V23990-P829-F10/ F108-PM preliminary datasheet flowPACK 1 3rd gen 1200V/50A Features flow1 housing ● Compact flow1 housing ● Trench Fieldstop IGBT4 Technology ● Compact and Low Inductance Design ● Built-in NTC 17 mm housing Target Applications 12 mm housing Schematic ● Motor Drive ● Power Generation ● UPS Types ● V23990-P829-F10 ● V23990-P829-F108 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V Inverter Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax 45 150 Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax 103 A A W ±20 V 10 800 µs V 175 °C 1200 V Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 44 100 Th=80°C Tc=80°C 76 A A W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+150 °C Maximum Junction Temperature Thermal Properties copyright by Vincotech 1 Revision: 3 V23990-P829-F10/ F108-PM preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 4000 V min 12,7 mm min 12,7 min 8,06 mm Insulation Properties Insulation voltage Vis t=2s DC voltage Creepage distance 17 mm housing 12 mm housing Clearance copyright by Vincotech 2 Revision: 3 V23990-P829-F10/ F108-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5,00 5,80 6,50 1,60 1,93 2,35 2,30 Inverter Transistor Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 0,0017 VCE=VGE 50 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies 0,02 650 Rgoff=8 Ω Rgon=8 Ω ±15 600 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 4 tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 96 101 17 24 214 281 87 122 2,70 4,21 2,74 4,53 ns mWs 2770 Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Vcc=960 Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK f=1MHz 0 Tj=25°C 25 205 pF 160 ±15 50 Tj=25°C 240 nC 0,92 K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current 50 Rgon=8 Ω ±15 600 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,4 Thermal grease thickness≤50um λ = 1 W/mK 1,83 1,80 81 85 139 316 4,80 9,71 4803 1209 1,79 3,97 2,3 V A ns nC A/µs mWs 1,26 K/W Thermistor Rated resistance R25 Tol. ±5% Tj=25°C Deviation of R100 DR/R R100=435Ω Tc=100°C Power dissipation given Epcos-Typ B-value copyright by Vincotech P B(25/100) Tol. ±3% 3 4,2 4,7 5,8 kΩ 2,6 %/K Tj=25°C 210 mW Tj=25°C 3530 K Revision: 3 V23990-P829-F10/ F108-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 150 IC (A) IC (A) 150 120 120 90 90 60 60 30 30 0 0 0 1 2 3 VCE (V) 4 5 0 At tp = Tj = 1 2 3 4 VCE (V) 5 At tp = Tj = 250 µs 150 °C VGE from 7 V to 17 V in steps of 1 V 250 µs 25 °C VGE from 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics Ic = f(VGE) Output inverter FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 150 Tj = 25°C IF (A) IC (A) 50 40 120 30 90 Tj = Tjmax-25°C 60 20 30 10 Tj = 25°C Tj = Tjmax-25°C 0 0 0 At tp = VCE = 2 250 10 copyright by Vincotech 4 6 8 10 V GE (V) 0 12 1 2 3 4 V F (V) At tp = µs V 4 250 µs Revision: 3 V23990-P829-F10/ F108-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(Ic) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 10 E (mWs) E (mWs) 10 Eon Eon 8 8 Eoff Eon 6 6 Eon: Eoff Eoff 4 4 2 2 Eoff 0 0 0 10 20 30 40 50 60 70 80 I C90 (A) 0 100 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 10 20 R G( Ω ) 30 40 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 50 A Output inverter IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) Output inverter IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 5 E (mWs) 6 Erec 5 4 Erec 4 3 3 Erec 2 2 Erec 1 1 0 0 0 10 20 30 40 50 60 70 80 I C90(A) 100 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 8 Ω copyright by Vincotech 8 16 24 32 R G( Ω ) 40 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 50 A 5 Revision: 3 V23990-P829-F10/ F108-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff tdoff tdon tf 0,1 tf 0,1 tdon tr tr 0,01 0,01 0,001 0,001 0 10 20 30 40 50 60 70 80 IC90(A) 100 0 With an inductive load at Tj = °C 150 VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG (Ω ) 40 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 50 A Output inverter FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) Output inverter FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( µs) 0,7 t rr( µs) 0,4 trr trr 0,6 0,3 0,5 0,4 trr 0,2 0,3 trr 0,2 0,1 0,1 0 0 0 At Tj = VCE = VGE = Rgon = 10 20 25/150 600 ±15 8 copyright by Vincotech 30 40 50 60 70 80 90 I C (A) 100 °C V V Ω 6 0 8 At Tj = VR = IF = VGE = 25/150 600 50 ±15 16 24 32 R Gon ( Ω ) 40 °C V A V Revision: 3 V23990-P829-F10/ F108-PM preliminary datasheet Output Inverter Output inverter FRED Qrr ( µC) 14 Output inverter FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 12 Qrr ( µC) Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(Ic) Qrr 12 Qrr 10 10 8 8 Qrr 6 6 Qrr 4 4 2 2 0 0 At 0 At Tj = VCE = VGE = Rgon = 10 20 25/150 600 ±15 8 30 40 50 60 70 80 I 90 C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω Output inverter FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(Ic) 8 25/150 600 50 ±15 16 24 R Gon ( Ω) 40 °C V A V Output inverter FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 150 IrrM (A) 120 32 IRRM 100 120 IRRM 80 90 60 60 IRRM 40 IRRM 30 20 0 0 0 At Tj = VCE = VGE = Rgon = 10 20 25/150 600 ±15 8 copyright by Vincotech 30 40 50 60 70 80 I C90 (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω 7 8 25/150 600 50 ±15 16 24 32 R Gon ( Ω ) 40 °C V A V Revision: 3 V23990-P829-F10/ F108-PM preliminary datasheet Output Inverter Output inverter FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 6000 14000 dI0/dt direc / dt (A/ µs) direc / dt (A/ µs) Output inverter FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt 5000 dI0/dt dIrec/dt 12000 10000 4000 8000 3000 6000 2000 4000 1000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 10 20 25/150 600 ±15 8 30 40 50 60 70 I 90 C (A) 80 100 0 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 8 25/150 600 50 ±15 16 24 40 °C V A V Output inverter FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 R Gon ( Ω) 32 100 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 tp / T 0,92 10-3 10-2 10-1 100 t p (s) 10 10110 -5 At D= RthJH = K/W 10 -4 tp / T 1,26 10 -3 FRED thermal model values R (C/W) 0,07 0,24 0,45 0,12 0,04 R (C/W) 0,02 0,14 0,62 0,29 0,12 0,06 copyright by Vincotech 8 -2 10 -1 10 0 t p (s) 1 10 10 K/W IGBT thermal model values Tau (s) 2,9E+00 4,7E-01 1,2E-01 1,5E-02 9,2E-04 10 Tau (s) 1,3E+01 1,1E+00 1,6E-01 3,5E-02 6,7E-03 5,2E-04 Revision: 3 V23990-P829-F10/ F108-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 60 IC (A) Ptot (W) 200 50 160 40 120 30 80 20 40 10 0 0 0 At Tj = 50 100 150 Th ( o C) 200 0 At Tj = °C 175 VGE = Output inverter FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 Th ( o C) 200 °C V Output inverter FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 60 Ptot (W) IF (A) 150 150 50 120 40 90 30 60 20 30 10 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 Th ( o C) 200 0 At Tj = °C 9 50 175 100 150 Th ( o C) 200 °C Revision: 3 V23990-P829-F10/ F108-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) IC (A) VGE (V) 103 10 240V 15 100uS 2 1mS 100mS 960V 10mS 10 101 DC 5 10 0 0 10-1 10 0 At D= Th = VGE = Tj = 101 102 103 0 V CE (V) At IC = single pulse 80 ºC ±15 V Tjmax ºC copyright by Vincotech 10 50 50 100 150 200 250 Qg (nC) 300 A Revision: 3 V23990-P829-F10/ F108-PM preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 5000 4000 3000 2000 1000 0 25 50 copyright by Vincotech 75 100 T (°C) 125 11 Revision: 3 V23990-P829-F10/ F108-PM preliminary datasheet Switching Definitions Output Inverter General conditions = 150 °C Tj = 8Ω Rgon Rgoff = 8Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 300 140 Ic tdoff 120 260 Uce 100 220 Uce 90% Uge 90% 80 180 60 % Ic % 140 tEoff 40 Uce 100 20 Uge tdon Ic 1% 60 0 Uge -20 Ic10% 20 -40 -0,2 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 0,4 time (us) 0,6 0,8 2,8 2,9 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = Output inverter IGBT Figure 3 tEon -20 1 V V V A µs µs -15 15 600 50 0,28 0,70 Uce3% Uge10% 3,1 -15 15 600 50 0,10 0,33 3,2 time(us) 3,3 3,5 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,4 Turn-on Switching Waveforms & definition of tr 140 300 fitted 120 260 Uce 100 220 Ic Ic 90% 80 180 Ic 60% % 60 % 140 Ic 40% 40 Uce 100 20 Ic90% tr 60 Ic10% tf 0 20 -20 Ic Ic10% -20 0,2 0,25 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,3 0,35 time (us) 600 50 0,12 V A µs 0,4 0,45 0,5 2,9 VC (100%) = IC (100%) = tr = 12 3 3,1 600 50 0,02 time(us) 3,2 3,3 3,4 V A µs Revision: 3 V23990-P829-F10/ F108-PM preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 220 Pon Eoff 100 Poff 180 80 140 Eon 60 100 % % 40 60 20 Uge10% 20 0 -20 -0,2 Uce3% tEon Uge90% tEoff Ic 1% -20 0 0,2 Poff (100%) = Eoff (100%) = tEoff = 0,4 time (us) 30,10 4,53 0,70 0,6 0,8 2,9 1 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs Output inverter FRED Figure 7 Gate voltage vs Gate charge (measured) 3,1 3,2 time(us) 30,10 4,21 0,33 kW mJ µs 3,3 3,4 3,5 Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 120 15 80 10 40 5 0 0 % -40 -5 -80 -10 -120 -15 -160 -20 -250 -200 Id Uge (V) trr fitted Ud IRRM10% IRRM90% -100 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright by Vincotech 50 -15 15 600 50 317 Qg (nC) 200 350 IRRM100% 2,9 500 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 13 3,1 3,3 time(us) 600 50 -85 0,32 3,5 3,7 V A A µs Revision: 3 V23990-P829-F10/ F108-PM preliminary datasheet Switching Definitions Output Inverter Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 Id Erec Qrr 100 100 80 50 tQint 60 0 % % tErec -50 40 -100 20 -150 0 Prec -200 -20 2,9 3,1 Id (100%) = Qrr (100%) = tQint = copyright by Vincotech 3,3 50 9,71 0,80 3,5 time(us) 3,7 3,9 4,1 2,9 Prec (100%) = Erec (100%) = tErec = A µC µs 14 3,1 3,3 3,5 time(us) 30,10 3,97 0,80 kW mJ µs 3,7 3,9 4,1 Revision: 3 V23990-P829-F10/ F108-PM preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as without thermal paste 17mm housing without thermal paste 12mm housing V23990-P829-F10 V23990-P829-F108 P829F10 P829F108 P829-F10 P829-F108 Outline Pinout copyright by Vincotech 15 Revision: 3 V23990-P829-F10/ F108-PM preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 16 Revision: 3