V23990-P588-*4*-PM Maximum Ratings

V23990-P588-*4*-PM
preliminary datasheet
flow1
1200V/15A
Features
flow1
● 3~rectifier, optional BRC, Inverter, NTC
● Very compact housing, easy to route
● IGBT! / EmCon4 technology for low saturation losses
and improved EMC behaviour
12mm housing
Solder pins
17mm housing
Solder pins
17mm housing
Pressfit pins
Target Applications
Schematic
● Industrial drives
● Embedded drives
Types
● V23990-P588-A41-PM
● V23990-P588-A418-PM
● V23990-P588-C41-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
Th=80°C
Tc=80°C
tp=10ms
50Hz half sine wave
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
33
47
A
250
A
310
A2s
37
60
W
Tjmax
150
°C
VCE
1200
V
19
25
A
tp limited by Tjmax
45
A
VCE ≤ 1200V, Tj ≤ Top max,
30
A
57
86
W
±20
V
10
800
µs
V
175
°C
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
19
25
A
30
A
44
66
W
Tjmax
175
°C
VCE
1200
V
12
16
A
24
A
16
A
43
66
W
±20
V
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Brake Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpuls
Th=80°C
Tc=80°C
Tj=Tjmax
tp limited by Tjmax
VCE ≤ 1200V, Tj ≤ Top max
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Th=80°C
Tc=80°C
Tj=Tjmax
tSC
Tj≤150°C
10
VCC
VGE=15V
800
µs
V
Tjmax
175
°C
VRRM
1200
V
15
19
A
20
A
29
44
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Short circuit ratings
Maximum Junction Temperature
Brake Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
0,8
1,16
1,13
0,90
0,78
8,00
11,00
1,6
Input Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
30
Slope resistance (for power loss calc. only)
rt
30
Reverse current
Ir
Thermal resistance chip to heatsink per chip
30
1500
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
V
V
20
2
mΩ
mA
K/W
1,89
Inverter Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
VCE(sat)
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
15
0
1200
20
0
tr
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
5
5,8
6,5
0,8
1,84
2,25
2,25
0,005
200
Rgoff=32 Ω
Rgon=32 Ω
600
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
-
td(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
15
ICES
Gate-emitter leakage current
0,0005
85
85
17
22
201
264
82
123
0,817
1,255
0,878
1,358
ns
mWs
900
f=1MHz
25
0
Tj=25°C
80
pF
55
Tj=25°C
±15
Thermal grease
thickness≤50um
λ = 1 W/mK
120
nC
1,67
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
copyright Vincotech
15
Rgon=32 Ω
600
di(rec)max
/dt
Erec
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,35
1,61
1,50
25
26
153
313
1,35
2,98
1700
776
0,518
1,259
2,17
3
2,05
V
A
ns
µC
A/µs
mWs
K/W
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,3
1,82
2,23
2,15
Brake Transistor
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,0005
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
Gate-emitter leakage current
IGES
20
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
15
0
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,005
200
-
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=32 Ω
Rgon=32 Ω
600
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
53
55
18
23
169
231
82
119
0,47
0,75
0,44
0,68
ns
mWs
490
f=1MHz
25
0
Tj=25°C
50
Tj=25°C
90
nC
2,20
K/W
pF
30
Thermal grease
thickness≤50um
λ = 1 W/mK
Brake Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
trr
Reverse recovered charge
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
1200
IRRM
Reverse recovery time
Peak rate of fall of recovery current
10
Rgon=32 Ω
Rgon=32 Ω
15
di(rec)max
/dt
Erec
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,3
2,31
1,89
2,2
5
8
10
273
415
0,92
0,92
68
65
0,38
0,70
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
3,28
K/W
22000
Ω
Thermistor
Rated resistance
R
Tj=25°C
Deviation of R25
∆R/R
Tj=25°C
Power dissipation
P
Tj=25°C
200
mW
Tj=25°C
2
mW/K
Power dissipation constant
B-value
B(25/50)
B-value
B(25/100)
Tol. ±3%
Vincotech NTC Reference
copyright Vincotech
5
%
Tj=25°C
3950
K
Tj=25°C
3996
K
Tj=25°C
4
-5
B
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
40
IC (A)
IC (A)
40
30
30
20
20
10
10
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
µs
250
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
16
V CE (V)
IF (A)
IC (A)
30
14
25
12
20
10
8
15
6
10
Tj = Tjmax-25°C
Tj = Tjmax-25°C
4
Tj = 25°C
Tj = 25°C
5
2
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
10
0,0
At
tp =
µs
V
5
0,5
1,0
250
µs
1,5
2,0
2,5
V F (V)
3,0
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
3,5
E (mWs)
2,5
E (mWs)
Eon High T
Eoff High T
Eon High T
3,0
2,0
2,5
Eon Low T
Eon Low T
1,5
2,0
Eoff Low T
1,5
Eoff High T
1,0
Eoff Low T
1,0
0,5
0,5
0,0
0,0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
40
60
80
100
120 R G ( Ω ) 140
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
15
A
Output inverter FWD
1,6
Erec
Tj = Tjmax -25°C
1,4
1,6
1,4
1,2
1,2
1,0
1
0,8
Tj = Tjmax -25°C
Erec
0,8
Erec
Tj = 25°C
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
E (mWs)
20
0,6
0,6
0,4
0,4
0,2
0,2
Tj = 25°C
Erec
0,0
0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
copyright Vincotech
20
40
60
80
100
120 R G ( Ω ) 140
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
15
A
6
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( µs)
t ( µs)
1,00
tdoff
tdoff
tdon
tf
0,10
tf
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
°C
150
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
20
40
60
80
100
120 R G ( Ω ) 140
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
15
A
Output inverter FWD
Output inverter FWD
0,5
0,8
t rr( µs)
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( µs)
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
trr
Tj = Tjmax -25°C
trr
0,4
0,6
trr
Tj = Tjmax -25°C
0,3
trr
Tj = 25°C
0,4
0,2
Tj = 25°C
0,2
0,1
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/150
600
±15
32
copyright Vincotech
10
15
20
25
I C (A)
0
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
20
25/150
600
15
±15
40
60
80
100
120
R g on ( Ω )
140
°C
V
A
V
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Output Inverter
Output inverter FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
3,5
Qrr( µC)
4,0
Qrr( µC)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr
Tj = Tjmax -25°C
3,5
Tj = Tjmax -25°C
Qrr
3,0
3,0
2,5
2,5
2,0
2,0
Tj = 25°C
Qrr
Tj = 25°C
Qrr
1,5
1,5
1,0
1,0
0,5
0,5
0,0
0,0
At
At
Tj =
VCE =
VGE =
Rgon =
0
5
25/150
600
±15
32
10
15
20
25
I C (A)
0
20
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
40
60
80
100
120
30
25/150
600
15
±15
140
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
70
IrrM (A)
35
R g on ( Ω)
IRRM
60
30
IRRM
Tj = Tjmax -25°C
IRRM
50
25
Tj = 25°C
IRRM
20
40
15
30
10
20
Tj = Tjmax - 25°C
Tj = 25°C
10
5
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/150
600
±15
32
copyright Vincotech
10
15
20
25 I C (A)
0
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
20
25/150
600
15
±15
40
60
80
100
120
R gon ( Ω )
140
°C
V
A
V
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
2400
5000
dI0/dt
dIrec/dt
2000
direc / dt (A/ µs)
direc / dt (A/µ s)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dtLow T
dI0/dt
4500
dIrec/dt
4000
3500
dIo/dtLow T
1600
3000
2500
2000
dIrec/dtHigh T
800
di0/dtHigh T
dI0/dtHigh T
1200
1500
dIo/dtLow T
1000
400
500
dIrec/dtHigh T
dIrec/dtLow T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/150
600
±15
32
10
15
20
I C (A)
25
0
40
60
80
100
120
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
20
25/150
600
15
±15
140
°C
V
A
V
Output inverter FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
R gon ( Ω )
10
0
10
-1
10
-2
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-5
At
D=
RthJH =
10-4
10-2
10-1
100
t p (s)
1
1010
10
1,67
K/W
RthJH =
1,43
K/W
IGBT thermal model values
Phase change interface
Tau (s)
3,0E+00
3,4E-01
8,4E-02
1,3E-02
1,3E-03
2,6E-04
copyright Vincotech
R (C/W)
2,61
0,00
0,00
0,00
0,00
0,00
-5
At
D=
RthJH =
tp / T
Thermal grease
R (C/W)
0,09
0,51
0,56
0,33
0,11
0,06
10-3
10
-4
R (C/W)
0,05
0,30
0,87
0,56
0,23
0,16
9
-3
10
-2
10
-1
10
0
t p (s)
1
10 10
tp / T
2,17
Thermal grease
Tau (s)
3,0E+00
3,4E-01
8,4E-02
1,3E-02
1,3E-03
2,6E-04
10
K/W
RthJH =
1,86
K/W
FWD thermal model values
Phase change interface
Tau (s)
9,9E+00
6,3E-01
1,1E-01
1,6E-02
2,3E-03
3,2E-04
R (C/W)
8,48
0,00
0,00
0,00
0,00
0,00
Tau (s)
9,9E+00
6,3E-01
1,1E-01
1,6E-02
2,3E-03
3,2E-04
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
30
IC (A)
Ptot (W)
120
100
25
80
20
60
15
40
10
20
5
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
30
IF (A)
Ptot (W)
90
150
75
25
60
20
45
15
30
10
15
5
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T h ( o C)
200
°C
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(QGE)
3
VGE (V)
20
IC (A)
10
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
10uS
100uS
16
102
240V
1mS
960V
12
10mS
10
100mS
1
8
DC
100
4
0
10-1
10
0
At
D=
Th =
VGE =
Tj =
10
1
10
10
V CE (V)
2
0
3
50
75
100
125
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Output inverter IGBT
Figure 27
25
15
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
tsc (µS)
IC (sc)
17,5
125
15
100
12,5
75
10
7,5
50
5
25
2,5
0
0
12
13
14
15
16
17
18
19
V GE (V)
20
12
14
At
VCE =
1200
V
At
VCE ≤
1200
V
Tj ≤
175
ºC
Tj =
175
ºC
copyright Vincotech
11
16
18
V GE (V)
20
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
35
IC MAX
30
Ic
MODULE
20
15
Ic CHIP
25
VCE MAX
10
5
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright Vincotech
12
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Brake
Brake IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
25
IC (A)
IC (A)
25
20
20
15
15
10
10
5
5
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
0
4
At
tp =
Tj =
VGE from
µs
250
25
°C
7 V to 17 V in steps of 1 V
Brake IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Brake FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
35
IC (A)
IF (A)
10
8
28
6
21
4
Tj = Tjmax-25°C
14
Tj = Tjmax-25°C
Tj = 25°C
2
Tj = 25°C
7
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
13
1
250
1
2
2
3
3
V F (V)
4
µs
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Brake
Brake IGBT
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,6
1,5
Eon
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
1,4
Tj = Tjmax -25°C
Eon
Tj = Tjmax -25°C
1,2
1,2
Eoff
1,0
0,9
Eon
Eon
0,8
Eoff
Eoff
0,6
0,6
Eoff
0,4
0,3
Tj = 25°C
0,2
Tj = 25°C
0
0,0
0
2
4
6
8
10
12
14 I C (A)
0
16
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
20
40
60
80
100
120 R G ( Ω ) 140
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
8
A
Brake FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,8
E (mWs)
1
E (mWs)
Erec
Tj = Tjmax -25°C
0,7
Tj = Tjmax - 25°C
Erec
0,8
0,6
0,5
0,6
Erec
0,4
Tj = 25°C
Tj = 25°C
0,4
Erec
0,3
0,2
0,2
0,1
0
0
0
0
2
4
6
8
10
12
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
copyright Vincotech
20
40
14 I C (A) 16
60
80
100
120
RG (Ω )
140
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
8
A
14
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Brake
Brake IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( µs)
t ( µs)
1,00
tdoff
tdoff
tdon
tf
0,10
tf
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
2
4
6
8
10
14 I C (A)
12
16
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
40
60
80
100
120 R G ( Ω ) 140
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
8
A
Brake IGBT
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Brake FWD
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
10
20
0
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-2
10
-5
10
-4
At
Thermal grease
RthJH =
2,196
copyright Vincotech
10
-3
D=
K/W
10
-2
10
-1
10
0
t p (s)
10-5
1
10 10
tp / T
Phase change interface
RthJH =
1,88
K/W
10-4
At
Thermal grease
RthJH =
3,28
15
10-3
D=
K/W
10-2
10-1
100
t p (s)
101 10
tp / T
Phase change interface
RthJH =
2,81
K/W
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Brake
Brake IGBT
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
20
IC (A)
Ptot (W)
80
60
15
40
10
20
5
0
0
0
50
At
Tj =
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
175
Brake FWD
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
200
ºC
V
Brake FWD
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
25
IF (A)
Ptot (W)
60
T h ( o C)
50
20
40
15
30
10
20
5
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
16
50
175
100
150
Th ( o C)
200
ºC
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Input Rectifier Bridge
Rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
105
1
IF (A)
ZthJC (K/W)
10
84
10
0
10
-1
63
Tj = Tjmax-25°C
42
Tj = 25°C
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
21
0
0
At
tp =
0,25
250
0,5
0,75
1
1,25
1,5
10-2
V F (V) 1,75
10-5
At
D=
RthJH =
µs
Rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
10-2
10-1
t p (s)
10110
tp / T
1,89
K/W
Rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
60
IF (A)
Ptot (W)
100
100
80
45
60
30
40
15
20
0
0
0
At
Tj =
50
150
copyright Vincotech
100
T h ( o C)
150
0
At
Tj =
ºC
17
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
22000
NTC-typical temperature characteristic
R/Ω
Thermistor
Figure 2
Typical NTC resistance values
R(T ) = R25 ⋅ e
20000



 B25/100⋅ 1 − 1  
 T T 

25  


[Ω]
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
25
45
65
85
105
125
T (°C)
copyright Vincotech
18
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 32 Ω
Rgon
Rgoff
= 32 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
275
140
%
%
IC
120
tdoff
225
VCE
100
VGE 90%
VCE 90%
175
80
IC
60
125
VCE
VGE
40
tEoff
75
tdon
20
VGE
25
0
-20
-0,4
VCE 3%
IC10%
VGE10%
IC 1%
tEon
-25
-0,2
0
0,2
0,4
0,6
0,8
2,9
3,1
3,3
3,5
time(us)
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
-15
15
600
15
0,26
0,67
Output inverter IGBT
Figure 3
-15
15
600
15
0,09
0,30
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,7
Turn-on Switching Waveforms & definition of tr
120
275
fitted
%
IC
100
%
VCE
Ic
225
IC 90%
80
175
IC 60%
60
125
40
VCE
IC 40%
75
20
IC90%
tr
IC10%
0
25
tf
IC10%
-20
0,1
0,2
0,3
0,4
0,5
-25
0,6
3
time (us)
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
600
15
0,12
3,1
3,2
3,3
3,4
3,5
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
19
600
15
0,02
V
A
µs
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
225
%
%
Eoff
Pon
100
Poff
175
80
125
60
Eon
40
75
20
VGE 90%
25
tEoff
-20
-0,2
VCE 3%
VGE 10%
0
tEon
IC 1%
-25
0
0,2
0,4
0,6
3
0,8
3,1
3,2
3,3
3,4
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
8,96
1,36
0,67
3,5
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
8,96
1,26
0,30
kW
mJ
µs
Output inverter IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
120
Id
%
80
trr
40
0
IRRM10%
Vd
-40
fitted
-80
-120
IRRM90%
-160
IRRM100%
-200
3
3,1
3,2
3,3
3,4
3,5
3,6
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
20
600
15
-26
0,31
V
A
A
µs
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Erec
%
%
Qrr
100
100
Id
50
tQrr
80
0
tErec
60
-50
40
Prec
-100
20
-150
-200
0
3
3,25
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
3,5
15
2,98
1,00
3,75
4
4,25 time(us) 4,5
3
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
21
3,5
4
8,96
1,26
1,00
4,5
time(us)
5
kW
mJ
µs
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
V23990-P588-A41-PM
V23990-P588-A418-PM
V23990-P588-C41-PM
Without thermal paste 17mm housing
Without thermal paste 12mm housing
Without thermal paste 17mm housing
in DataMatrix as
P588-A41
P588-A418
P588-C41
in packaging barcode as
P588-A41
P588-A418
P588-C41
Features
A version
C version
3-leg
3-leg
Rectifier
Break IGBT
w/o pin
1,31,32
Break FWD
Inverter IGBT
Inverter FWD
Outline
Pin
Pin table
X
Y
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
52,55
47,7
44,8
37,8
37,8
35
35
28
25,2
22,4
19,6
16,8
14
11,2
8,4
5,6
2,8
0
0
0
0
0
2,8
0
2,8
0
0
0
0
0
0
0
0
0
0
0
19
20
0
2,8
28,5
28,5
21
7,5
28,5
25
29
28,5
29
52,55
25
22
23
24
14,5
17,3
22
28,5
28,5
28,5
26
27
28
31,8
36,5
43,5
28,5
28,5
28,5
30
31
32
52,55
52,55
52,55
16,9
8,6
2,8
Pin
Pin table
X
Y
Pin
Pin table
X
Y
Pinout
copyright Vincotech
22
Revision: 2
V23990-P588-*4*-PM
preliminary datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
23
Revision: 2