
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
Thermal grease
thickness≤50um
λ = 1 W/mK
1,77
1,69
8
9
271
448
0,84
1,72
29
24
0,30
0,64
2,2
V
A
ns
μC
A/μs
mWs
2,36
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
ΔR/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tc=100°C
5
200
mW
2
mW/K
K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
Vincotech NTC Reference
copyright Vincotech
Tj=25°C
3
%
Tj=25°C
Tc=100°C
Power dissipation constant
-5
K
B
Revision: 1
V23990-P707-F40-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
25
IC (A)
IC (A)
25
20
20
15
15
10
10
5
5
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
μs
150
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
25
IF (A)
IC (A)
8
V CE (V)
7
20
6
5
15
4
10
3
Tj = Tjmax-25°C
2
Tj = Tjmax-25°C
5
1
Tj = 25°C
Tj = 25°C
0
0
0
2
4
At
tp =
VCE =
250
10
μs
V
copyright Vincotech
6
8
10
V GE (V)
12
0
At
tp =
4
0,5
1
250
μs
1,5
2
2,5
V F (V)
3
Revision: 1
V23990-P707-F40-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
2,5
E (mWs)
2,5
Eon High T
Eon High T
2,0
2,0
1,5
1,5
Eon Low T
Eon Low T
Eoff High T
1,0
1,0
Eoff High T
Eoff Low T
0,5
Eoff Low T
0,5
0,0
0,0
0
4
8
12
I C (A)
16
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
64
Ω
Rgoff =
64
Ω
64
128
192
256
RG( Ω )
320
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
8
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter FWD
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
1
E (mWs)
1,0
Erec
0,8
0,8
0,6
0,6
Tj = Tjmax -25°C
Erec
Tj = Tjmax -25°C
Tj = 25°C
Erec
0,4
0,4
0,2
0,2
Erec
Tj = 25°C
0,0
0
0
4
8
12
I C (A)
16
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
64
Ω
copyright Vincotech
64
128
192
256
RG( Ω )
320
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
8
A
5
Revision: 1
V23990-P707-F40-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t ( μs)
t ( μs)
1,00
tdon
tdoff
tf
tf
0,10
0,10
tr
tdon
tr
0,01
0,01
0,00
0,00
0
4
8
12
I C (A)
16
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
64
Ω
Rgoff =
64
Ω
64
128
192
RG( Ω )
256
320
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
8
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
1,0
t rr( μs)
t rr( μs)
0,8
0,8
trr
trr
0,6
0,6
Tj = Tjmax -25°C
trr
0,4
Tj = Tjmax -25°C
trr
0,4
0,2
0,2
Tj = 25°C
Tj = 25°C
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
4
25/150
600
±15
64
copyright Vincotech
8
12
I C (A)
16
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
64
25/150
600
8
±15
128
192
256
R g on ( Ω )
320
°C
V
A
V
Revision: 1
V23990-P707-F40-PM
preliminary datasheet
Output Inverter
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
2,5
2,5
Qrr( μC)
Qrr( μC)
Qrr
2,0
2,0
Tj = Tjmax -25°C
Qrr
1,5
1,5
Tj = Tjmax -25°C
Qrr
1,0
1,0
Qrr
Tj = 25°C
0,5
0,5
Tj = 25°C
0,0
0,0
At 0
At
Tj =
VCE =
VGE =
Rgon =
4
25/150
600
±15
64
8
12
I C (A)
16
0
64
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
Output inverter FWD
25/150
600
8
±15
128
192
R g on ( Ω)
256
320
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
25
IrrM (A)
IrrM (A)
12
Tj = Tjmax - 25°C
10
20
IRRM
Tj = Tjmax -25°C
IRRM
8
15
6
10
Tj = 25°C
Tj = 25°C
4
5
2
IRRM
IRRM
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
4
25/150
600
±15
64
copyright Vincotech
8
12
I C (A)
16
°C
V
V
Ω
7
0
64
At
Tj =
VR =
IF =
VGE =
25/150
600
8
±15
128
192
256
R gon ( Ω )
320
°C
V
A
V
Revision: 1
V23990-P707-F40-PM
preliminary datasheet
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
1500
dI0/dt
direc / dt (A/ μs)
500
direc / dt (A/μ s)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIo/dtLow T
dIrec/dt
400
dI0/dt
di0/dtHigh T
dIrec/dt
1200
di0/dtHigh T
300
900
200
600
300
100
dIrec/dtHigh T
dIrec/dtLow T
dIrec/dtLow T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
4
25/150
600
±15
64
8
I C (A)
12
0
16
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
dIo/dtLow T
64
25/150
600
8
±15
128
192
256
°C
V
A
V
Output inverter FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Zth-JH (K/W)
101
ZthJH (K/W)
101
R gon ( Ω ) 320
100
10
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
10-2
10-5
At
D=
RthJH =
10-4
10-2
10-1
100
t p (s)
10-5
101 1
At
D=
RthJH =
tp / T
1,90
Thermal grease
R (C/W)
0,08
0,54
0,67
0,41
0,21
10-3
K/W
IGBT thermal model values
Phase change interface
Tau (s)
1,6E+00
2,7E-01
4,7E-02
6,5E-03
5,7E-04
copyright Vincotech
R (C/W)
0,06
0,44
0,54
0,34
0,17
10-4
R (C/W)
0,07
0,25
1,04
0,65
0,34
8
10-2
10-1
100
t p (s)
101 1
tp / T
2,36
Thermal grease
Tau (s)
1,3E+00
2,2E-01
3,8E-02
5,3E-03
4,6E-04
10-3
K/W
FWD thermal model values
Phase change interface
Tau (s)
5,6E+00
4,7E-01
8,9E-02
1,0E-02
7,5E-04
R (C/W)
0,06
0,20
0,84
0,53
0,28
Tau (s)
4,5E+00
3,8E-01
7,2E-02
8,2E-03
6,1E-04
Revision: 1
V23990-P707-F40-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
20
IC (A)
Ptot (W)
100
80
16
60
12
40
8
20
4
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
20
Ptot (W)
IF (A)
80
150
16
60
12
40
8
20
4
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
Revision: 1
V23990-P707-F40-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
20
3
IC (A)
VGE (V)
10
18
102
240V
16
14
960V
100uS
10
10uS
12
1
10
100mS
DC
1mS
10mS
10
8
0
6
4
10-1
2
0
0
1
10
At
D=
Th =
VGE =
Tj =
10
10
2
10
3
0
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Output inverter IGBT
Figure 27
10
20
8
30
40
50
Q g (nC)
70
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
60
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
16
IC(sc)
tsc (μS)
100
14
80
12
10
60
8
40
6
4
20
2
0
0
12
13
14
15
16
V GE (V)
12
17
13
14
15
At
VCE =
1200
V
At
VCE ≤
1200
V
Tj ≤
175
ºC
Tj =
175
ºC
copyright Vincotech
10
16
17
18
19
V GE (V)
20
Revision: 1
V23990-P707-F40-PM
preliminary datasheet
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
20
18
ICMAX
16
14
10
Ic CHIP
Ic MODULE
12
8
VCEMAX
6
4
2
0
0
200
400
600
At
Tjmax-25
Tj =
Uccminus=Uccplus
ºC
Switching mode :
3phase SPWM
copyright Vincotech
800
1000
1200
1400
V CE (V)
11
Revision: 1
V23990-P707-F40-PM
preliminary datasheet
Thermistor
Thermistor
R/Ω
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
24000
Thermistor
Figure 2
Typical NTC resistance values
R(T ) = R25 ⋅ e
22000
[Ω]
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
25
copyright Vincotech
45
65
85
105
T (°C)
125
12
Revision: 1
V23990-P707-F40-PM
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 64 Ω
Rgon
Rgoff
= 64 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
140
IC
120
tdoff
200
VCE
100
VGE 90%
VCE 90%
150
80
IC
VCE
100
60
%
VGE
%
tdon
tEoff
40
50
20
IC 1%
0
VGE10%
0
VCE 3%
IC10%
tEon
VGE
-20
-0,3
-50
-0,1
0,1
0,3
0,5
0,7
0,9
2,7
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
8
0,30
0,72
2,85
3,15
3,3
3,45
3,6
3,75
time(us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
3
-15
15
600
8
0,10
0,39
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
140
250
Ic
120
fitted
IC
VCE
200
100
IC 90%
150
80
VCE
60
100
IC 60%
%
IC 90%
%
40
tr
IC 40%
50
20
IC 10%
IC 10%
0
0
tf
-20
0,1
0,15
0,2
0,25
0,3
0,35
0,4
-50
0,45
3
3,05
3,1
3,15
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
600
8
0,14
3,2
3,25
3,3
time(us)
time (us)
VC (100%) =
IC (100%) =
tr =
V
A
μs
13
600
8
0,03
V
A
μs
Revision: 1
V23990-P707-F40-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
200
120
IC 1%
Pon
Eoff
100
160
Poff
80
120
Eon
60
80
%
%
40
40
20
VCE 3%
VGE 10%
VGE 90%
0
0
tEon
tEoff
-20
-0,3
-40
-0,15
0
0,15
0,3
0,45
0,6
0,75
2,8
0,9
2,9
3
3,1
3,2
3,3
3,4
3,5
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
4,78
0,81
0,72
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter FWD
Figure 7
Gate voltage vs Gate charge (measured)
3,6
time(us)
4,78
1,01
0,39
kW
mJ
μs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
VGE (V)
150
%
Id
15
100
10
trr
50
5
Vd
0
fitted
0
IRRM 10%
-5
-50
-10
-100
IRRM 90%
IRRM 100%
-15
-150
-20
-20
0
20
40
60
2,8
80
3
3,2
3,4
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
-15
15
600
8
66,35
3,6
3,8
4
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
14
600
8
-9
0,45
V
A
A
μs
Revision: 1
V23990-P707-F40-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
Erec
Id
Qrr
100
100
80
tQrr
tErec
50
60
0
40
%
Prec
%
-50
20
-100
0
-150
-20
2,8
3
3,2
3,4
3,6
3,8
4
4,2
4,4
2,8
3
3,2
3,4
3,6
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
8
1,72
0,90
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
15
4,78
0,64
0,90
3,8
4
4,2
time(us)
4,4
kW
mJ
μs
Revision: 1
V23990-P707-F40-PM
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
V23990-P707-F40
in DataMatrix as
P707-F40
in packaging barcode as
P707-F40
Outline
Pinout
copyright Vincotech
16
Revision: 1
V23990-P707-F40-PM
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
17
Revision: 1