10-R0126PA015SC-M628F40 10-RZ126PA015SC-M628F41 1200V/15A flow90PACK 0 Features flow 90PACK 0 ● 90° PCB mounting for easy heat sink assembly ● Clip-in PCB mounting (optional) ● Open emitter for easy current sensing without clips Target Applications with clips Schematic ● Standard Drive ● Servo Drive ● Bookshelf Inverter Types ● 10-R0126PA015SC-M628F40 ● 10-RZ126PA015SC-M628F41 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 23 25 A tp limited by Tjmax 45 A VCE ≤ 1200V, Tj ≤ Top max 30 A 69 104 W ±20 V 10 800 µs V Tjmax 175 °C VRRM 1200 V 23 30 A 30 A 53 81 W 175 °C Inverter Transistor Collector-emitter break down voltage DC collector current * Pulsed collector current VCE IC ICpulse Turn off safe operating area Power dissipation per IGBT * Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V * measured with phase-change material Inverter Diode Peak Repetitive Reverse Voltage DC forward current * IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode * Ptot Tj=Tjmax Maximum Junction Temperature Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C * measured with phase-change material Copyright by Vincotech 1 Revision: 2 10-R0126PA015SC-M628F40 10-RZ126PA015SC-M628F41 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 10,93 mm Insulation Properties Insulation voltage Comparative tracking index Copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 2 10-R0126PA015SC-M628F40 10-RZ126PA015SC-M628F41 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,5 1,93 2,23 2,3 Inverter Transistor Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0005 15 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to heatsink per chip RthJH 0,01 200 Rgoff=32 Ω Rgon=32 Ω 600 ±15 15 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 86 85 34 35 202 272 70 124 1,18 1,76 0,81 1,39 ns mWs 900 f=1MHz 0 25 Tj=25°C 80 pF 55 15 960 85 nC Phase-Change Material 1,38 K/W Thermal grease thickness≤50um λ = 1 W/mK 1,63 K/W 15 Tj=25°C Inverter Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 15 IRRM trr Qrr Rgon=32 Ω 600 ±15 di(rec)max /dt 15 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,2 1,86 1,78 10 13 297 508 1,46 2,94 58 45 0,57 1,18 2,3 V A ns µC A/µs Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Phase-Change Material 1,78 K/W Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK 2,09 K/W 4700 Ω mWs Thermistor Rated resistance R Tj=25°C Deviation of R25 ∆R/R Tj=25°C Power dissipation P Tj=25°C 200 mW Tj=25°C 2 mW/K Tj=25°C 3500 K Tj=25°C 3560 K Power dissipation constant B-value B(25/50) B-value B(25/100) Tol. ±3% Vincotech NTC Reference Copyright by Vincotech -5 5 % G 3 Revision: 2 10-R0126PA015SC-M628F40 10-RZ126PA015SC-M628F41 Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 50 IC (A) IC (A) 50 40 40 30 30 20 20 10 10 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 0 5 1 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 4 V CE (V) 5 µs 250 150 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 60 IC (A) IF (A) 15 50 12 40 9 30 6 20 Tj = Tjmax-25°C 3 Tj = 25°C 10 Tj = Tjmax-25°C 0 Tj = 25°C 0 0 At tp = VCE = 2 250 10 4 6 8 10 V GE (V) 12 0 At tp = µs V Copyright by Vincotech 4 1 250 2 3 V F (V) 4 µs Revision: 2 10-R0126PA015SC-M628F40 10-RZ126PA015SC-M628F41 Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 5 E (mWs) E (mWs) 5 Eon High T 4 4 Eon High T 3 3 Eon Low T Eon Low T Eoff High T 2 2 Eoff Low T Eoff High T 1 1 Eoff Low T 0 0 0 5 10 15 20 30 25 0 25 50 75 100 125 I C (A) With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω RG( Ω ) 150 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 15 A Output inverter FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 1,5 E (mWs) E (mWs) 2,0 Tj = Tjmax -25°C 1,2 1,5 Erec Erec Tj = Tjmax -25°C 0,9 1,0 0,6 Tj = 25°C Tj = 25°C Erec Erec 0,5 0,3 0,0 0,0 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 32 Ω Copyright by Vincotech 25 50 75 100 125 RG( Ω ) 150 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 15 A 5 Revision: 2 10-R0126PA015SC-M628F40 10-RZ126PA015SC-M628F41 Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t ( µs) t ( µs) 1,00 tdoff tdon tf 0,10 tf 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 25 50 75 100 125 RG( Ω ) 150 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 15 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) Tj = Tjmax -25°C t rr( µs) 0,8 t rr( µs) 0,8 trr 0,6 0,6 0,4 0,4 Tj = Tjmax -25°C trr Tj = 25°C Tj = 25°C trr trr 0,2 0,2 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 5 25/150 600 ±15 32 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 6 25 25/150 600 15 ±15 50 75 100 125 R g on ( Ω ) 150 °C V A V Revision: 2 10-R0126PA015SC-M628F40 10-RZ126PA015SC-M628F41 Output Inverter Output inverter FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 4 Qrr( µC) Qrr( µC) 4 Tj = Tjmax -25°C Qrr Tj = Tjmax -25°C 3 3 Qrr 2 2 Tj = 25°C Qrr Tj = 25°C Qrr 1 1 0 0 0 5 At At Tj = VCE = VGE = Rgon = 25/150 600 ±15 32 10 15 20 25 I C (A) 0 30 25 At Tj = VR = IF = VGE = °C V V Ω Output inverter FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 50 25/150 600 15 ±15 75 100 R g on ( Ω) 150 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 20 IrrM (A) 15 125 Tj = Tjmax -25°C IRRM 12 IRRM 15 IRRM Tj = Tjmax - 25°C 9 IRRM Tj = 25°C 10 6 Tj = 25°C 5 3 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/150 600 ±15 32 10 15 20 25 I C (A) 0 30 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 25 25/150 600 15 ±15 50 75 100 125 R gon ( Ω ) 150 °C V A V Revision: 2 10-R0126PA015SC-M628F40 10-RZ126PA015SC-M628F41 Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 1500 direc / dt (A/ µs) 400 direc / dt (A/µ s) dI0/dt dIrec/dt dI0/dt dIrec/dt 1200 300 900 200 600 100 300 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/150 600 ±15 32 10 15 20 25 I C (A) 0 30 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25 25/150 600 15 ±15 50 75 100 R gon ( Ω ) 150 °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Zth-JH (K/W) 101 ZthJH (K/W) 101 125 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10 10 -5 At D= RthJH = 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 1 K/W RthJH = 1,63 At D= RthJH = K/W IGBT thermal model values Thermal grease Phase change interface R (C/W) Tau (s) R (C/W) Tau (s) 0,14 7,1E-01 0,16 7,1E-01 0,55 1,0E-01 0,65 1,0E-01 0,40 3,6E-02 0,47 3,6E-02 0,19 7,0E-03 0,22 7,0E-03 0,10 9,2E-04 0,12 9,2E-04 Copyright by Vincotech -2 10-5 1010 tp / T 1,38 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp / T 1,78 K/W RthJH = 2,09 K/W FWD thermal model values Thermal grease Phase change interface R (C/W) Tau (s) R (C/W) Tau (s) 0,07 2,6E+00 0,08 2,6E+00 0,12 3,9E-01 0,15 3,9E-01 0,72 6,9E-02 0,84 6,9E-02 0,45 1,7E-02 0,53 1,7E-02 0,24 3,8E-03 0,29 3,8E-03 0,18 6,4E-04 0,21 6,4E-04 8 Revision: 2 10-R0126PA015SC-M628F40 10-RZ126PA015SC-M628F41 Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 30 IC (A) Ptot (W) 150 125 25 100 20 75 15 50 10 25 5 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 35 Ptot (W) IF (A) 100 150 30 75 25 20 50 15 10 25 5 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 9 50 175 100 150 T h ( o C) 200 °C Revision: 2 10-R0126PA015SC-M628F40 10-RZ126PA015SC-M628F41 Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 102 IC (A) VGE (V) 17,5 10 240V 15 100uS 960V 1mS 1 12,5 DC 10 10mS 10 100mS 0 7,5 5 10 -1 2,5 0 10 0 0 At D= Th = VGE = 10 1 10 2 10 At IC = single pulse ºC 80 ±15 V Tjmax ºC Tj = Output inverter IGBT Figure 27 20 40 60 80 100 V CE (V) 3 15 120 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Q g (nC) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 175 tsc (µS) IC (sc) 18 150 15 125 12 100 9 75 6 50 3 25 0 0 12 14 16 18 V GE (V) 20 12 14 16 At VCE = 1200 V At VCE ≤ 600 V Tj ≤ 175 ºC Tj = 175 ºC Copyright by Vincotech 10 18 V GE (V) 20 Revision: 2 10-R0126PA015SC-M628F40 10-RZ126PA015SC-M628F41 IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 35 IC MAX 30 Ic CHIP 25 Ic MODULE 20 VCE MAX 15 10 5 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 5000 4000 3000 2000 1000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 11 Revision: 2 10-R0126PA015SC-M628F40 10-RZ126PA015SC-M628F41 Switching Definitions Output Inverter General conditions = 150 °C Tj = 32 Ω Rgon Rgoff = 32 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 125 tdoff % IC % VCE 100 150 VGE 90% VCE 90% 75 VCE VGE 100 IC VGE 50 IC 1% tEoff tdon 50 25 VCE 3% VGE10% IC10% 0 tEon 0 -50 -25 -0,2 0 0,2 0,4 0,6 2,9 0,8 3 3,1 3,2 3,3 3,4 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 15 0,27 0,63 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,5 time(us) time (us) -15 15 600 15 0,09 0,36 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 200 fitted % VCE IC Ic % 100 150 IC 90% 75 VCE 100 IC 60% IC90% 50 tr IC 40% 50 25 IC10% IC10% 0 0 tf -25 -50 0 0,1 0,2 0,3 0,4 0,5 0,6 3 3,1 3,2 3,3 time (us) VC (100%) = IC (100%) = tf = 600 15 0,12 Copyright by Vincotech 3,4 3,5 time(us) VC (100%) = IC (100%) = tr = V A µs 12 600 15 0,04 V A µs Revision: 2 10-R0126PA015SC-M628F40 10-RZ126PA015SC-M628F41 Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 200 % IC 1% Poff 100 % Pon Eoff 150 75 Eon 100 50 50 25 VCE 3% VGE 10% VGE 90% 0 0 tEon tEoff -25 -0,2 -50 0 0,2 0,4 0,6 0,8 2,8 time (us) Poff (100%) = Eoff (100%) = tEoff = 8,98 1,39 0,63 3 3,4 3,6 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs Output inverter IGBT Figure 7 Gate voltage vs Gate charge (measured) 3,2 8,98 1,76 0,36 kW mJ µs Output inverter FWD Figure 8 Turn-off Switching Waveforms & definition of trr 150 VGE (V) 20 % 15 Id 100 10 trr 50 5 Vd 0 0 IRRM 10% -5 fitted -50 IRRM 90% -10 IRRM 100% -100 -15 -150 -20 -25 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 25 -15 15 600 15 117,46 Copyright by Vincotech 50 75 100 Qg (nC) 3 125 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 13 3,2 3,4 600 15 -13 0,51 3,6 3,8 time(us) 4 V A A µs Revision: 2 10-R0126PA015SC-M628F40 10-RZ126PA015SC-M628F41 Switching Definitions Output Inverter Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % % Id tErec 75 tQrr 50 Erec 100 Qrr 100 50 0 Prec 25 -50 0 -100 -25 3 3,2 3,4 3,6 3,8 4 4,2 3 3,2 3,4 3,6 time(us) Id (100%) = Qrr (100%) = tQrr = 15 2,94 1,00 Copyright by Vincotech Prec (100%) = Erec (100%) = tErec = A µC µs 14 8,98 1,18 1,00 3,8 4 time(us) 4,2 kW mJ µs Revision: 2 10-R0126PA015SC-M628F40 10-RZ126PA015SC-M628F41 Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as without thermal paste ,housing without clips without thermal paste ,housing with clips 10-RZ126PA015SC-M628F41 10-R0126PA015SC-M628F40 M628F41 M628F40 M628F41 M628F40 Outline without clips with clips Pinout Copyright by Vincotech 15 Revision: 2 10-R0126PA015SC-M628F40 10-RZ126PA015SC-M628F41 DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 16 Revision: 2