V23990-P610-F02-PM preliminary datasheet flow PHASE 2 1200V/300A flow SCREW2 housing Features Ɣ High Power screw contacts Ɣ Low loss Trench Fieldstop Technology IGBT Ɣ High Current Density FRED Target Applications Schematic Ɣ Motor Drives Ɣ Power Generation Ɣ Uninterruptable Power Supply Types Ɣ V23990-P610-F02 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V Th=80°C Tc=80°C 253 329 A 600 A Th=80°C Tc=80°C 515 781 W ±20 V 10 s Tjmax 150 °C VRRM 1200 V 208 285 A 600 A 322 488 W 150 °C Transistor Inverter Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpuls Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC Maximum Junction Temperature Tj=Tjmax tp limited by Tjmax Tj=Tjmax Tj125°C VGE=15V VCC=900V Diode Inverter Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Tjmax Repetitive peak forward current Copyright by Vincotech 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 V23990-P610-F02-PM preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal properties Storage temperature Tstg -40…+125 °C Operation temperature Tjop -40…+125 °C 4000 Vdc Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation properties Insulation voltage Copyright by Vincotech Vis t=1min 2 Revision: 1 V23990-P610-F02-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE(V) or VGS(V) Vr(V) or VCE(V) or VDS(V) Value IC(A) or IF(A) T(°C) or ID(A) Unit Min Typ Max 5 5,8 6,5 1,3 1,92 2,19 2,2 Transistor Inverter Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 0,012 VCE=VGE 300 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 30 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time tf Fall time Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC V V 1 mA 650 nA 2,5 tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=2 ȍ Rgon=2 ȍ f=1MHz Rgoff=2 ȍ Rgon=2 ȍ 600 ±15 0 300 25 ±15 600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C ns 342,2 ns 41,8 ns 556,2 ns 154,9 mWs 26,01 mWs 34,02 Tj=25°C 300 Ohm Tj=25°C Tj=125°C 21,5 nF 1,1 nF 1,0 nF nC 2950,0 Thermal grease thickness50um Ȝ = 0,61 W/mK 0,14 K/W 0,11 K/W Diode Inverter Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current 260 Rgon=2 ȍ ±15 600 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 300 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 1,57 1,62 1,9 V A 431,05 ns 476,1 mC 67,36 A/s 6600 mWs 29,68 Thermal grease thickness50um Ȝ = 0,61 W/mK 0,22 K/W 0,17 K/W Thermistor Rated resistance Deviation of R100 Power dissipation given Epcos-Typ R25 DR/R Copyright by Vincotech Tc=100°C R100=435ȍ 4,2 4,7 5,8 Tj=25°C Tol. ±3% 3 kOhm 2,6 %/K Tj=25°C P B(25/100) B-value Tj=25°C Tol. ±5% 210 3530 Revision: 1 mW K V23990-P610-F02-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 1000 IC (A) IC (A) 1000 800 800 600 600 400 400 200 200 0 0 0 1 2 3 4 VCE (V) 0 5 At tp = Tj = 1 2 3 VCE (V) 4 5 At tp = Tj = 250 ȝs 25 °C VGE from 7 V to 17 V in steps of 1 V 250 ȝs 125 °C VGE from 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics Ic = f(VGE) Output inverter FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 300 IC (A) IF (A) 700 600 250 25 oC 125 oC 500 200 400 150 300 125 oC 100 25 oC 200 50 100 0 0 0 At tp = VCE = 3 250 10 6 9 V GE (V) 12 0 At tp = ȝs V Copyright by Vincotech 4 0,5 250 1 1,5 2 2,5 VF (V) ȝs Revision: 1 3 V23990-P610-F02-PM preliminary datasheet Output Inverter Output inverter IGBT 60 Eoff Eon 50 Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(Ic) 60 Eon 50 Erec 40 40 Eoff 30 30 Erec 20 20 10 10 0 0 0 100 200 300 400 500 0 I C (A) 600 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 2 ȍ Rgoff = 2 ȍ 2 4 6 R G ( Ω ) 10 8 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 300 A Output inverter IGBT Figure 7 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 8 Typical switching times as a function of gate resistor t = f(RG) 1 1 tdoff t ( μs) t ( μs) tdoff tdon tdon tf tf 0,1 0,1 tr tr 0,01 0,01 0,001 0,001 0 100 200 300 400 500 IC (A) 0 600 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 2 ȍ Rgoff = 2 ȍ Copyright by Vincotech 2 4 6 8 RG (Ω ) With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 300 A 5 Revision: 1 10 V23990-P610-F02-PM preliminary datasheet Output Inverter Figure 9 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) Output inverter FRED diode Figure 10 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 0,8 Output inverter FRED diode IrrM (A) t rr( μs) 600 500 0,6 400 0,4 300 200 0,2 100 0 0 At Tj = VR = IF = VGE = 2 125 600 300 ±15 4 6 8 R Gon ( Ω ) 0 10 0 2 At Tj = VR = IF = VGE = °C V A V Figure 11 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Output inverter FRED diode 4 125 600 300 ±15 6 10 °C V A V Figure 12 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 80 R Gon ( Ω ) 8 Output inverter FRED diode Qrr ( μC) direc / dt (A/ μs) 14000 12000 60 10000 8000 40 6000 dI0/dt 4000 20 dIrec/dt 2000 0 0 0 At Tj = VR = IF = VGE = 2 125 600 300 ±15 4 6 8 R Gon ( Ω) 0 10 At Tj = VR = IF = VGE = °C V A V Copyright by Vincotech 6 2 125 600 300 ±15 4 6 8 R Gon ( Ω) 10 °C V A V Revision: 1 V23990-P610-F02-PM preliminary datasheet Output Inverter Figure 13 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) Figure 14 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 0 10 0 ZthJH (K/W) ZthJH (K/W) 10 -1 -1 10 10 10-2 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -3 10 -4 10 10 -5 -4 -3 10 With D= RthJH = tp / T 0,14 10 -2 10 -1 10 10 0 t p (s) 1 10 -3 10 -4 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 10 1 -5 10 With D= RthJH = K/W -4 tp / T 0,22 10 -3 -1 0 10 10 t p (s) 1 10 1 K/W IGBT thermal model values FRED thermal model values R (C/W) 0,02 0,02 0,04 0,04 0,01 0,01 R (C/W) 0,01 0,04 0,06 0,09 0,01 0,01 Tau (s) 5,7E+00 1,3E+00 2,1E-01 3,6E-02 5,8E-03 5,2E-04 -2 10 Tau (s) 9,6E+00 1,6E+00 2,0E-01 4,1E-02 8,0E-03 7,7E-04 Output Inverter Output inverter IGBT Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 16 Collector current as a function of heatsink temperature IC = f(Th) 500 IC (A) Ptot (W) 1400 1200 400 1000 300 800 600 200 400 100 200 0 0 0 At Tj = 50 150 100 150 Th ( o C) 0 200 At Tj = °C VGE = Copyright by Vincotech 7 50 150 15 100 150 Th ( o C) °C V Revision: 1 200 V23990-P610-F02-PM preliminary datasheet Output inverter FRED Figure 17 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter FRED Figure 18 Forward current as a function of heatsink temperature IF = f(Th) 500 Ptot (W) IF (A) 1000 800 400 600 300 400 200 200 100 0 0 At Tj = 50 150 100 150 Th ( o C) 0 200 0 At Tj = °C 50 150 100 150 Th ( o C) °C Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f (T) NTC-typical temperature characteristic R/ȍ 5000 4000 3000 2000 1000 0 25 50 75 Copyright by Vincotech 100 T (°C) 125 8 Revision: 1 200 V23990-P610-F02-PM preliminary datasheet Switching Definitions Output Inverter General conditions = 125 °C Tj = 2ȍ Rgon Rgoff = 2ȍ Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 280 140 tdoff Ic 120 240 100 200 Uce 90% Uge 90% 80 Ic 160 60 % % Uce 120 40 tEoff 20 80 Ic 1% Uge tdon 40 0 Uce Uge10% Uge -20 Uce3% Ic10% 0 tEon -40 -0,4 -40 -0,2 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 0,4 time (us) -15 15 600 300 0,56 0,85 0,6 0,8 1 1,2 2,7 2,85 3 3,15 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A ȝs ȝs Output inverter IGBT Figure 3 -15 15 600 300 0,34 0,72 3,3 time(us) 3,45 3,75 3,9 V V V A ȝs ȝs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,6 Turn-on Switching Waveforms & definition of tr 140 300 Uce Ic 120 Ic 260 fitted 100 220 Ic 90% 80 180 Ic 60% % 60 % 140 Uce 40 Ic 40% Ic90% 100 20 tr 60 Ic10% 0 20 Ic10% tf -20 -20 0,5 0,55 VC (100%) = IC (100%) = tf = 0,6 0,65 600 300 0,158 0,7 time (us) 0,75 0,8 0,85 0,9 3,2 VC (100%) = IC (100%) = tr = V A ȝs Copyright by Vincotech 9 3,25 3,3 3,35 600 300 0,043 3,4 time(us) 3,45 3,5 3,55 V A ȝs Revision: 1 3,6 V23990-P610-F02-PM preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 140 Eoff Poff Pon 120 100 Eon 100 80 80 60 60 % % 40 40 20 20 0 Uge10% Uce3% 0 Uge90% -20 -0,2 tEoff tEon Ic 1% -20 0 0,2 Poff (100%) = Eoff (100%) = tEoff = 0,4 0,6 time (us) 180,00 34,48 0,85 0,8 1 2,8 1,2 3 Pon (100%) = Eon (100%) = tEon = kW mJ ȝs Output inverter IGBT Figure 7 3,2 3,4 time(us) 180 26,56 0,72 kW mJ ȝs 3,6 3,8 Output inverter FRED Figure 8 Gate voltage vs Gate charge 4 Turn-off Switching Waveforms & definition of trr 20 120 15 80 Id trr 10 40 Uge (V) 5 fitted Ud 0 0 % IRRM10% -40 -5 -80 -10 -15 -120 -20 -500 -160 IRRM90% IRRM100% VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 500 1000 -15 15 600 300 2950,0 1500 Qg (nC) 2000 2500 3000 3500 3,1 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC Copyright by Vincotech 3,2 10 3,3 3,4 600 300 426 0,49 3,5 3,6 time(us) 3,7 3,8 3,9 4 V A A ȝs Revision: 1 4,1 V23990-P610-F02-PM preliminary datasheet Switching Definitions Output Inverter Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Id Erec Qrr 100 100 50 80 tQint 0 tErec 60 % % -50 40 -100 20 -150 0 Prec -200 -20 3 Id (100%) = Qrr (100%) = tQint = 3,2 3,4 3,6 300 65,37 1,01 3,8 time(us) 4 4,2 4,4 4,6 3 Prec (100%) = Erec (100%) = tErec = A ȝC ȝs Copyright by Vincotech 3,2 11 3,4 3,6 180 28,045 1,01 3,8 time(us) 4 4,2 4,4 kW mJ ȝs Revision: 1 4,6 V23990-P610-F02-PM preliminary datasheet Package Outline and Pinout Outline Copyright by Vincotech 12 Revision: 1 V23990-P610-F02-PM preliminary datasheet Pinout Copyright by Vincotech 13 Revision: 1 V23990-P610-F02-PM preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 14 Revision: 1