V23990-P829-F10/ F108-PM Maximum Ratings

V23990-P829-F10/ F108-PM
preliminary datasheet
flowPACK 1 3rd gen
1200V/50A
Features
flow1 housing
● Compact flow1 housing
● Trench Fieldstop IGBT4 Technology
● Compact and Low Inductance Design
● Built-in NTC
17 mm housing
Target Applications
12 mm housing
Schematic
● Motor Drive
● Power Generation
● UPS
Types
● V23990-P829-F10
● V23990-P829-F108
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
45
150
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
103
A
A
W
±20
V
10
800
µs
V
175
°C
1200
V
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
44
100
Th=80°C
Tc=80°C
76
A
A
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+150
°C
Maximum Junction Temperature
Thermal Properties
copyright by Vincotech
1
Revision: 3
V23990-P829-F10/ F108-PM
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
4000
V
min 12,7
mm
min 12,7
min 8,06
mm
Insulation Properties
Insulation voltage
Vis
t=2s
DC voltage
Creepage distance
17 mm housing
12 mm housing
Clearance
copyright by Vincotech
2
Revision: 3
V23990-P829-F10/ F108-PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5,00
5,80
6,50
1,60
1,93
2,35
2,30
Inverter Transistor
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
0,0017
VCE=VGE
50
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
0,02
650
Rgoff=8 Ω
Rgon=8 Ω
±15
600
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
4
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
96
101
17
24
214
281
87
122
2,70
4,21
2,74
4,53
ns
mWs
2770
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Vcc=960
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
f=1MHz
0
Tj=25°C
25
205
pF
160
±15
50
Tj=25°C
240
nC
0,92
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
50
Rgon=8 Ω
±15
600
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,4
Thermal grease
thickness≤50um
λ = 1 W/mK
1,83
1,80
81
85
139
316
4,80
9,71
4803
1209
1,79
3,97
2,3
V
A
ns
nC
A/µs
mWs
1,26
K/W
Thermistor
Rated resistance
R25
Tol. ±5%
Tj=25°C
Deviation of R100
DR/R
R100=435Ω
Tc=100°C
Power dissipation given Epcos-Typ
B-value
copyright by Vincotech
P
B(25/100)
Tol. ±3%
3
4,2
4,7
5,8
kΩ
2,6
%/K
Tj=25°C
210
mW
Tj=25°C
3530
K
Revision: 3
V23990-P829-F10/ F108-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
150
IC (A)
IC (A)
150
120
120
90
90
60
60
30
30
0
0
0
1
2
3
VCE (V)
4
5
0
At
tp =
Tj =
1
2
3
4
VCE (V)
5
At
tp =
Tj =
250
µs
150
°C
VGE from 7 V to 17 V in steps of 1 V
250
µs
25
°C
VGE from 7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
Ic = f(VGE)
Output inverter FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
150
Tj = 25°C
IF (A)
IC (A)
50
40
120
30
90
Tj = Tjmax-25°C
60
20
30
10
Tj = 25°C
Tj = Tjmax-25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright by Vincotech
4
6
8
10
V GE (V)
0
12
1
2
3
4
V F (V)
At
tp =
µs
V
4
250
µs
Revision: 3
V23990-P829-F10/ F108-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(Ic)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
10
E (mWs)
E (mWs)
10
Eon
Eon
8
8
Eoff
Eon
6
6
Eon:
Eoff
Eoff
4
4
2
2
Eoff
0
0
0
10
20
30
40
50
60
70
80
I C90
(A)
0
100
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
10
20
R G( Ω )
30
40
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
50
A
Output inverter IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
Output inverter IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
5
E (mWs)
6
Erec
5
4
Erec
4
3
3
Erec
2
2
Erec
1
1
0
0
0
10
20
30
40
50
60
70
80
I C90(A)
100
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
copyright by Vincotech
8
16
24
32
R G( Ω )
40
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
50
A
5
Revision: 3
V23990-P829-F10/ F108-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
tdoff
tdoff
tdon
tf
0,1
tf
0,1
tdon
tr
tr
0,01
0,01
0,001
0,001
0
10
20
30
40
50
60
70
80
IC90(A)
100
0
With an inductive load at
Tj =
°C
150
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG (Ω )
40
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
50
A
Output inverter FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
Output inverter FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( µs)
0,7
t rr( µs)
0,4
trr
trr
0,6
0,3
0,5
0,4
trr
0,2
0,3
trr
0,2
0,1
0,1
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
20
25/150
600
±15
8
copyright by Vincotech
30
40
50
60
70
80
90
I C (A)
100
°C
V
V
Ω
6
0
8
At
Tj =
VR =
IF =
VGE =
25/150
600
50
±15
16
24
32
R Gon ( Ω )
40
°C
V
A
V
Revision: 3
V23990-P829-F10/ F108-PM
preliminary datasheet
Output Inverter
Output inverter FRED
Qrr ( µC)
14
Output inverter FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
12
Qrr ( µC)
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(Ic)
Qrr
12
Qrr
10
10
8
8
Qrr
6
6
Qrr
4
4
2
2
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
10
20
25/150
600
±15
8
30
40
50
60
70
80
I 90
C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(Ic)
8
25/150
600
50
±15
16
24
R Gon ( Ω) 40
°C
V
A
V
Output inverter FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
150
IrrM (A)
120
32
IRRM
100
120
IRRM
80
90
60
60
IRRM
40
IRRM
30
20
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
20
25/150
600
±15
8
copyright by Vincotech
30
40
50
60
70
80
I C90
(A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
8
25/150
600
50
±15
16
24
32
R Gon ( Ω )
40
°C
V
A
V
Revision: 3
V23990-P829-F10/ F108-PM
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
6000
14000
dI0/dt
direc / dt (A/ µs)
direc / dt (A/ µs)
Output inverter FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt
5000
dI0/dt
dIrec/dt
12000
10000
4000
8000
3000
6000
2000
4000
1000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
20
25/150
600
±15
8
30
40
50
60
70
I 90
C (A)
80
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
8
25/150
600
50
±15
16
24
40
°C
V
A
V
Output inverter FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
R Gon ( Ω)
32
100
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
tp / T
0,92
10-3
10-2
10-1
100
t p (s)
10
10110
-5
At
D=
RthJH =
K/W
10
-4
tp / T
1,26
10
-3
FRED thermal model values
R (C/W)
0,07
0,24
0,45
0,12
0,04
R (C/W)
0,02
0,14
0,62
0,29
0,12
0,06
copyright by Vincotech
8
-2
10
-1
10
0
t p (s)
1
10 10
K/W
IGBT thermal model values
Tau (s)
2,9E+00
4,7E-01
1,2E-01
1,5E-02
9,2E-04
10
Tau (s)
1,3E+01
1,1E+00
1,6E-01
3,5E-02
6,7E-03
5,2E-04
Revision: 3
V23990-P829-F10/ F108-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
60
IC (A)
Ptot (W)
200
50
160
40
120
30
80
20
40
10
0
0
0
At
Tj =
50
100
150
Th ( o C)
200
0
At
Tj =
°C
175
VGE =
Output inverter FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
Th ( o C)
200
°C
V
Output inverter FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
60
Ptot (W)
IF (A)
150
150
50
120
40
90
30
60
20
30
10
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
Th ( o C)
200
0
At
Tj =
°C
9
50
175
100
150
Th ( o C)
200
°C
Revision: 3
V23990-P829-F10/ F108-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
IC (A)
VGE (V)
103
10
240V
15
100uS
2
1mS
100mS
960V
10mS
10
101
DC
5
10
0
0
10-1
10
0
At
D=
Th =
VGE =
Tj =
101
102
103
0
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright by Vincotech
10
50
50
100
150
200
250
Qg (nC)
300
A
Revision: 3
V23990-P829-F10/ F108-PM
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
5000
4000
3000
2000
1000
0
25
50
copyright by Vincotech
75
100
T (°C)
125
11
Revision: 3
V23990-P829-F10/ F108-PM
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
300
140
Ic
tdoff
120
260
Uce
100
220
Uce 90%
Uge 90%
80
180
60
%
Ic
%
140
tEoff
40
Uce
100
20
Uge
tdon
Ic 1%
60
0
Uge
-20
Ic10%
20
-40
-0,2
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
0,4
time (us)
0,6
0,8
2,8
2,9
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
Output inverter IGBT
Figure 3
tEon
-20
1
V
V
V
A
µs
µs
-15
15
600
50
0,28
0,70
Uce3%
Uge10%
3,1
-15
15
600
50
0,10
0,33
3,2
time(us)
3,3
3,5
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,4
Turn-on Switching Waveforms & definition of tr
140
300
fitted
120
260
Uce
100
220
Ic
Ic 90%
80
180
Ic 60%
% 60
% 140
Ic 40%
40
Uce
100
20
Ic90%
tr
60
Ic10%
tf
0
20
-20
Ic
Ic10%
-20
0,2
0,25
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,3
0,35
time (us)
600
50
0,12
V
A
µs
0,4
0,45
0,5
2,9
VC (100%) =
IC (100%) =
tr =
12
3
3,1
600
50
0,02
time(us)
3,2
3,3
3,4
V
A
µs
Revision: 3
V23990-P829-F10/ F108-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
220
Pon
Eoff
100
Poff
180
80
140
Eon
60
100
%
%
40
60
20
Uge10%
20
0
-20
-0,2
Uce3%
tEon
Uge90%
tEoff
Ic 1%
-20
0
0,2
Poff (100%) =
Eoff (100%) =
tEoff =
0,4
time (us)
30,10
4,53
0,70
0,6
0,8
2,9
1
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Output inverter FRED
Figure 7
Gate voltage vs Gate charge (measured)
3,1
3,2
time(us)
30,10
4,21
0,33
kW
mJ
µs
3,3
3,4
3,5
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
120
15
80
10
40
5
0
0
% -40
-5
-80
-10
-120
-15
-160
-20
-250
-200
Id
Uge (V)
trr
fitted
Ud
IRRM10%
IRRM90%
-100
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright by Vincotech
50
-15
15
600
50
317
Qg (nC)
200
350
IRRM100%
2,9
500
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
13
3,1
3,3
time(us)
600
50
-85
0,32
3,5
3,7
V
A
A
µs
Revision: 3
V23990-P829-F10/ F108-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
Id
Erec
Qrr
100
100
80
50
tQint
60
0
%
%
tErec
-50
40
-100
20
-150
0
Prec
-200
-20
2,9
3,1
Id (100%) =
Qrr (100%) =
tQint =
copyright by Vincotech
3,3
50
9,71
0,80
3,5
time(us)
3,7
3,9
4,1
2,9
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
14
3,1
3,3
3,5
time(us)
30,10
3,97
0,80
kW
mJ
µs
3,7
3,9
4,1
Revision: 3
V23990-P829-F10/ F108-PM
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
in packaging barcode as
without thermal paste 17mm housing
without thermal paste 12mm housing
V23990-P829-F10
V23990-P829-F108
P829F10
P829F108
P829-F10
P829-F108
Outline
Pinout
copyright by Vincotech
15
Revision: 3
V23990-P829-F10/ F108-PM
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
16
Revision: 3