V23990-P820-F10-PM preliminary datasheet flowPACK 1 3rd gen 1200V/75A Features flow1 housing ● Compact flow1 housing ● Trench Fieldstop IGBT4 Technology ● Compact and Low Inductance Design ● Built-in NTC Target Applications Schematic ● Motor Drive ● Power Generation ● UPS Types ● V23990-P820-F10 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V Inverter Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax 58 225 122 A A W ±20 V 10 800 μs V 175 °C 1200 V Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Th=80°C Tc=80°C 75 150 163 A A W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+150 °C Maximum Junction Temperature Thermal Properties Copyright by Vincotech 1 Revision: 2 V23990-P820-F10-PM preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 4000 VDC Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Copyright by Vincotech Vis t=1min 2 Revision: 2 V23990-P820-F10-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,6 1,92 2,39 2,4 Inverter Transistor Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time 0,0024 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 0,025 650 Rgoff=4 Ω Rgon=4 Ω Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Vcc=960V Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK ±15 600 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 10 tr td(off) tf Fall time VCE=VGE 165 183 27 35 271 351 83 115 6,16 9,44 4,02 6,48 ns mWs 4400 f=1MHz 0 Tj=25°C 25 290 pF 235 ±15 75 Tj=25°C 375 nC 0,78 K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current 75 Rgon=4 Ω 600 ±15 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,4 Thermal grease thickness≤50um λ = 1 W/mK 1,75 1,71 69 76 316 499 7,26 14,26 2373 371 2,61 5,34 2,5 V A ns nC A/μs mWs 1,08 K/W Thermistor Rated resistance R25 Tol. ±5% Tj=25°C Deviation of R100 DR/R R100=435Ω Tc=100°C Power dissipation given Epcos-Typ P B(25/100) B-value Copyright by Vincotech Tol. ±3% 3 4,46 4,7 4,94 kΩ 2,6 %/K Tj=25°C 210 mW Tj=25°C 3530 K Revision: 2 V23990-P820-F10-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 200 IC (A) 200 160 160 120 120 80 80 40 40 0 0 0 1 2 3 4 VCE (V) 5 0 At tp = Tj = 1 2 3 4 VCE (V) 5 At tp = Tj = 250 μs 25 °C VGE from 7 V to 17 V in steps of 1 V 250 μs 150 °C VGE from 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics Ic = f(VGE) Output inverter FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 200 IC (A) IF (A) 35 28 Tj = 25°C 160 21 120 Tj = Tjmax-25°C Tj = Tjmax-25°C 14 80 7 40 Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 4 6 8 V GE (V) 10 0 At tp = μs V Copyright by Vincotech 4 0,5 250 1 1,5 2 2,5 VF (V) 3 μs Revision: 2 V23990-P820-F10-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(Ic) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 24 E (mWs) 24 Eon 20 20 16 16 Eon: Eon 12 12 Eoff Eon 8 8 Eoff Eoff 4 Eoff 4 0 0 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 RG(Ω) 20 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 75 A Output inverter IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) Output inverter IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 6 E (mWs) 8 Erec Erec 6 4,5 4 3 Erec Erec 2 1,5 0 0 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 4 Ω Copyright by Vincotech 4 8 12 16 RG(Ω) 20 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 75 A 5 Revision: 2 V23990-P820-F10-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 tdoff t ( μs) t ( μs) 1 tdoff tdon tdon 0,1 tf 0,1 tf tr tr 0,01 0,01 0,001 0,001 0 30 60 90 120 IC (A) 150 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 75 A Output inverter FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) Output inverter FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,8 t rr( μs) t rr( μs) 0,8 trr trr 0,6 0,6 trr 0,4 0,4 trr 0,2 0,2 0 0 0 At Tj = VCE = VGE = Rgon = 30 25/150 600 ±15 4 60 90 120 I C (A) 150 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 6 4 25/150 600 75 ±15 8 12 16 R Gon ( Ω ) 20 °C V A V Revision: 2 V23990-P820-F10-PM preliminary datasheet Output Inverter Output inverter FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(Ic) Output inverter FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 16 Qrr Qrr ( μC) Qrr ( μC) 24 Qrr 18 12 12 8 Qrr Qrr 6 4 0 0 At 0 At Tj = VCE = VGE = Rgon = 30 25/150 600 ±15 4 60 90 120 I C (A) 150 0 At Tj = VR = IF = VGE = °C V V Ω Output inverter FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(Ic) 4 25/150 600 75 ±15 8 12 R Gon ( Ω) 20 °C V A V Output inverter FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 100 IrrM (A) 100 16 IRRM 80 80 IRRM 60 60 40 40 20 20 IRRM IRRM 0 0 0 At Tj = VCE = VGE = Rgon = 30 25/150 600 ±15 4 60 90 120 I C (A) 150 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 4 25/150 600 75 ±15 8 12 16 R Gon ( Ω ) 20 °C V A V Revision: 2 V23990-P820-F10-PM preliminary datasheet Output Inverter Output inverter FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 4000 5000 dI0/dt direc / dt (A/ μs) direc / dt (A/ μs) Output inverter FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt 3200 dI0/dt dIrec/dt 4000 2400 3000 1600 2000 800 1000 0 0 0 At Tj = VCE = VGE = Rgon = 30 60 90 I C (A) 150 120 0 At Tj = VR = IF = VGE = 25/150 °C 600 V ±15 V 4 Ω Thermal grease ˜ thickness≤50um ˜ λ = 1 W/mK Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/150 600 75 ±15 8 12 20 °C V A V Output inverter FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 R Gon ( Ω) 16 0 100 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10-2 10-2 10-5 At D= RthJH = 10-4 tp / T 0,78 10-3 10-2 10-1 100 t p (s) 10-5 1011 At D= RthJH = K/W 10-4 10-3 tp / T 1,08 K/W IGBT thermal model values FRED thermal model values R (C/W) 0,04 0,15 0,46 0,10 0,03 R (C/W) 0,03 0,14 0,55 0,23 0,09 0,04 Tau (s) 5,2E+00 9,2E-01 1,9E-01 2,0E-02 1,2E-03 Copyright by Vincotech 8 10-2 10-1 100 t p (s) 1011 Tau (s) 9,9E+00 1,2E+00 1,8E-01 4,1E-02 7,6E-03 5,4E-04 Revision: 2 V23990-P820-F10-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 IC (A) Ptot (W) 250 200 75 150 50 100 25 50 0 0 0 At Tj = 50 175 100 °C 150 Th ( o C) 200 0 At Tj = single heating overall heating 175 15 VGE = Output inverter FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 100 Th ( o C) 200 °C V Output inverter FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 100 IF (A) Ptot (W) 200 150 160 75 120 50 80 25 40 0 0 0 At Tj = 50 175 100 °C Copyright by Vincotech 150 Th ( o C) 200 0 At Tj = single heating overall heating 9 50 175 100 150 Th ( o C) 200 °C Revision: 2 V23990-P820-F10-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 103 IC (A) VGE (V) 20 100u 102 15 1m 10m 240V 100m DC 960V 10 101 5 100 0 10-1 0 10 At D= Th = VGE = Tj = 101 102 103 0 V CE (V) At IC = single pulse 80 ºC ±15 V Tjmax ºC Copyright by Vincotech 10 100 75 200 300 400 Qg (nC) A Revision: 2 V23990-P820-F10-PM preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 5000 4000 3000 2000 1000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 11 Revision: 2 V23990-P820-F10-PM preliminary datasheet Switching Definitions Output Inverter General conditions = 150 °C Tj = 4Ω Rgon Rgoff = 4Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 240 140 Ic tdoff 120 Uce 200 100 Uce 90% Uge 90% 160 80 60 120 Ic % tEoff 40 Uce % Uge 80 tdon 20 Ic 1% 40 Ic10% 0 Uge Uce3% Uge10% 0 -20 tEon -40 -0,2 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 0,4 time (us) -15 15 600 75 0,35 0,75 0,6 0,8 -40 1 2,8 2,95 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 3,1 3,25 time(us) -15 15 600 75 0,18 0,53 3,4 3,7 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,55 Turn-on Switching Waveforms & definition of tr 140 220 fitted 120 Uce 180 100 Ic Ic 90% 140 80 Ic 60% % 60 Uce % 100 Ic90% Ic 40% 40 tr 60 20 Ic10% 20 tf 0 -20 0,25 VC (100%) = IC (100%) = tf = Ic10% Ic -20 0,3 0,35 0,4 time (us) 600 75 0,12 V A μs Copyright by Vincotech 0,45 0,5 0,55 2,9 VC (100%) = IC (100%) = tr = 12 3 3,1 600 75 0,04 3,2 time(us) 3,3 3,4 3,5 V A μs Revision: 2 V23990-P820-F10-PM preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 220 Eoff Poff Pon 100 180 80 140 Eon 60 100 % % 40 60 20 Uge10% 20 0 -20 -0,2 Uce3% tEon Uge90% tEoff Ic 1% -20 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 45,22 6,48 0,75 0,4 time (us) 0,6 0,8 2,9 1 3 3,1 Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter FRED Figure 7 Gate voltage vs Gate charge (measured) 3,2 3,3 time(us) 45,22 9,44 0,53 3,4 3,5 3,6 3,7 kW mJ μs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 120 15 Id 80 trr 10 40 5 Uge (V) fitted Ud % 0 0 IRRM10% -5 -40 -10 -80 IRRM90% -15 IRRM100% -20 -250 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -120 -100 50 -15 15 600 75 435,75 Copyright by Vincotech 200 Qg (nC) 350 500 3 650 3,2 3,4 3,6 3,8 4 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 13 600 75 -76 0,50 V A A μs Revision: 2 V23990-P820-F10-PM preliminary datasheet Switching Definitions Output Inverter Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Id Erec Qrr 100 100 50 80 tQint 0 60 % % tErec -50 40 -100 20 -150 0 Prec -200 -20 2,9 Id (100%) = Qrr (100%) = tQint = 3,15 3,4 3,65 time(us) 75 14,26 0,99 A μC μs Copyright by Vincotech 3,9 4,15 4,4 2,9 Prec (100%) = Erec (100%) = tErec = 14 3,15 3,4 3,65 time(us) 45,22 5,34 0,99 kW mJ μs 3,9 4,15 4,4 Revision: 2 V23990-P820-F10-PM preliminary datasheet Package Outline and Pinout Outline Pinout Copyright by Vincotech 15 Revision: 2 V23990-P820-F10-PM preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 16 Revision: 2