V23990-P820-F10-PM Maximum Ratings

V23990-P820-F10-PM
preliminary datasheet
flowPACK 1 3rd gen
1200V/75A
Features
flow1 housing
● Compact flow1 housing
● Trench Fieldstop IGBT4 Technology
● Compact and Low Inductance Design
● Built-in NTC
Target Applications
Schematic
● Motor Drive
● Power Generation
● UPS
Types
● V23990-P820-F10
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
58
225
122
A
A
W
±20
V
10
800
μs
V
175
°C
1200
V
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
75
150
163
A
A
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+150
°C
Maximum Junction Temperature
Thermal Properties
Copyright by Vincotech
1
Revision: 2
V23990-P820-F10-PM
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
4000
VDC
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=1min
2
Revision: 2
V23990-P820-F10-PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,6
1,92
2,39
2,4
Inverter Transistor
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
0,0024
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
0,025
650
Rgoff=4 Ω
Rgon=4 Ω
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Vcc=960V
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
±15
600
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
10
tr
td(off)
tf
Fall time
VCE=VGE
165
183
27
35
271
351
83
115
6,16
9,44
4,02
6,48
ns
mWs
4400
f=1MHz
0
Tj=25°C
25
290
pF
235
±15
75
Tj=25°C
375
nC
0,78
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
75
Rgon=4 Ω
600
±15
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,4
Thermal grease
thickness≤50um
λ = 1 W/mK
1,75
1,71
69
76
316
499
7,26
14,26
2373
371
2,61
5,34
2,5
V
A
ns
nC
A/μs
mWs
1,08
K/W
Thermistor
Rated resistance
R25
Tol. ±5%
Tj=25°C
Deviation of R100
DR/R
R100=435Ω
Tc=100°C
Power dissipation given Epcos-Typ
P
B(25/100)
B-value
Copyright by Vincotech
Tol. ±3%
3
4,46
4,7
4,94
kΩ
2,6
%/K
Tj=25°C
210
mW
Tj=25°C
3530
K
Revision: 2
V23990-P820-F10-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
200
IC (A)
200
160
160
120
120
80
80
40
40
0
0
0
1
2
3
4
VCE (V)
5
0
At
tp =
Tj =
1
2
3
4
VCE (V)
5
At
tp =
Tj =
250
μs
25
°C
VGE from 7 V to 17 V in steps of 1 V
250
μs
150
°C
VGE from 7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
Ic = f(VGE)
Output inverter FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
200
IC (A)
IF (A)
35
28
Tj = 25°C
160
21
120
Tj = Tjmax-25°C
Tj = Tjmax-25°C
14
80
7
40
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
4
6
8
V GE (V)
10
0
At
tp =
μs
V
Copyright by Vincotech
4
0,5
250
1
1,5
2
2,5
VF (V)
3
μs
Revision: 2
V23990-P820-F10-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(Ic)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
24
E (mWs)
24
Eon
20
20
16
16
Eon:
Eon
12
12
Eoff
Eon
8
8
Eoff
Eoff
4
Eoff
4
0
0
0
30
60
90
120
I C (A)
150
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG(Ω)
20
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
75
A
Output inverter IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
Output inverter IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
6
E (mWs)
8
Erec
Erec
6
4,5
4
3
Erec
Erec
2
1,5
0
0
0
30
60
90
120
I C (A)
150
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
Copyright by Vincotech
4
8
12
16
RG(Ω)
20
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
75
A
5
Revision: 2
V23990-P820-F10-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
t ( μs)
t ( μs)
1
tdoff
tdon
tdon
0,1
tf
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
30
60
90
120
IC (A)
150
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
75
A
Output inverter FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
Output inverter FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,8
t rr( μs)
t rr( μs)
0,8
trr
trr
0,6
0,6
trr
0,4
0,4
trr
0,2
0,2
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
30
25/150
600
±15
4
60
90
120
I C (A)
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
6
4
25/150
600
75
±15
8
12
16
R Gon ( Ω ) 20
°C
V
A
V
Revision: 2
V23990-P820-F10-PM
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(Ic)
Output inverter FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
16
Qrr
Qrr ( μC)
Qrr ( μC)
24
Qrr
18
12
12
8
Qrr
Qrr
6
4
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
30
25/150
600
±15
4
60
90
120
I C (A)
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(Ic)
4
25/150
600
75
±15
8
12
R Gon ( Ω)
20
°C
V
A
V
Output inverter FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
100
IrrM (A)
100
16
IRRM
80
80
IRRM
60
60
40
40
20
20
IRRM
IRRM
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
30
25/150
600
±15
4
60
90
120
I C (A)
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
4
25/150
600
75
±15
8
12
16
R Gon ( Ω )
20
°C
V
A
V
Revision: 2
V23990-P820-F10-PM
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
4000
5000
dI0/dt
direc / dt (A/ μs)
direc / dt (A/ μs)
Output inverter FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt
3200
dI0/dt
dIrec/dt
4000
2400
3000
1600
2000
800
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
30
60
90
I C (A) 150
120
0
At
Tj =
VR =
IF =
VGE =
25/150
°C
600
V
±15
V
4
Ω
Thermal grease ˜ thickness≤50um ˜ λ = 1 W/mK
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/150
600
75
±15
8
12
20
°C
V
A
V
Output inverter FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
R Gon ( Ω)
16
0
100
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
10-2
10-5
At
D=
RthJH =
10-4
tp / T
0,78
10-3
10-2
10-1
100
t p (s)
10-5
1011
At
D=
RthJH =
K/W
10-4
10-3
tp / T
1,08
K/W
IGBT thermal model values
FRED thermal model values
R (C/W)
0,04
0,15
0,46
0,10
0,03
R (C/W)
0,03
0,14
0,55
0,23
0,09
0,04
Tau (s)
5,2E+00
9,2E-01
1,9E-01
2,0E-02
1,2E-03
Copyright by Vincotech
8
10-2
10-1
100
t p (s)
1011
Tau (s)
9,9E+00
1,2E+00
1,8E-01
4,1E-02
7,6E-03
5,4E-04
Revision: 2
V23990-P820-F10-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
IC (A)
Ptot (W)
250
200
75
150
50
100
25
50
0
0
0
At
Tj =
50
175
100
°C
150
Th ( o C)
200
0
At
Tj =
single heating
overall heating
175
15
VGE =
Output inverter FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
100
Th ( o C)
200
°C
V
Output inverter FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
100
IF (A)
Ptot (W)
200
150
160
75
120
50
80
25
40
0
0
0
At
Tj =
50
175
100
°C
Copyright by Vincotech
150
Th ( o C)
200
0
At
Tj =
single heating
overall heating
9
50
175
100
150
Th ( o C)
200
°C
Revision: 2
V23990-P820-F10-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
103
IC (A)
VGE (V)
20
100u
102
15
1m
10m
240V
100m
DC
960V
10
101
5
100
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
101
102
103
0
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Copyright by Vincotech
10
100
75
200
300
400
Qg (nC)
A
Revision: 2
V23990-P820-F10-PM
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
5000
4000
3000
2000
1000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
11
Revision: 2
V23990-P820-F10-PM
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
240
140
Ic
tdoff
120
Uce
200
100
Uce 90%
Uge 90%
160
80
60
120
Ic
%
tEoff
40
Uce
%
Uge
80
tdon
20
Ic 1%
40
Ic10%
0
Uge
Uce3%
Uge10%
0
-20
tEon
-40
-0,2
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
0,4
time (us)
-15
15
600
75
0,35
0,75
0,6
0,8
-40
1
2,8
2,95
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
3,1
3,25
time(us)
-15
15
600
75
0,18
0,53
3,4
3,7
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,55
Turn-on Switching Waveforms & definition of tr
140
220
fitted
120
Uce
180
100
Ic
Ic 90%
140
80
Ic 60%
% 60
Uce
% 100
Ic90%
Ic 40%
40
tr
60
20
Ic10%
20
tf
0
-20
0,25
VC (100%) =
IC (100%) =
tf =
Ic10%
Ic
-20
0,3
0,35
0,4
time (us)
600
75
0,12
V
A
μs
Copyright by Vincotech
0,45
0,5
0,55
2,9
VC (100%) =
IC (100%) =
tr =
12
3
3,1
600
75
0,04
3,2
time(us)
3,3
3,4
3,5
V
A
μs
Revision: 2
V23990-P820-F10-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
220
Eoff
Poff
Pon
100
180
80
140
Eon
60
100
%
%
40
60
20
Uge10%
20
0
-20
-0,2
Uce3%
tEon
Uge90%
tEoff
Ic 1%
-20
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
45,22
6,48
0,75
0,4
time (us)
0,6
0,8
2,9
1
3
3,1
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter FRED
Figure 7
Gate voltage vs Gate charge (measured)
3,2
3,3
time(us)
45,22
9,44
0,53
3,4
3,5
3,6
3,7
kW
mJ
μs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
120
15
Id
80
trr
10
40
5
Uge (V)
fitted
Ud
%
0
0
IRRM10%
-5
-40
-10
-80
IRRM90%
-15
IRRM100%
-20
-250
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
-120
-100
50
-15
15
600
75
435,75
Copyright by Vincotech
200
Qg (nC)
350
500
3
650
3,2
3,4
3,6
3,8
4
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
13
600
75
-76
0,50
V
A
A
μs
Revision: 2
V23990-P820-F10-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Id
Erec
Qrr
100
100
50
80
tQint
0
60
%
%
tErec
-50
40
-100
20
-150
0
Prec
-200
-20
2,9
Id (100%) =
Qrr (100%) =
tQint =
3,15
3,4
3,65
time(us)
75
14,26
0,99
A
μC
μs
Copyright by Vincotech
3,9
4,15
4,4
2,9
Prec (100%) =
Erec (100%) =
tErec =
14
3,15
3,4
3,65
time(us)
45,22
5,34
0,99
kW
mJ
μs
3,9
4,15
4,4
Revision: 2
V23990-P820-F10-PM
preliminary datasheet
Package Outline and Pinout
Outline
Pinout
Copyright by Vincotech
15
Revision: 2
V23990-P820-F10-PM
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
16
Revision: 2