V23990-P588-*4*-PM preliminary datasheet flow1 1200V/15A Features flow1 ● 3~rectifier, optional BRC, Inverter, NTC ● Very compact housing, easy to route ● IGBT! / EmCon4 technology for low saturation losses and improved EMC behaviour 12mm housing Solder pins 17mm housing Solder pins 17mm housing Pressfit pins Target Applications Schematic ● Industrial drives ● Embedded drives Types ● V23990-P588-A41-PM ● V23990-P588-A418-PM ● V23990-P588-C41-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V Input Rectifier Diode Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM Th=80°C Tc=80°C tp=10ms 50Hz half sine wave Tj=25°C Tj=Tjmax Th=80°C Tc=80°C 33 47 A 250 A 310 A2s 37 60 W Tjmax 150 °C VCE 1200 V 19 25 A tp limited by Tjmax 45 A VCE ≤ 1200V, Tj ≤ Top max, 30 A 57 86 W ±20 V 10 800 µs V 175 °C I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Inverter Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 2 V23990-P588-*4*-PM preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 19 25 A 30 A 44 66 W Tjmax 175 °C VCE 1200 V 12 16 A 24 A 16 A 43 66 W ±20 V Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Brake Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpuls Th=80°C Tc=80°C Tj=Tjmax tp limited by Tjmax VCE ≤ 1200V, Tj ≤ Top max Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Th=80°C Tc=80°C Tj=Tjmax tSC Tj≤150°C 10 VCC VGE=15V 800 µs V Tjmax 175 °C VRRM 1200 V 15 19 A 20 A 29 44 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Short circuit ratings Maximum Junction Temperature Brake Diode Peak Repetitive Reverse Voltage DC forward current IF Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 2 V23990-P588-*4*-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=150°C 0,8 1,16 1,13 0,90 0,78 8,00 11,00 1,6 Input Rectifier Diode Forward voltage VF Threshold voltage (for power loss calc. only) Vto 30 Slope resistance (for power loss calc. only) rt 30 Reverse current Ir Thermal resistance chip to heatsink per chip 30 1500 RthJH Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE V V 20 2 mΩ mA K/W 1,89 Inverter Transistor Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode VCE(sat) IGES Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 15 0 1200 20 0 tr td(off) tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 5 5,8 6,5 0,8 1,84 2,25 2,25 0,005 200 Rgoff=32 Ω Rgon=32 Ω 600 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω - td(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 15 ICES Gate-emitter leakage current 0,0005 85 85 17 22 201 264 82 123 0,817 1,255 0,878 1,358 ns mWs 900 f=1MHz 25 0 Tj=25°C 80 pF 55 Tj=25°C ±15 Thermal grease thickness≤50um λ = 1 W/mK 120 nC 1,67 K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip copyright Vincotech 15 Rgon=32 Ω 600 di(rec)max /dt Erec RthJH Thermal grease thickness≤50um λ = 1 W/mK 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,35 1,61 1,50 25 26 153 313 1,35 2,98 1700 776 0,518 1,259 2,17 3 2,05 V A ns µC A/µs mWs K/W Revision: 2 V23990-P588-*4*-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,3 1,82 2,23 2,15 Brake Transistor Gate emitter threshold voltage VGE(th) VCE=VGE 0,0005 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 Gate-emitter leakage current IGES 20 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 15 0 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,005 200 - tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=32 Ω Rgon=32 Ω 600 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 53 55 18 23 169 231 82 119 0,47 0,75 0,44 0,68 ns mWs 490 f=1MHz 25 0 Tj=25°C 50 Tj=25°C 90 nC 2,20 K/W pF 30 Thermal grease thickness≤50um λ = 1 W/mK Brake Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir trr Reverse recovered charge Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip 1200 IRRM Reverse recovery time Peak rate of fall of recovery current 10 Rgon=32 Ω Rgon=32 Ω 15 di(rec)max /dt Erec RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,3 2,31 1,89 2,2 5 8 10 273 415 0,92 0,92 68 65 0,38 0,70 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 3,28 K/W 22000 Ω Thermistor Rated resistance R Tj=25°C Deviation of R25 ∆R/R Tj=25°C Power dissipation P Tj=25°C 200 mW Tj=25°C 2 mW/K Power dissipation constant B-value B(25/50) B-value B(25/100) Tol. ±3% Vincotech NTC Reference copyright Vincotech 5 % Tj=25°C 3950 K Tj=25°C 3996 K Tj=25°C 4 -5 B Revision: 2 V23990-P588-*4*-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 40 IC (A) IC (A) 40 30 30 20 20 10 10 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from µs 250 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 16 V CE (V) IF (A) IC (A) 30 14 25 12 20 10 8 15 6 10 Tj = Tjmax-25°C Tj = Tjmax-25°C 4 Tj = 25°C Tj = 25°C 5 2 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0,0 At tp = µs V 5 0,5 1,0 250 µs 1,5 2,0 2,5 V F (V) 3,0 Revision: 2 V23990-P588-*4*-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 3,5 E (mWs) 2,5 E (mWs) Eon High T Eoff High T Eon High T 3,0 2,0 2,5 Eon Low T Eon Low T 1,5 2,0 Eoff Low T 1,5 Eoff High T 1,0 Eoff Low T 1,0 0,5 0,5 0,0 0,0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 40 60 80 100 120 R G ( Ω ) 140 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 15 A Output inverter FWD 1,6 Erec Tj = Tjmax -25°C 1,4 1,6 1,4 1,2 1,2 1,0 1 0,8 Tj = Tjmax -25°C Erec 0,8 Erec Tj = 25°C Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) E (mWs) 20 0,6 0,6 0,4 0,4 0,2 0,2 Tj = 25°C Erec 0,0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 32 Ω copyright Vincotech 20 40 60 80 100 120 R G ( Ω ) 140 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 15 A 6 Revision: 2 V23990-P588-*4*-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( µs) t ( µs) 1,00 tdoff tdoff tdon tf 0,10 tf 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = °C 150 VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 20 40 60 80 100 120 R G ( Ω ) 140 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 15 A Output inverter FWD Output inverter FWD 0,5 0,8 t rr( µs) Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( µs) Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) trr Tj = Tjmax -25°C trr 0,4 0,6 trr Tj = Tjmax -25°C 0,3 trr Tj = 25°C 0,4 0,2 Tj = 25°C 0,2 0,1 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 5 25/150 600 ±15 32 copyright Vincotech 10 15 20 25 I C (A) 0 30 At Tj = VR = IF = VGE = °C V V Ω 7 20 25/150 600 15 ±15 40 60 80 100 120 R g on ( Ω ) 140 °C V A V Revision: 2 V23990-P588-*4*-PM preliminary datasheet Output Inverter Output inverter FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) 3,5 Qrr( µC) 4,0 Qrr( µC) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr Tj = Tjmax -25°C 3,5 Tj = Tjmax -25°C Qrr 3,0 3,0 2,5 2,5 2,0 2,0 Tj = 25°C Qrr Tj = 25°C Qrr 1,5 1,5 1,0 1,0 0,5 0,5 0,0 0,0 At At Tj = VCE = VGE = Rgon = 0 5 25/150 600 ±15 32 10 15 20 25 I C (A) 0 20 At Tj = VR = IF = VGE = °C V V Ω Output inverter FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 40 60 80 100 120 30 25/150 600 15 ±15 140 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 70 IrrM (A) 35 R g on ( Ω) IRRM 60 30 IRRM Tj = Tjmax -25°C IRRM 50 25 Tj = 25°C IRRM 20 40 15 30 10 20 Tj = Tjmax - 25°C Tj = 25°C 10 5 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/150 600 ±15 32 copyright Vincotech 10 15 20 25 I C (A) 0 30 At Tj = VR = IF = VGE = °C V V Ω 8 20 25/150 600 15 ±15 40 60 80 100 120 R gon ( Ω ) 140 °C V A V Revision: 2 V23990-P588-*4*-PM preliminary datasheet Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 2400 5000 dI0/dt dIrec/dt 2000 direc / dt (A/ µs) direc / dt (A/µ s) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dtLow T dI0/dt 4500 dIrec/dt 4000 3500 dIo/dtLow T 1600 3000 2500 2000 dIrec/dtHigh T 800 di0/dtHigh T dI0/dtHigh T 1200 1500 dIo/dtLow T 1000 400 500 dIrec/dtHigh T dIrec/dtLow T 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/150 600 ±15 32 10 15 20 I C (A) 25 0 40 60 80 100 120 30 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 20 25/150 600 15 ±15 140 °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 R gon ( Ω ) 10 0 10 -1 10 -2 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-5 At D= RthJH = 10-4 10-2 10-1 100 t p (s) 1 1010 10 1,67 K/W RthJH = 1,43 K/W IGBT thermal model values Phase change interface Tau (s) 3,0E+00 3,4E-01 8,4E-02 1,3E-02 1,3E-03 2,6E-04 copyright Vincotech R (C/W) 2,61 0,00 0,00 0,00 0,00 0,00 -5 At D= RthJH = tp / T Thermal grease R (C/W) 0,09 0,51 0,56 0,33 0,11 0,06 10-3 10 -4 R (C/W) 0,05 0,30 0,87 0,56 0,23 0,16 9 -3 10 -2 10 -1 10 0 t p (s) 1 10 10 tp / T 2,17 Thermal grease Tau (s) 3,0E+00 3,4E-01 8,4E-02 1,3E-02 1,3E-03 2,6E-04 10 K/W RthJH = 1,86 K/W FWD thermal model values Phase change interface Tau (s) 9,9E+00 6,3E-01 1,1E-01 1,6E-02 2,3E-03 3,2E-04 R (C/W) 8,48 0,00 0,00 0,00 0,00 0,00 Tau (s) 9,9E+00 6,3E-01 1,1E-01 1,6E-02 2,3E-03 3,2E-04 Revision: 2 V23990-P588-*4*-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 30 IC (A) Ptot (W) 120 100 25 80 20 60 15 40 10 20 5 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 30 IF (A) Ptot (W) 90 150 75 25 60 20 45 15 30 10 15 5 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 175 100 150 T h ( o C) 200 °C Revision: 2 V23990-P588-*4*-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(QGE) 3 VGE (V) 20 IC (A) 10 Output inverter IGBT Figure 26 Gate voltage vs Gate charge 10uS 100uS 16 102 240V 1mS 960V 12 10mS 10 100mS 1 8 DC 100 4 0 10-1 10 0 At D= Th = VGE = Tj = 10 1 10 10 V CE (V) 2 0 3 50 75 100 125 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC Output inverter IGBT Figure 27 25 15 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) tsc (µS) IC (sc) 17,5 125 15 100 12,5 75 10 7,5 50 5 25 2,5 0 0 12 13 14 15 16 17 18 19 V GE (V) 20 12 14 At VCE = 1200 V At VCE ≤ 1200 V Tj ≤ 175 ºC Tj = 175 ºC copyright Vincotech 11 16 18 V GE (V) 20 Revision: 2 V23990-P588-*4*-PM preliminary datasheet IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 35 IC MAX 30 Ic MODULE 20 15 Ic CHIP 25 VCE MAX 10 5 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching copyright Vincotech 12 Revision: 2 V23990-P588-*4*-PM preliminary datasheet Brake Brake IGBT Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) 25 IC (A) IC (A) 25 20 20 15 15 10 10 5 5 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 0 4 At tp = Tj = VGE from µs 250 25 °C 7 V to 17 V in steps of 1 V Brake IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Brake FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 35 IC (A) IF (A) 10 8 28 6 21 4 Tj = Tjmax-25°C 14 Tj = Tjmax-25°C Tj = 25°C 2 Tj = 25°C 7 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 13 1 250 1 2 2 3 3 V F (V) 4 µs Revision: 2 V23990-P588-*4*-PM preliminary datasheet Brake Brake IGBT Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 1,6 1,5 Eon E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 1,4 Tj = Tjmax -25°C Eon Tj = Tjmax -25°C 1,2 1,2 Eoff 1,0 0,9 Eon Eon 0,8 Eoff Eoff 0,6 0,6 Eoff 0,4 0,3 Tj = 25°C 0,2 Tj = 25°C 0 0,0 0 2 4 6 8 10 12 14 I C (A) 0 16 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 20 40 60 80 100 120 R G ( Ω ) 140 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 8 A Brake FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,8 E (mWs) 1 E (mWs) Erec Tj = Tjmax -25°C 0,7 Tj = Tjmax - 25°C Erec 0,8 0,6 0,5 0,6 Erec 0,4 Tj = 25°C Tj = 25°C 0,4 Erec 0,3 0,2 0,2 0,1 0 0 0 0 2 4 6 8 10 12 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 32 Ω copyright Vincotech 20 40 14 I C (A) 16 60 80 100 120 RG (Ω ) 140 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 8 A 14 Revision: 2 V23990-P588-*4*-PM preliminary datasheet Brake Brake IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( µs) t ( µs) 1,00 tdoff tdoff tdon tf 0,10 tf 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 2 4 6 8 10 14 I C (A) 12 16 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 40 60 80 100 120 R G ( Ω ) 140 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 8 A Brake IGBT Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) Brake FWD Figure 12 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 10 20 0 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-2 10 -5 10 -4 At Thermal grease RthJH = 2,196 copyright Vincotech 10 -3 D= K/W 10 -2 10 -1 10 0 t p (s) 10-5 1 10 10 tp / T Phase change interface RthJH = 1,88 K/W 10-4 At Thermal grease RthJH = 3,28 15 10-3 D= K/W 10-2 10-1 100 t p (s) 101 10 tp / T Phase change interface RthJH = 2,81 K/W Revision: 2 V23990-P588-*4*-PM preliminary datasheet Brake Brake IGBT Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake IGBT Figure 14 Collector current as a function of heatsink temperature IC = f(Th) 20 IC (A) Ptot (W) 80 60 15 40 10 20 5 0 0 0 50 At Tj = 100 150 T h ( o C) 200 0 At Tj = VGE = ºC 175 Brake FWD Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 200 ºC V Brake FWD Figure 16 Forward current as a function of heatsink temperature IF = f(Th) 25 IF (A) Ptot (W) 60 T h ( o C) 50 20 40 15 30 10 20 5 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 16 50 175 100 150 Th ( o C) 200 ºC Revision: 2 V23990-P588-*4*-PM preliminary datasheet Input Rectifier Bridge Rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 105 1 IF (A) ZthJC (K/W) 10 84 10 0 10 -1 63 Tj = Tjmax-25°C 42 Tj = 25°C D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 21 0 0 At tp = 0,25 250 0,5 0,75 1 1,25 1,5 10-2 V F (V) 1,75 10-5 At D= RthJH = µs Rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 10-2 10-1 t p (s) 10110 tp / T 1,89 K/W Rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 60 IF (A) Ptot (W) 100 100 80 45 60 30 40 15 20 0 0 0 At Tj = 50 150 copyright Vincotech 100 T h ( o C) 150 0 At Tj = ºC 17 30 150 60 90 120 T h ( o C) 150 ºC Revision: 2 V23990-P588-*4*-PM preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) 22000 NTC-typical temperature characteristic R/Ω Thermistor Figure 2 Typical NTC resistance values R(T ) = R25 ⋅ e 20000 B25/100⋅ 1 − 1 T T 25 [Ω] 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 25 45 65 85 105 125 T (°C) copyright Vincotech 18 Revision: 2 V23990-P588-*4*-PM preliminary datasheet Switching Definitions Output Inverter General conditions = 150 °C Tj = 32 Ω Rgon Rgoff = 32 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 275 140 % % IC 120 tdoff 225 VCE 100 VGE 90% VCE 90% 175 80 IC 60 125 VCE VGE 40 tEoff 75 tdon 20 VGE 25 0 -20 -0,4 VCE 3% IC10% VGE10% IC 1% tEon -25 -0,2 0 0,2 0,4 0,6 0,8 2,9 3,1 3,3 3,5 time(us) time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs -15 15 600 15 0,26 0,67 Output inverter IGBT Figure 3 -15 15 600 15 0,09 0,30 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,7 Turn-on Switching Waveforms & definition of tr 120 275 fitted % IC 100 % VCE Ic 225 IC 90% 80 175 IC 60% 60 125 40 VCE IC 40% 75 20 IC90% tr IC10% 0 25 tf IC10% -20 0,1 0,2 0,3 0,4 0,5 -25 0,6 3 time (us) VC (100%) = IC (100%) = tf = copyright Vincotech 600 15 0,12 3,1 3,2 3,3 3,4 3,5 time(us) VC (100%) = IC (100%) = tr = V A µs 19 600 15 0,02 V A µs Revision: 2 V23990-P588-*4*-PM preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 225 % % Eoff Pon 100 Poff 175 80 125 60 Eon 40 75 20 VGE 90% 25 tEoff -20 -0,2 VCE 3% VGE 10% 0 tEon IC 1% -25 0 0,2 0,4 0,6 3 0,8 3,1 3,2 3,3 3,4 time (us) Poff (100%) = Eoff (100%) = tEoff = 8,96 1,36 0,67 3,5 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 8,96 1,26 0,30 kW mJ µs Output inverter IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 120 Id % 80 trr 40 0 IRRM10% Vd -40 fitted -80 -120 IRRM90% -160 IRRM100% -200 3 3,1 3,2 3,3 3,4 3,5 3,6 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 20 600 15 -26 0,31 V A A µs Revision: 2 V23990-P588-*4*-PM preliminary datasheet Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Erec % % Qrr 100 100 Id 50 tQrr 80 0 tErec 60 -50 40 Prec -100 20 -150 -200 0 3 3,25 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 3,5 15 2,98 1,00 3,75 4 4,25 time(us) 4,5 3 Prec (100%) = Erec (100%) = tErec = A µC µs 21 3,5 4 8,96 1,26 1,00 4,5 time(us) 5 kW mJ µs Revision: 2 V23990-P588-*4*-PM preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code V23990-P588-A41-PM V23990-P588-A418-PM V23990-P588-C41-PM Without thermal paste 17mm housing Without thermal paste 12mm housing Without thermal paste 17mm housing in DataMatrix as P588-A41 P588-A418 P588-C41 in packaging barcode as P588-A41 P588-A418 P588-C41 Features A version C version 3-leg 3-leg Rectifier Break IGBT w/o pin 1,31,32 Break FWD Inverter IGBT Inverter FWD Outline Pin Pin table X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 52,55 47,7 44,8 37,8 37,8 35 35 28 25,2 22,4 19,6 16,8 14 11,2 8,4 5,6 2,8 0 0 0 0 0 2,8 0 2,8 0 0 0 0 0 0 0 0 0 0 0 19 20 0 2,8 28,5 28,5 21 7,5 28,5 25 29 28,5 29 52,55 25 22 23 24 14,5 17,3 22 28,5 28,5 28,5 26 27 28 31,8 36,5 43,5 28,5 28,5 28,5 30 31 32 52,55 52,55 52,55 16,9 8,6 2,8 Pin Pin table X Y Pin Pin table X Y Pinout copyright Vincotech 22 Revision: 2 V23990-P588-*4*-PM preliminary datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 23 Revision: 2