V23990-P824-F10-PM datasheet flow PACK 1 3rd gen 600 V / 75 A Features flow 1 housing ● Compact flow 1 housing ● Compact and Low Inductance Design ● Built-in NTC Target Applications Schematic ● Motor Drive ● Power Generation ● UPS Types ● V23990-P824-F10-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Inverter Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature Tj=Tjmax tp limited by T jmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V T jmax 59 225 94 A A W ±20 V 6 360 µs V 175 °C 600 V Inverter Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation V RRM IF I FRM P tot Tj=25°C Tj=Tjmax tp limited by T jmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Th=80°C Tc=80°C 48 150 69 A A W T jmax 175 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+150 °C 4000 VDC Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage copyright Vincotech V is t=1min 1 12 Aug. 2015 / Revision 4 V23990-P824-F10-PM datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] Tj Min Unit Typ Max 5 5,8 6,5 1,1 1,54 1,79 2,2 Inverter Transistor Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) VCE=VGE V CEsat 0,0012 15 75 Collector-emitter cut-off current incl. Diode I CES 0 600 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) 0,5 650 4 t d(on) t d(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Rgoff=4 Ω Rgon=4 Ω 300 ±15 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 160 162 21 26 208 242 105 118 1,08 1,60 1,99 2,76 ns mWs 4620 f=1MHz 0 25 Tj=25°C 288 pF 137 Vcc=480V ±15 75 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 470 nC 1,01 K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink 75 Rgon=4 Ω 300 ±15 ( di rf/dt )max E rec R th(j-s) 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,2 Thermal grease thickness≤50um λ = 1 W/mK 1,79 1,75 58 88 133 169 2,23 6,83 3338 3540 0,51 1,50 2,2 V A ns nC A/µs mWs 1,38 K/W Thermistor Rated resistance R Deviation of R100 Δ R/R Power dissipation P Tj=25ºC R100=401 Ω Tj=100ºC Power dissipation constant 4,7 -12,4 210 mW Tj=25ºC 3,5 mW/K K B (25/50) Tj=25ºC 3590 B-value B (25/100) Tj=25ºC 3650 copyright Vincotech % Tj=25ºC B-value Vincotech NTC Reference kΩ 12,4 K D 2 12 Aug. 2015 / Revision 4 V23990-P824-F10-PM datasheet Output Inverter Figure 1 Typical output characteristics I C = f(V CE) Output inverter IGBT Figure 2 Output inverter IGBT Typical output characteristics I C = f(V CE) IC (A) 210 IC (A) 210 175 175 140 140 105 105 70 70 35 35 0 0 0 1 2 3 4 V CE (V) 5 0 At tp = Tj = 1 2 3 4 V CE (V) 5 At tp = Tj = 250 µs 25 °C VGE from 7 V to 17 V in steps of 1 V 250 µs 150 °C VGE from 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I c = f(V GE) Output inverter IGBT Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) 210 IC (A) IF (A) 75 Output inverter FWD 175 60 140 45 105 Tj = Tjmax-25°C 30 70 Tj = 25°C Tj = Tjmax-25°C 15 35 Tj = 25°C 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0 At tp = µs V 3 0,5 1 250 µs 1,5 2 2,5 VF (V) 3 12 Aug. 2015 / Revision 4 V23990-P824-F10-PM datasheet Output Inverter Figure 5 Output inverter IGBT Figure 6 Output inverter IGBT Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I c) as a function of gate resistor E = f(R G) E (mWs) 5 E (mWs) 5 Eoff 4 4 Eon Eoff 3 Eoff Eon 3 Eon Eoff Eon: 2 2 1 1 0 0 0 30 60 90 120 I C (A) 150 0 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = °C 25/150 V CE = 300 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω With an inductive load at Tj = °C 25/150 V CE = 300 V V GE = ±15 V IC = 75 A Figure 7 Output inverter IGBT Typical reverse recovery energy loss as a function of collector current E rec = f(I c) Figure 8 Output inverter IGBT Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) 2,5 E (mWs) 2,5 Erec 2 2 1,5 1,5 Erec Erec 1 1 Erec 0,5 0,5 0 0 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = 25/150 °C V CE = 300 V V GE = ±15 V R gon = 4 Ω copyright Vincotech 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/150 °C V CE = 300 V V GE = ±15 V IC = 75 A 4 12 Aug. 2015 / Revision 4 V23990-P824-F10-PM datasheet Output Inverter Figure 9 Output inverter IGBT Figure 10 Output inverter IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) 1 tdoff t ( µs) t ( µs) 1 tdoff tdon tf tdon tf 0,1 0,1 tr tr 0,01 0,01 0,001 0,001 0 30 60 90 120 IC (A) 150 0 With an inductive load at Tj = 150 °C V CE = 300 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 4 8 12 RG (Ω ) 16 20 With an inductive load at Tj = 150 °C V CE = 300 V V GE = ±15 V IC = 75 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) Output inverter FWD Figure 12 Output inverter FWD Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,4 t rr( µs) t rr( µs) 0,4 trr 0,3 0,3 0,2 trr 0,2 trr trr 0,1 0,1 0 0 0 At Tj = V CE = V GE = R gon = 30 25/150 300 ±15 4 copyright Vincotech 60 90 120 I C (A) 150 0 At Tj = VR= IF= V GE = °C V V Ω 5 4 25/150 300 75 ±15 8 12 16 R Gon ( Ω ) 20 °C V A V 12 Aug. 2015 / Revision 4 V23990-P824-F10-PM datasheet Output Inverter Figure 13 Output inverter FWD Figure 14 Output inverter FWD Typical reverse recovery charge as a function of collector current Q rr = f(I c) function of IGBT turn on gate resistor Q rr = f(R gon) 12 12 Qrr ( µC) Qrr ( µC) Typical reverse recovery charge as a Qrr 10 10 8 8 Qrr 6 6 Qrr 4 4 2 2 0 0 0 At Qrr At Tj = V CE = V GE = R gon = 30 60 90 120 I C (A) 150 0 4 8 25/150 300 °C V At Tj = VR= 25/150 300 °C V ±15 4 V Ω IF= V GE = 75 ±15 A V Figure 15 Output inverter FWD Typical reverse recovery current as a function of collector current I RRM = f(I c) 12 16 R Gon ( Ω) 20 Figure 16 Output inverter FWD Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 150 IrrM (A) IrrM (A) 150 120 120 IRRM 90 90 IRRM 60 60 30 30 IRRM IRRM 0 0 0 At Tj = V CE = V GE = R gon = 30 25/150 300 ±15 4 copyright Vincotech 60 90 120 I C (A) 150 0 At Tj = VR= IF= V GE = °C V V Ω 6 4 25/150 300 75 ±15 8 12 16 R Gon ( Ω ) 20 °C V A V 12 Aug. 2015 / Revision 4 V23990-P824-F10-PM datasheet Output Inverter Figure 17 Output inverter FWD Figure 18 Output inverter FWD Typical rate of fall of forward Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 6000 7500 direc / dt (A/ µs) direc / dt (A/ µs) dI0/dt dIrec/dt 5000 dI0/dt dIrec/dt 6000 4000 4500 3000 3000 2000 1500 1000 0 0 0 At Tj = V CE = V GE = R gon = 30 60 90 I C (A) 120 150 0 8 25/150 300 °C V At Tj = VR= 25/150 300 °C V ±15 4 V Ω IF= V GE = 75 ±15 A V Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) Output inverter IGBT 12 Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) R Gon ( Ω) 20 16 Output inverter FWD 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 10 4 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D = R = thJH 10-4 10-3 10-2 10-1 100 t p (s) 1021 tp/T 1,01 K/W IGBT thermal model values R (K/W) 0,03 0,16 0,54 Tau (s) 9,8E+00 1,1E+00 1,8E-01 0,18 0,06 0,04 3,3E-02 5,8E-03 4,6E-04 copyright Vincotech 10-5 10-4 At D = R thJH = tp/T 1,38 10-3 10-2 10-1 100 t p (s) 1021 K/W FWD thermal model values R (K/W) 7 R (K/W) 0,03 0,17 0,64 Tau (s) 9,9E+00 1,0E+00 1,4E-01 0,31 0,15 0,08 3,3E-02 6,2E-03 4,2E-04 R (K/W) 12 Aug. 2015 / Revision 4 V23990-P824-F10-PM datasheet Output Inverter Figure 21 Output inverter IGBT Figure 22 Output inverter IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T h) function of heatsink temperature I C = f(T h) 90 Ptot (W) IC (A) 200 75 160 60 120 45 80 30 40 15 0 0 0 At Tj = 50 175 100 150 Th ( o C) 200 0 At Tj = °C 175 15 V GE = Figure 23 Output inverter FWD 50 100 Th ( o C) 200 °C V Figure 24 Power dissipation as a function of heatsink temperature P tot = f(T h) 150 Output inverter FWD Forward current as a function of heatsink temperature I F = f(T h) 90 IF (A) Ptot (W) 150 75 120 60 90 45 60 30 30 15 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = °C 8 50 175 100 150 Th ( o C) 200 °C 12 Aug. 2015 / Revision 4 V23990-P824-F10-PM datasheet Output Inverter Figure 25 Safe operating area as a function Output inverter IGBT Figure 26 Gate voltage vs Gate charge of collector-emitter voltage I C = f(V CE) V GE = f(Q g) Output inverter IGBT IC (A) VGE (V) 103 15 10u 100u 102 100m 10m 1m 120V DC 480V 10 101 5 100 0 10-1 0 10 101 At D = 0 103 V CE (V) 102 At IC = single pulse Th = 80 ±15 T jmax V GE = Tj = 100 200 75 300 400 Qg (nC) 500 A ºC V ºC Figure 27 Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage t sc = f(V GE) Output inverter IGBT Typical short circuit collector current as a function of gate-emitter voltage V GE = f(Q GE) 1500 tsc (µS) IC (sc) 12 11 1250 10 9 1000 8 7 750 6 5 500 4 3 250 2 1 0 0 10 At V CE = Tj ≤ 10,5 11 11,5 600 V 150 ºC copyright Vincotech 12 12,5 13 13,5 14 14,5 12 15 V GE (V) At V CE ≤ Tj ≤ 9 13 14 15 400 V 150 ºC 16 17 18 19 20 V GE (V) 12 Aug. 2015 / Revision 4 V23990-P824-F10-PM datasheet Figure 29 IGBT Reverse bias safe operating area I C = f(V CE) IC (A) 180 160 IC MAX 140 Ic 100 Ic CHIP MODULE 120 80 VCE MAX 60 40 20 0 0 At Tj = 100 T jmax-25 Switching mode : copyright Vincotech 200 300 400 500 600 700 V CE (V) ºC 3phase SPWM 10 12 Aug. 2015 / Revision 4 V23990-P824-F10-PM datasheet Thermistor Figure 1 Thermistor Typical NTC characteristic as a function of temperature R T = f(T ) NTC-typical temperature characteristic R/Ω 5000 4000 3000 2000 1000 0 25 copyright Vincotech 50 75 100 T (°C) 125 11 12 Aug. 2015 / Revision 4 V23990-P824-F10-PM datasheet Switching Definitions Output Inverter General conditions Tj = 150 °C = 4Ω R gon R goff = 4Ω Figure 1 Output inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Output inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 240 130 tdoff Ic 110 Uce 90 200 Uce 90% Uge 90% 160 70 120 Ic %50 tEoff Uce % 80 Ic 1% 10 Uge tdon 30 40 Ic10% Uce3% Uge10% Uge -10 0 -30 -0,2 tEon -40 0 0,2 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = -15 15 300 t doff = t E off = time (us) 0,4 0,6 0,8 2,8 2,95 3,1 V V V V GE (0%) = V GE (100%) = V C (100%) = 75 A I C (100%) = 75 A 0,24 0,66 µs µs t don = t E on = 0,16 0,33 µs µs Figure 3 Output inverter IGBT Turn-off Switching Waveforms & definition of t f -15 15 300 time(us)3,25 3,4 3,55 V V V Figure 4 Output inverter IGBT Turn-on Switching Waveforms & definition of t r 140 260 fitted 120 Uce 220 100 Ic 180 Ic 90% 80 140 Ic 60% % 60 % 100 Ic90% Uce Ic 40% 40 tr 60 20 Ic10% tf 0 -20 0,15 20 Ic10% Ic -20 0,2 0,25 0,3 time (us) V C (100%) = I C (100%) = 300 75 V A V C (100%) = I C (100%) = 300 75 V A tf = 0,12 µs tr = 0,03 µs copyright Vincotech 0,35 0,4 0,45 2,9 12 3 3,1 time(us) 3,2 3,3 3,4 12 Aug. 2015 / Revision 4 V23990-P824-F10-PM datasheet Switching Definitions Output Inverter Figure 5 Output inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Output inverter IGBT Turn-on Switching Waveforms & definition of t Eon 120 160 Eoff Poff Pon 100 130 80 100 Eon 60 % 70 % 40 40 20 Uge10% Uce3% 10 0 tEon Uge90% -20 -0,2 tEoff Ic 1% -20 0 P off (100%) = E off (100%) = t E off = 0,2 22,54 2,76 0,66 time (us) 0,4 0,6 2,9 0,8 kW mJ µs 3 P on (100%) = E on (100%) = t E on = Figure 7 Output inverter FWD 3,1 3,2 time(us) 22,54 1,60 0,33 3,3 3,4 3,5 kW mJ µs Figure 8 Output inverter IGBT Turn-off Switching Waveforms & definition of t rr Gate voltage vs Gate charge (measured) 20 120 15 Id 80 trr 10 40 fitted Uge (V) 5 0 Ud % 0 IRRM10% -40 -5 -80 -10 IRRM90% -15 -20 -150 -160 50 250 Qg (nC) V GE off = V GE on = V C (100%) = I C (100%) = -15 15 300 75 V V V A Qg = 715,15 nC copyright Vincotech IRRM100% -120 450 650 3 850 3,1 V d (100%) = I d (100%) = I RRM (100%) = t rr = 13 3,2 300 75 -88 0,17 3,3 3,4 time(us) 3,5 3,6 3,7 V A A µs 12 Aug. 2015 / Revision 4 V23990-P824-F10-PM datasheet Switching Definitions Output Inverter Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 10 Output inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 120 Qrr Id Erec 100 100 50 80 tQint 0 60 % % tErec -50 40 -100 20 -150 0 Prec -200 -20 2,9 3,15 I d (100%) = Q rr (100%) = t Qint = copyright Vincotech 3,4 75 6,83 0,60 time(us) 3,65 3,9 4,15 2,9 A µC µs P rec (100%) = E rec (100%) = t E rec = 14 3,15 3,4 22,54 1,50 0,60 time(us) 3,65 3,9 4,15 kW mJ µs 12 Aug. 2015 / Revision 4 V23990-P824-F10-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code without thermal paste 17mm housing in DataMatrix as V23990-P824-F10-PM P824-F10 in packaging barcode as P824-F10 Outline Pin table Pin X Y 52,6 0 2 49,9 0 3 42,65 0 4 39,65 0 5 35,15 2,8 6 28,4 0 7 24 2,8 8 21 0 9 12,2 0 10 9,2 0 11 2,7 0 12 0 0 13 0 14,65 14 2,7 14,65 15 0 28,6 16 2,7 28,6 17 5,4 28,6 18 9,6 28,6 19 12,6 28,6 20 19,6 28,6 21 22,3 28,6 22 25 28,6 23 29,7 28,6 24 32,7 28,6 25 39,7 28,6 26 42,7 28,6 27 42,2 28,6 28 49,9 28,6 29 52,6 28,6 30 52,6 14,56 31 49,9 14,56 1 Pinout copyright Vincotech 15 12 Aug. 2015 / Revision 4 V23990-P823-F10-PM datasheet Packaging instruction Standard packaging quantity (SPQ) 100 >SPQ Standard <SPQ Sample Handling instruction Handling instructions for flow 1 packages see vincotech.com website. Package data Package data for flow 1 packages see vincotech.com website. DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in la 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 16 12 Aug. 2015 / Revision 3