V23990-P709-F40-PM preliminary datasheet flow90PACK 1 2nd gen 1200V/25A Features flow90PACK 1 2nd gen ● Trench Fieldstop IGBT4 Technology ● Supports designs with 90° mounting angle between heatsink and PCB ● Clip-in PCB mounting ● Clip or screw hetasink mounting Target Applications Schematic ● Motor Drives Types ● V23990-P709-F40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 30 38 A tp limited by Tjmax 75 A VCE ≤ 1200V, Tj ≤ Top max 75 A 78 119 W ±20 V 10 800 μs V 175 °C 1200 V 24 31 A 50 A 52 79 W 175 °C Inverter IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax Inverter FWD Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 V23990-P709-F40-PM preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 1 V23990-P709-F40-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,3 2,01 2,25 2,3 Inverter IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0085 25 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,002 120 Rgoff=32 Ω Rgon=32 Ω 600 ±15 25 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 138 139 31 33 247 320 72 136 1,98 2,88 1,44 2,46 ns mWs 1430 f=1MHz 25 0 115 Tj=25°C pF 85 ±15 960 25 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 152 nC 1,21 K/W Inverter FWD Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 25 Rgon=32 Ω 600 ±15 di(rec)max /dt Erec RthJH 25 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 Thermal grease thickness≤50um λ = 1 W/mK 1,83 1,77 21 26 278 454 2,31 4,45 179 96 0,84 1,69 2,3 V A ns μC A/μs mWs 1,83 K/W 22000 Ω Thermistor Rated resistance R Deviation of R100 ΔR/R Power dissipation P Tj=25°C R100=1486 Ω Tc=100°C 5 200 mW 2 mW/K K B-value B(25/50) Tol. ±3% Tj=25°C 3950 B-value B(25/100) Tol. ±3% Tj=25°C 3996 Vincotech NTC Reference copyright Vincotech Tj=25°C 3 % Tj=25°C Tc=100°C Power dissipation constant -5 K B Revision: 1 V23990-P709-F40-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 75 IC (A) IC (A) 75 63 63 50 50 38 38 25 25 13 13 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 5 250 μs 150 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 25 V CE (V) 4 IC (A) IF (A) 75 20 60 15 45 10 30 5 15 Tj = Tjmax-25°C Tj = 25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VCE = 2 4 250 10 μs V copyright Vincotech 6 8 10 V GE (V) 0 12 At tp = 4 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 μs Revision: 1 V23990-P709-F40-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 8 E (mWs) 8 Eon High T 6 Eon High T 6 Eon Low T Eon Low T 4 4 Eoff High T Eoff Low T Eoff High T 2 2 Eoff Low T 0 0 0 13 25 38 I C (A) 50 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 32 64 96 128 RG( Ω ) 160 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 25 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter FWD 2,5 2,5 E (mWs) Erec E (mWs) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 2,0 2 1,5 1,5 Tj = Tjmax -25°C Erec Tj = Tjmax -25°C Tj = 25°C Erec 1,0 1 0,5 0,5 Erec Tj = 25°C 0,0 0 0 13 25 38 I C (A) 50 0 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω copyright Vincotech 32 64 96 128 RG( Ω ) 160 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 25 A 5 Revision: 1 V23990-P709-F40-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( μs) t ( μs) 1,00 tdoff tdon tdoff tdon 0,10 tf 0,10 tf tr tr 0,01 0,01 0,00 0,00 0 13 25 38 I C (A) 50 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 32 64 96 128 RG( Ω ) 160 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 25 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 1,0 t rr( μs) t rr( μs) 0,6 trr 0,5 0,8 trr 0,4 Tj = Tjmax -25°C 0,6 trr Tj = Tjmax -25°C trr 0,3 0,4 0,2 Tj = 25°C 0,2 0,1 Tj = 25°C 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 13 25/150 600 ±15 32 copyright Vincotech 25 38 I C (A) 0 50 At Tj = VR = IF = VGE = °C V V Ω 6 32 25/150 600 25 ±15 64 96 128 R g on ( Ω ) 160 °C V A V Revision: 1 V23990-P709-F40-PM preliminary datasheet Output Inverter Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 7 Qrr( μC) Qrr( μC) 5 Qrr 6 Qrr Tj = Tjmax -25°C 4 5 3 4 Tj = Tjmax -25°C Tj = 25°C Qrr Qrr 3 2 2 Tj = 25°C 1 1 0 0 At 0 At Tj = VCE = VGE = Rgon = 13 25/150 600 ±15 32 25 38 I C (A) 50 °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) Output inverter FWD 0 32 At Tj = VR = IF = VGE = 25/150 600 25 ±15 64 96 128 R g on ( Ω) 160 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 75 IrrM (A) IrrM (A) 30 IRRM Tj = Tjmax - 25°C 25 60 Tj = Tjmax -25°C IRRM 20 45 Tj = 25°C 15 30 10 15 5 IRRM IRRM Tj = 25°C 0 0 0 At Tj = VCE = VGE = Rgon = 13 25/150 600 ±15 32 copyright Vincotech 25 38 I C (A) 50 °C V V Ω 7 0 32 At Tj = VR = IF = VGE = 25/150 600 25 ±15 64 96 128 R gon ( Ω ) 160 °C V A V Revision: 1 V23990-P709-F40-PM preliminary datasheet Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 5000 direc / dt (A/ μs) direc / dt (A/μ s) 1200 dI0/dt Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIo/dtLow T dIrec/dt 1000 dI0/dt dIrec/dt 4000 di0/dtHigh T 800 3000 600 2000 dIrec/dtLow T 400 1000 200 dIrec/dtHigh T 0 At Tj = VCE = VGE = Rgon = 13 25/150 600 ±15 32 25 I C (A) 38 0 50 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) Tj = Tjmax - 25°C Tj = 25°C dIrec/dtHigh T 0 0 32 25/150 600 25 ±15 64 96 128 160 °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Zth-JH (K/W) 101 ZthJH (K/W) 101 R gon ( Ω ) 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 -2 -2 10 10 10-5 At D= RthJH = 10-4 10-2 10-1 100 t p (s) 1011 10-5 At D= RthJH = tp / T 1,21 Thermal grease R (C/W) 0,17 0,57 0,29 0,12 0,06 10-3 K/W IGBT thermal model values Phase change interface Tau (s) 9,7E-01 1,6E-01 4,0E-02 6,6E-03 5,0E-04 copyright Vincotech R (C/W) 0,13 0,46 0,24 0,10 0,05 10-4 R (C/W) 0,04 0,14 0,74 0,50 0,26 0,14 8 10-2 10-1 100 t p (s) 1011 tp / T 1,83 Thermal grease Tau (s) 7,9E-01 1,3E-01 3,2E-02 5,3E-03 4,0E-04 10-3 K/W FWD thermal model values Phase change interface Tau (s) 9,4E+00 1,1E+00 1,5E-01 4,3E-02 6,8E-03 5,6E-04 R (C/W) 0,03 0,12 0,60 0,41 0,21 0,11 Tau (s) 7,6E+00 8,8E-01 1,2E-01 3,4E-02 5,6E-03 4,6E-04 Revision: 1 V23990-P709-F40-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 50 Ptot (W) IC (A) 150 120 40 90 30 60 20 30 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 40 IF (A) Ptot (W) 100 150 80 30 60 20 40 10 20 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 9 50 175 100 150 T h ( o C) 200 °C Revision: 1 V23990-P709-F40-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 3 IC (A) VGE (V) 10 102 20 18 240V 16 10uS 10mS 960V 14 100uS 1mS 12 101 10 DC 100mS 8 100 6 4 -1 10 2 0 10 0 At D= Th = VGE = Tj = 10 1 10 103 2 0 V CE (V) At IC = single pulse 80 ºC ±15 V Tjmax ºC Output inverter IGBT Figure 27 30 60 25 90 120 150 Q g (nC) 210 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) 180 Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 225 IC(sc) tsc (μS) 18 16 200 14 175 12 150 10 125 8 100 6 75 4 50 2 25 0 0 12 13 14 15 16 12 V GE (V) 17 13 14 15 At VCE = 1200 V At VCE ≤ 1200 V Tj ≤ 175 ºC Tj = 175 ºC copyright Vincotech 10 16 17 18 19 V GE (V) 20 Revision: 1 V23990-P709-F40-PM preliminary datasheet IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 70 60 Ic MODULE 40 Ic CHIP ICMAX 50 30 VCEMAX 20 10 0 0 200 400 600 At Tjmax-25 Tj = Uccminus=Uccplus ºC Switching mode : 3phase SPWM copyright Vincotech 800 1000 1200 1400 V CE (V) 11 Revision: 1 V23990-P709-F40-PM preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 24000 Thermistor Figure 2 Typical NTC resistance values R/Ω R(T ) = R25 ⋅ e 22000 [Ω] 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 25 45 copyright Vincotech 65 85 105 T (°C) 125 12 Revision: 1 V23990-P709-F40-PM preliminary datasheet Switching Definitions Output Inverter General conditions = 150 °C Tj = 32 Ω Rgon Rgoff = 32 Ω Output inverter IGBT Figure 1 120 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 220 tdoff % VCE 100 IC 180 VGE 90% VCE 90% 80 IC 140 60 VCE 100 VGE tEoff %40 VGE tdon 60 20 20 0 -20 -0,3 VCE 3% IC10% VGE10% IC 1% tEon -20 -0,1 0,1 0,3 0,5 0,7 0,9 2,7 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 25 0,32 0,74 2,85 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 3 3,15 3,3 -15 15 600 25 0,14 0,41 3,45 time(us) 3,75 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,6 Turn-on Switching Waveforms & definition of tr 120 220 fitted VCE IC 100 180 IC 90% 80 140 60 IC 60% VCE 100 % 40 IC 40% IC90% % tr 60 20 IC10% 0 20 tf Ic -20 IC10% -20 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 3 time (us) VC (100%) = IC (100%) = tf = copyright Vincotech 600 25 0,14 VC (100%) = IC (100%) = tr = V A μs 13 3,05 3,1 3,15 600 25 0,03 V A μs 3,2 3,25 time(us) 3,3 Revision: 1 V23990-P709-F40-PM preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 180 120 Pon IC 1% 100 Eoff Poff 140 80 Eon 100 60 % % 40 60 20 VGE 90% 20 VCE 3% VGE 10% 0 tEoff -20 -0,3 tEon -20 -0,15 0 0,15 0,3 0,45 0,6 0,75 2,8 0,9 2,9 3 3,1 3,2 3,3 3,4 3,5 Poff (100%) = Eoff (100%) = tEoff = 15,07 2,46 0,74 Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter FWD Figure 7 Gate voltage vs Gate charge (measured) 3,6 time(us) time (us) 15,07 2,88 0,41 kW mJ μs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 VGE (V) 120 Id 15 80 10 trr 40 5 Vd 0 fitted 0 % IRRM 10% -5 -40 -10 -80 -15 IRRM 90% IRRM 100% -20 -120 -50 0 50 100 150 200 2,8 3 3,2 3,4 600 25 -26 0,45 V A A μs Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech -15 15 600 25 179,27 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 14 3,6 3,8 time(us) 4 Revision: 1 V23990-P709-F40-PM preliminary datasheet Switching Definitions Output Inverter Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 120 Id Qrr Erec 100 80 tQrr 80 tErec 40 60 0 % % 40 -40 Prec 20 -80 0 -120 -20 2,8 3 3,2 3,4 3,6 3,8 4 4,2 4,4 2,8 time(us) Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 25 4,45 1,00 Prec (100%) = Erec (100%) = tErec = A μC μs 15 3 3,2 3,4 15,07 1,69 1,00 3,6 3,8 4 4,2 time(us) 4,4 kW mJ μs Revision: 1 V23990-P709-F40-PM preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code V23990-P709-F40-PM in DataMatrix as P709F40 in packaging barcode as P709F40 Outline Pinout copyright Vincotech 16 Revision: 1 V23990-P709-F40-PM preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 17 Revision: 1