V23990-P823-F10-PM datasheet flow PACK 1 3rd gen 600 V / 50 A Features flow1 housing ● Compact flow1 housing ● Compact and Low Inductance Design ● Built-in NTC Target Applications Schematic ● Motor Drive ● Power Generation ● UPS Types ● V23990-P823-F10-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Inverter Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature Tj=Tjmax tp limited by T jmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V T jmax 44 150 77 A A W ±20 V 6 360 µs V 175 °C 600 V Inverter Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation V RRM IF I FRM P tot Tj=25°C Tj=Tjmax tp limited by T jmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Th=80°C Tc=80°C 40 100 57 A A W T jmax 175 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+150 °C 4000 VDC Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage copyright Vincotech V is t=1min 1 12 Aug. 2015 / Revision 3 V23990-P823-F10-PM datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] Tj Unit Min Typ Max 5 5,8 6,5 1,1 1,56 1,79 2,1 Inverter Transistor Gate emitter threshold voltage V GE(th) Collector-emitter saturation voltage V CEsat VCE=VGE 0,0008 15 50 Collector-emitter cut-off current incl. Diode I CES 0 600 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) 0,35 650 Rgoff=8 Ω Rgon=8 Ω ±15 300 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none tr t d(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 106 98 19 16 150 173 89 115 0,50 0,75 1,18 1,63 ns mWs 3140 f=1MHz 0 Tj=25°C 25 200 pF 93 Vcc=480 ±15 50 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 310 nC 1,24 K/W Inverter Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink VF 50 I RRM t rr Q rr Rgon=8 Ω ±15 300 ( di rf/dt )max E rec R th(j-s) 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,2 Thermal grease thickness≤50um λ = 1 W/mK 1,63 1,60 28 79 144 147 1,91 4,71 1357 4135 0,55 1,09 2,1 V A ns nC A/µs mWs 1,65 K/W Thermistor Rated resistance Deviation of R100 Power dissipation given Epcos-Typ B-value copyright Vincotech R 25 D R /R Tj=25°C Tol. ±5% R100=435Ω P B (25/100) Tol. ±3% 2 4,46 4,7 4,94 kΩ Tc=100°C 2,6 %/K Tj=25°C 210 mW Tj=25°C 3530 K 12 Aug. 2015 / Revision 3 V23990-P823-F10-PM datasheet Output Inverter Figure 1 Typical output characteristics I C = f(V CE) Output inverter IGBT Figure 2 Typical output characteristics I C = f(V CE) IC (A) 150 IC (A) 150 Output inverter IGBT 120 120 90 90 60 60 30 30 0 0 0 1 2 3 4 VCE (V) 5 0 At tp = Tj = 1 2 3 4 VCE (V) 5 At tp = Tj = 250 µs 25 °C VGE from 7 V to 17 V in steps of 1 V 250 µs 150 °C VGE from 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I c = f(V GE) Output inverter IGBT Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) 150 IC (A) IF (A) 50 Output inverter FWD 40 Tj = 25°C 120 30 90 Tj = Tjmax-25°C Tj = Tjmax-25°C 20 60 10 30 Tj = 25°C 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0 At tp = µs V 3 0,5 1 250 µs 1,5 2 2,5 VF (V) 3 12 Aug. 2015 / Revision 3 V23990-P823-F10-PM datasheet Output Inverter Figure 5 Typical switching energy losses as a function of collector current E = f(I c) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) E (mWs) 3 E (mWs) 3 Output inverter IGBT Eoff 2,5 2,5 Eon 2 2 Eoff 1,5 Eoff Eon 1,5 Eoff Eon 1 1 Eon: 0,5 0,5 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = °C 25/150 V CE = 300 V V GE = ±15 V R gon = 8 Ω R goff = 8 Ω 8 16 24 32 RG(Ω) 40 With an inductive load at Tj = °C 25/150 V CE = 300 V V GE = ±15 V IC = 50 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) Output inverter IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 1,5 E (mWs) E (mWs) 2 Output inverter IGBT 1,2 1,5 Erec 0,9 Erec 1 0,6 Erec Erec 0,5 0,3 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 25/150 °C V CE = 300 V V GE = ±15 V R gon = 8 Ω copyright Vincotech 8 16 24 32 RG(Ω) 40 With an inductive load at Tj = 25/150 °C V CE = 300 V V GE = ±15 V IC = 50 A 4 12 Aug. 2015 / Revision 3 V23990-P823-F10-PM datasheet Output Inverter Figure 9 Typical switching times as a function of collector current t = f(I C) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1 tdoff t ( µs) t ( µs) 1 Output inverter IGBT tdon tdoff tf tf tdon 0,1 0,1 tr tr 0,01 0,01 0,001 0,001 0 20 40 60 80 IC (A) 100 0 With an inductive load at Tj = 150 °C V CE = 300 V V GE = ±15 V R gon = 8 Ω R goff = 8 Ω 8 16 24 RG (Ω ) 32 40 With an inductive load at Tj = 150 °C V CE = 300 V V GE = ±15 V IC = 50 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) Output inverter FWD 0,4 t rr( µs) t rr( µs) 0,2 0,16 trr trr trr 0,3 trr 0,12 0,2 0,08 0,1 0,04 0 0 0 At Tj = V CE = V GE = R gon = 20 25/150 300 ±15 8 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR= IF= V GE = °C V V Ω 5 8 25/150 300 50 ±15 16 24 32 R Gon ( Ω ) 40 °C V A V 12 Aug. 2015 / Revision 3 V23990-P823-F10-PM datasheet Output Inverter Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) 7 Output inverter FWD 6 Qrr ( µC) Qrr ( µC) Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I c) Qrr 6 5 Qrr 5 4 4 3 3 Qrr Qrr 2 2 1 1 0 0 0 At At Tj = V CE = V GE = R gon = 20 25/150 300 ±15 8 40 60 80 I C (A) 100 0 At Tj = VR= IF= V GE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I c) Output inverter FWD 8 25/150 300 50 ±15 16 24 R Gon ( Ω) 40 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) Output inverter FWD 150 IrrM (A) IrrM (A) 120 32 100 IRRM 120 80 90 60 60 40 IRRM IRRM 30 20 IRRM 0 0 0 At Tj = V CE = V GE = R gon = 20 25/150 300 ±15 8 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR= IF= V GE = °C V V Ω 6 8 25/150 300 50 ±15 16 24 32 R Gon ( Ω ) 40 °C V A V 12 Aug. 2015 / Revision 3 V23990-P823-F10-PM datasheet Output Inverter Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) dIrec/dt 5000 dI0/dt dIrec/dt 10000 4000 8000 3000 6000 2000 4000 1000 2000 0 0 0 At Tj = V CE = V GE = R gon = Output inverter FWD 12000 dI0/dt direc / dt (A/ µs) direc / dt (A/ µs) 6000 Output inverter FWD 20 25/150 300 ±15 8 40 60 I C (A) 80 100 0 At Tj = VR= IF= V GE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) Output inverter IGBT 8 25/150 300 50 ±15 16 24 R Gon ( Ω) 40 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) Output inverter FWD 101 ZthJH (K/W) ZthJH (K/W) 101 32 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp/T 1,24 K/W 10-5 10-4 At D = R thJH = tp/T 1,65 10-3 FWD thermal model values R (K/W) 0,02 0,10 0,30 0,49 0,23 0,04 0,06 R (K/W) 0,02 0,09 0,27 0,72 0,36 0,09 0,10 copyright Vincotech 7 10-1 100 t p (s) 10110 K/W IGBT thermal model values Tau (s) 1,3E+01 1,7E+00 3,0E-01 9,8E-02 1,6E-02 2,2E-03 3,4E-04 10-2 Tau (s) 1,5E+01 1,7E+00 3,1E-01 8,9E-02 1,4E-02 1,3E-03 2,4E-04 12 Aug. 2015 / Revision 3 V23990-P823-F10-PM datasheet Output Inverter Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T h) 60 IC (A) Ptot (W) 150 Output inverter IGBT 50 120 40 90 30 60 20 30 10 0 0 0 At Tj = 50 175 100 °C 150 Th ( o C) 200 0 At Tj = single heating overall heating Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) 100 150 Th ( o C) 200 °C V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) Output inverter FWD 60 IF (A) Ptot (W) 120 100 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 175 15 V GE = Output inverter FWD 50 50 175 copyright Vincotech °C 100 150 Th ( o C) 200 0 At Tj = single heating overall heating 8 50 175 100 150 Th ( o C) 200 °C 12 Aug. 2015 / Revision 3 V23990-P823-F10-PM datasheet Output Inverter Figure 25 Safe operating area as a function of collector-emitter voltage I C = f(V CE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge Output inverter IGBT V GE = f(Q g) 103 IC (A) VGE (V) 18 16 10uS 102 120V 14 100uS 12 1mS 101 480V 10 10mS DC 8 100mS 100 6 4 10-1 2 0 10 0 At D = Th = V GE = Tj = 101 102 V CE (V) 10 0 3 At IC = single pulse 80 ºC ±15 V T jmax ºC copyright Vincotech 9 100 50 200 300 Qg (nC) 400 A 12 Aug. 2015 / Revision 3 V23990-P823-F10-PM datasheet Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) Thermistor NTC-typical temperature characteristic R/Ω 5000 4000 3000 2000 1000 0 25 50 copyright Vincotech 75 100 T (°C) 125 10 12 Aug. 2015 / Revision 3 V23990-P823-F10-PM datasheet Switching Definitions Output Inverter General conditions Tj = 150 °C = 8Ω R gon R goff = 8Ω Figure 1 Output inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Output inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 280 140 Ic tdoff 120 240 Uce 100 80 200 Uce 90% Uge 90% 160 Uce 60 Ic % 120 % tEoff 40 80 20 Uge tdon Ic 1% 40 0 Ic10% Uge -20 0 -40 -0,2 Uce3% Uge10% tEon -40 0 0,2 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = -15 15 300 t doff = t E off = time (us) 0,4 0,6 0,8 2,8 2,95 3,1 time(us) V V V V GE (0%) = V GE (100%) = V C (100%) = 50 A I C (100%) = 50 A 0,17 0,58 µs µs t don = t E on = 0,10 0,22 µs µs Figure 3 Output inverter IGBT Turn-off Switching Waveforms & definition of t f -15 15 300 3,25 3,4 3,55 V V V Figure 4 Output inverter IGBT Turn-on Switching Waveforms & definition of t r 140 260 fitted 120 220 Uce 100 Ic 180 Ic 90% 80 140 Ic 60% %60 Uce % 100 Ic90% Ic 40% 40 tr 60 20 Ic10% tf 0 -20 0,05 20 Ic Ic10% -20 0,1 0,15 0,2 0,25 time (us) 0,3 0,35 0,4 2,9 3 3,1 time(us) V C (100%) = I C (100%) = 300 50 V A V C (100%) = I C (100%) = 300 50 V A tf = 0,12 µs tr = 0,02 µs copyright Vincotech 11 3,2 3,3 3,4 12 Aug. 2015 / Revision 3 V23990-P823-F10-PM datasheet Switching Definitions Output Inverter Figure 5 Output inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Output inverter IGBT Turn-on Switching Waveforms & definition of t Eon 120 160 Eoff Poff Pon 100 130 80 100 Eon 60 70 % % 40 40 20 Uge10% Uce3% 10 0 tEon Uge90% tEoff -20 -0,2 0 P off (100%) = E off (100%) = t E off = 0,2 15,03 1,63 0,58 time (us) Ic 1% 0,4 0,6 -20 2,95 0,8 3,11 3,19 3,27 P on (100%) = E on (100%) = t E on = Output inverter FRED 15,03 0,75 0,22 kW mJ µs Figure 8 Output inverter IGBT Turn-off Switching Waveforms & definition of t rr Gate voltage vs Gate charge (measured) 20 120 15 80 Id fitted trr 10 40 5 0 0 % -40 -5 -80 -10 -120 -15 -160 Uge (V) 3,35 time(us) kW mJ µs Figure 7 3,03 Ud IRRM10% IRRM90% -20 -250 IRRM100% -200 -100 50 200 Qg (nC) V GE off = V GE on = V C (100%) = I C (100%) = -15 15 300 50 V V V A Qg = 479,76 nC copyright Vincotech 350 500 3 650 V d (100%) = I d (100%) = I RRM (100%) = t rr = 12 3,08 3,16 300 50 -79 0,15 time(us) 3,24 3,32 3,4 V A A µs 12 Aug. 2015 / Revision 3 V23990-P823-F10-PM datasheet Switching Definitions Output Inverter Figure 9 Output inverter FRED Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 10 Output inverter FRED Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 120 Id Erec Qrr 100 100 50 80 tQint 0 60 % % tErec -50 40 -100 20 -150 0 Prec -200 -20 2,9 3,15 I d (100%) = Q rr (100%) = t Qint = copyright Vincotech 3,4 50 4,71 0,80 time(us) 3,65 3,9 4,15 2,9 A µC µs P rec (100%) = E rec (100%) = t E rec = 13 3,15 3,4 15,03 1,09 0,80 time(us) 3,65 3,9 4,15 kW mJ µs 12 Aug. 2015 / Revision 3 V23990-P823-F10-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code without thermal paste 17mm housing in DataMatrix as V23990-P823-F10-PM P823-F10 in packaging barcode as P823-F10 Outline Pin table Pin X Y 52,6 0 2 49,9 0 3 42,65 0 4 39,65 0 5 35,15 2,8 6 28,4 0 7 24 2,8 8 21 0 9 12,2 0 10 9,2 0 11 2,7 0 12 0 0 13 0 14,65 14 2,7 14,65 15 0 28,6 16 2,7 28,6 17 5,4 28,6 18 9,6 28,6 19 12,6 28,6 20 19,6 28,6 21 22,3 28,6 22 25 28,6 23 29,7 28,6 24 32,7 28,6 25 39,7 28,6 26 42,7 28,6 27 42,2 28,6 28 49,9 28,6 29 52,6 28,6 30 52,6 14,56 31 49,9 14,56 1 Pinout copyright Vincotech 14 12 Aug. 2015 / Revision 3 V23990-P823-F10-PM datasheet Packaging instruction Standard packaging quantity (SPQ) 100 >SPQ Standard <SPQ Sample Handling instruction Handling instructions for flow 1 packages see vincotech.com website. Package data Package data for flow 1 packages see vincotech.com website. DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 15 12 Aug. 2015 / Revision 3