V23990 P824 F10 D4 14

V23990-P824-F10-PM
datasheet
flow PACK 1 3rd gen
600 V / 75 A
Features
flow 1 housing
● Compact flow 1 housing
● Compact and Low Inductance Design
● Built-in NTC
Target Applications
Schematic
● Motor Drive
● Power Generation
● UPS
Types
● V23990-P824-F10-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
V CE
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
Tj=Tjmax
tp limited by T jmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
T jmax
59
225
94
A
A
W
±20
V
6
360
µs
V
175
°C
600
V
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
V RRM
IF
I FRM
P tot
Tj=25°C
Tj=Tjmax
tp limited by T jmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
48
150
69
A
A
W
T jmax
175
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+150
°C
4000
VDC
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
V is
t=1min
1
12 Aug. 2015 / Revision 4
V23990-P824-F10-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
Tj
Min
Unit
Typ
Max
5
5,8
6,5
1,1
1,54
1,79
2,2
Inverter Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
VCE=VGE
V CEsat
0,0012
15
75
Collector-emitter cut-off current incl. Diode
I CES
0
600
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
0,5
650
4
t d(on)
t d(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=4 Ω
Rgon=4 Ω
300
±15
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
160
162
21
26
208
242
105
118
1,08
1,60
1,99
2,76
ns
mWs
4620
f=1MHz
0
25
Tj=25°C
288
pF
137
Vcc=480V
±15
75
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
470
nC
1,01
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink
75
Rgon=4 Ω
300
±15
( di rf/dt )max
E rec
R th(j-s)
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,2
Thermal grease
thickness≤50um
λ = 1 W/mK
1,79
1,75
58
88
133
169
2,23
6,83
3338
3540
0,51
1,50
2,2
V
A
ns
nC
A/µs
mWs
1,38
K/W
Thermistor
Rated resistance
R
Deviation of R100
Δ R/R
Power dissipation
P
Tj=25ºC
R100=401 Ω
Tj=100ºC
Power dissipation constant
4,7
-12,4
210
mW
Tj=25ºC
3,5
mW/K
K
B (25/50)
Tj=25ºC
3590
B-value
B (25/100)
Tj=25ºC
3650
copyright Vincotech
%
Tj=25ºC
B-value
Vincotech NTC Reference
kΩ
12,4
K
D
2
12 Aug. 2015 / Revision 4
V23990-P824-F10-PM
datasheet
Output Inverter
Figure 1
Typical output characteristics
I C = f(V CE)
Output inverter IGBT
Figure 2
Output inverter IGBT
Typical output characteristics
I C = f(V CE)
IC (A)
210
IC (A)
210
175
175
140
140
105
105
70
70
35
35
0
0
0
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
1
2
3
4
V CE (V)
5
At
tp =
Tj =
250
µs
25
°C
VGE from 7 V to 17 V in steps of 1 V
250
µs
150
°C
VGE from 7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I c = f(V GE)
Output inverter IGBT
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
210
IC (A)
IF (A)
75
Output inverter FWD
175
60
140
45
105
Tj = Tjmax-25°C
30
70
Tj = 25°C
Tj = Tjmax-25°C
15
35
Tj = 25°C
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
10
0
At
tp =
µs
V
3
0,5
1
250
µs
1,5
2
2,5
VF (V)
3
12 Aug. 2015 / Revision 4
V23990-P824-F10-PM
datasheet
Output Inverter
Figure 5
Output inverter IGBT
Figure 6
Output inverter IGBT
Typical switching energy losses
Typical switching energy losses
as a function of collector current
E = f(I c)
as a function of gate resistor
E = f(R G)
E (mWs)
5
E (mWs)
5
Eoff
4
4
Eon
Eoff
3
Eoff
Eon
3
Eon
Eoff
Eon:
2
2
1
1
0
0
0
30
60
90
120
I C (A)
150
0
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
°C
25/150
V CE =
300
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
With an inductive load at
Tj =
°C
25/150
V CE =
300
V
V GE =
±15
V
IC =
75
A
Figure 7
Output inverter IGBT
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
Figure 8
Output inverter IGBT
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
2,5
E (mWs)
2,5
Erec
2
2
1,5
1,5
Erec
Erec
1
1
Erec
0,5
0,5
0
0
0
30
60
90
120
I C (A)
150
0
With an inductive load at
Tj =
25/150
°C
V CE =
300
V
V GE =
±15
V
R gon =
4
Ω
copyright Vincotech
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/150
°C
V CE =
300
V
V GE =
±15
V
IC =
75
A
4
12 Aug. 2015 / Revision 4
V23990-P824-F10-PM
datasheet
Output Inverter
Figure 9
Output inverter IGBT
Figure 10
Output inverter IGBT
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
1
tdoff
t ( µs)
t ( µs)
1
tdoff
tdon
tf
tdon
tf
0,1
0,1
tr
tr
0,01
0,01
0,001
0,001
0
30
60
90
120
IC (A)
150
0
With an inductive load at
Tj =
150
°C
V CE =
300
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
RG (Ω )
16
20
With an inductive load at
Tj =
150
°C
V CE =
300
V
V GE =
±15
V
IC =
75
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
Output inverter FWD
Figure 12
Output inverter FWD
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,4
t rr( µs)
t rr( µs)
0,4
trr
0,3
0,3
0,2
trr
0,2
trr
trr
0,1
0,1
0
0
0
At
Tj =
V CE =
V GE =
R gon =
30
25/150
300
±15
4
copyright Vincotech
60
90
120
I C (A)
150
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
5
4
25/150
300
75
±15
8
12
16
R Gon ( Ω ) 20
°C
V
A
V
12 Aug. 2015 / Revision 4
V23990-P824-F10-PM
datasheet
Output Inverter
Figure 13
Output inverter FWD
Figure 14
Output inverter FWD
Typical reverse recovery charge as a
function of collector current
Q rr = f(I c)
function of IGBT turn on gate resistor
Q rr = f(R gon)
12
12
Qrr ( µC)
Qrr ( µC)
Typical reverse recovery charge as a
Qrr
10
10
8
8
Qrr
6
6
Qrr
4
4
2
2
0
0
0
At
Qrr
At
Tj =
V CE =
V GE =
R gon =
30
60
90
120
I C (A)
150
0
4
8
25/150
300
°C
V
At
Tj =
VR=
25/150
300
°C
V
±15
4
V
Ω
IF=
V GE =
75
±15
A
V
Figure 15
Output inverter FWD
Typical reverse recovery current as a
function of collector current
I RRM = f(I c)
12
16
R Gon ( Ω)
20
Figure 16
Output inverter FWD
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
150
IrrM (A)
IrrM (A)
150
120
120
IRRM
90
90
IRRM
60
60
30
30
IRRM
IRRM
0
0
0
At
Tj =
V CE =
V GE =
R gon =
30
25/150
300
±15
4
copyright Vincotech
60
90
120
I C (A)
150
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
6
4
25/150
300
75
±15
8
12
16
R Gon ( Ω )
20
°C
V
A
V
12 Aug. 2015 / Revision 4
V23990-P824-F10-PM
datasheet
Output Inverter
Figure 17
Output inverter FWD
Figure 18
Output inverter FWD
Typical rate of fall of forward
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
6000
7500
direc / dt (A/ µs)
direc / dt (A/ µs)
dI0/dt
dIrec/dt
5000
dI0/dt
dIrec/dt
6000
4000
4500
3000
3000
2000
1500
1000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
30
60
90
I C (A)
120
150
0
8
25/150
300
°C
V
At
Tj =
VR=
25/150
300
°C
V
±15
4
V
Ω
IF=
V GE =
75
±15
A
V
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Output inverter IGBT
12
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
R Gon ( Ω) 20
16
Output inverter FWD
101
ZthJH (K/W)
ZthJH (K/W)
101
100
100
10
4
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D =
R =
thJH
10-4
10-3
10-2
10-1
100
t p (s)
1021
tp/T
1,01
K/W
IGBT thermal model values
R (K/W)
0,03
0,16
0,54
Tau (s)
9,8E+00
1,1E+00
1,8E-01
0,18
0,06
0,04
3,3E-02
5,8E-03
4,6E-04
copyright Vincotech
10-5
10-4
At
D =
R thJH =
tp/T
1,38
10-3
10-2
10-1
100
t p (s)
1021
K/W
FWD thermal model values
R (K/W)
7
R (K/W)
0,03
0,17
0,64
Tau (s)
9,9E+00
1,0E+00
1,4E-01
0,31
0,15
0,08
3,3E-02
6,2E-03
4,2E-04
R (K/W)
12 Aug. 2015 / Revision 4
V23990-P824-F10-PM
datasheet
Output Inverter
Figure 21
Output inverter IGBT
Figure 22
Output inverter IGBT
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T h)
function of heatsink temperature
I C = f(T h)
90
Ptot (W)
IC (A)
200
75
160
60
120
45
80
30
40
15
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
200
0
At
Tj =
°C
175
15
V GE =
Figure 23
Output inverter FWD
50
100
Th ( o C)
200
°C
V
Figure 24
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
150
Output inverter FWD
Forward current as a
function of heatsink temperature
I F = f(T h)
90
IF (A)
Ptot (W)
150
75
120
60
90
45
60
30
30
15
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
°C
8
50
175
100
150
Th ( o C)
200
°C
12 Aug. 2015 / Revision 4
V23990-P824-F10-PM
datasheet
Output Inverter
Figure 25
Safe operating area as a function
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
of collector-emitter voltage
I C = f(V CE)
V GE = f(Q g)
Output inverter IGBT
IC (A)
VGE (V)
103
15
10u
100u
102
100m
10m
1m
120V
DC
480V
10
101
5
100
0
10-1 0
10
101
At
D =
0
103
V CE (V)
102
At
IC =
single pulse
Th =
80
±15
T jmax
V GE =
Tj =
100
200
75
300
400
Qg (nC)
500
A
ºC
V
ºC
Figure 27
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
t sc = f(V GE)
Output inverter IGBT
Typical short circuit collector current as a function of
gate-emitter voltage
V GE = f(Q GE)
1500
tsc (µS)
IC (sc)
12
11
1250
10
9
1000
8
7
750
6
5
500
4
3
250
2
1
0
0
10
At
V CE =
Tj ≤
10,5
11
11,5
600
V
150
ºC
copyright Vincotech
12
12,5
13
13,5
14
14,5
12
15
V GE (V)
At
V CE ≤
Tj ≤
9
13
14
15
400
V
150
ºC
16
17
18
19
20
V GE (V)
12 Aug. 2015 / Revision 4
V23990-P824-F10-PM
datasheet
Figure 29
IGBT
Reverse bias safe operating area
I C = f(V CE)
IC (A)
180
160
IC MAX
140
Ic
100
Ic CHIP
MODULE
120
80
VCE MAX
60
40
20
0
0
At
Tj =
100
T jmax-25
Switching mode :
copyright Vincotech
200
300
400
500
600
700
V CE (V)
ºC
3phase SPWM
10
12 Aug. 2015 / Revision 4
V23990-P824-F10-PM
datasheet
Thermistor
Figure 1
Thermistor
Typical NTC characteristic
as a function of temperature
R T = f(T )
NTC-typical temperature characteristic
R/Ω
5000
4000
3000
2000
1000
0
25
copyright Vincotech
50
75
100
T (°C)
125
11
12 Aug. 2015 / Revision 4
V23990-P824-F10-PM
datasheet
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
= 4Ω
R gon
R goff
= 4Ω
Figure 1
Output inverter IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Output inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
240
130
tdoff
Ic
110
Uce
90
200
Uce 90%
Uge 90%
160
70
120
Ic
%50
tEoff
Uce
%
80
Ic 1%
10
Uge
tdon
30
40
Ic10%
Uce3%
Uge10%
Uge
-10
0
-30
-0,2
tEon
-40
0
0,2
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
-15
15
300
t doff =
t E off =
time (us)
0,4
0,6
0,8
2,8
2,95
3,1
V
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
75
A
I C (100%) =
75
A
0,24
0,66
µs
µs
t don =
t E on =
0,16
0,33
µs
µs
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
-15
15
300
time(us)3,25
3,4
3,55
V
V
V
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of t r
140
260
fitted
120
Uce
220
100
Ic
180
Ic 90%
80
140
Ic 60%
%
60
%
100
Ic90%
Uce
Ic 40%
40
tr
60
20
Ic10%
tf
0
-20
0,15
20
Ic10%
Ic
-20
0,2
0,25
0,3
time (us)
V C (100%) =
I C (100%) =
300
75
V
A
V C (100%) =
I C (100%) =
300
75
V
A
tf =
0,12
µs
tr =
0,03
µs
copyright Vincotech
0,35
0,4
0,45
2,9
12
3
3,1
time(us)
3,2
3,3
3,4
12 Aug. 2015 / Revision 4
V23990-P824-F10-PM
datasheet
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
120
160
Eoff
Poff
Pon
100
130
80
100
Eon
60
%
70
%
40
40
20
Uge10%
Uce3%
10
0
tEon
Uge90%
-20
-0,2
tEoff
Ic 1%
-20
0
P off (100%) =
E off (100%) =
t E off =
0,2
22,54
2,76
0,66
time (us)
0,4
0,6
2,9
0,8
kW
mJ
µs
3
P on (100%) =
E on (100%) =
t E on =
Figure 7
Output inverter FWD
3,1
3,2
time(us)
22,54
1,60
0,33
3,3
3,4
3,5
kW
mJ
µs
Figure 8
Output inverter IGBT
Turn-off Switching Waveforms & definition of t rr
Gate voltage vs Gate charge (measured)
20
120
15
Id
80
trr
10
40
fitted
Uge (V)
5
0
Ud
%
0
IRRM10%
-40
-5
-80
-10
IRRM90%
-15
-20
-150
-160
50
250
Qg (nC)
V GE off =
V GE on =
V C (100%) =
I C (100%) =
-15
15
300
75
V
V
V
A
Qg =
715,15
nC
copyright Vincotech
IRRM100%
-120
450
650
3
850
3,1
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
13
3,2
300
75
-88
0,17
3,3
3,4
time(us)
3,5
3,6
3,7
V
A
A
µs
12 Aug. 2015 / Revision 4
V23990-P824-F10-PM
datasheet
Switching Definitions Output Inverter
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 10
Output inverter FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
120
Qrr
Id
Erec
100
100
50
80
tQint
0
60
%
%
tErec
-50
40
-100
20
-150
0
Prec
-200
-20
2,9
3,15
I d (100%) =
Q rr (100%) =
t Qint =
copyright Vincotech
3,4
75
6,83
0,60
time(us)
3,65
3,9
4,15
2,9
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
14
3,15
3,4
22,54
1,50
0,60
time(us)
3,65
3,9
4,15
kW
mJ
µs
12 Aug. 2015 / Revision 4
V23990-P824-F10-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
without thermal paste 17mm housing
in DataMatrix as
V23990-P824-F10-PM
P824-F10
in packaging barcode as
P824-F10
Outline
Pin table
Pin
X
Y
52,6
0
2
49,9
0
3
42,65
0
4
39,65
0
5
35,15
2,8
6
28,4
0
7
24
2,8
8
21
0
9
12,2
0
10
9,2
0
11
2,7
0
12
0
0
13
0
14,65
14
2,7
14,65
15
0
28,6
16
2,7
28,6
17
5,4
28,6
18
9,6
28,6
19
12,6
28,6
20
19,6
28,6
21
22,3
28,6
22
25
28,6
23
29,7
28,6
24
32,7
28,6
25
39,7
28,6
26
42,7
28,6
27
42,2
28,6
28
49,9
28,6
29
52,6
28,6
30
52,6
14,56
31
49,9
14,56
1
Pinout
copyright Vincotech
15
12 Aug. 2015 / Revision 4
V23990-P823-F10-PM
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
100
>SPQ Standard
<SPQ Sample
Handling instruction
Handling instructions for flow 1 packages see vincotech.com website.
Package data
Package data for flow 1 packages see vincotech.com website.
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”)
are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be
incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves
the right to make any changes without further notice to any products to improve reliability, function or
design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or
completeness of said information or that the application or use of any of the same will avoid hazards,
accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe
third parties rights or give desired results. It is reader’s sole responsibility to test and determine the
suitability of the information and the product for reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems
without the express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into
the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance
with instructions for use provided in la
2. A critical component is any component of a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system, or to affect its safety or
effectiveness.
copyright Vincotech
16
12 Aug. 2015 / Revision 3