V23990-P700-F-PM final datasheet flow 90 PACK 1 1200V / 35A flow 90 1 housing Features 90° housing Compact and low inductance design Clip in or screw heatsink mouting Target Applications Schematic Motor Drives Types V23990-P700-F-PM Maximum Ratings Parameter Condition Symbol Value Unit 1200 V Transistor Inverter Collector-emitter break down voltage DC collector current VCE IC Tj=Tjmax Repetitive peak collector current Icpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE SC withstand time* tSC Maximum junction temperature Th=80°C Tc=80°C 30 39 105 Th=80°C Tc=80°C Tj150°C VCC=900V VGE=15V Tjmax 54 82 A A W ±20 V 10 Ps 150 °C * It is recommended to not exceed 1000 short circuit situations in the lifetime of the module and to allow at least 1between short circuits Diode Inverter DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum junction temperature Copyright by Vincotech Tjmax Th=80°C Tc=80°C 27 36 70 Th=80°C Tc=80°C 39 59 150 1 Revision: 1 A A W °C V23990-P700-F-PM final datasheet Maximum Ratings Parameter Condition Symbol Value Unit Thermal properties Storage temperature Tstg -40…+125 °C Operation temperature Top -40…+125 °C 4000 Vdc Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation properties Insulation voltage Copyright by Vincotech Vis t=1min 2 Revision: 1 V23990-P700-F-PM final datasheet Characteristic Values Parameter Conditions Symbol VGE(V) or VGS(V) Vr(V) or VCE(V) or VDS(V) Value IC(A) or IF(A) T(C°) or ID(A) Unit Min Typ Max 5 5,8 6,5 1,69 1,91 2,25 Transistor Inverter Gate emitter threshold voltage VGE(th) VCE=VGE 0,0015 VCE(sat) 15 Collector-emitter cut-off ICES 0 1200 Gate-emitter leakage current IGES 20 0 Collector-emitter saturation voltage Integrated Gate resistor Rgint Turn-on delay time td(on) 35 td(off) tf Fall time Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 0,25 650 6 tr Rise time Turn-off delay time Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=32 Rgon=32 600 ±15 25 0 f=1MHz 35 0 25 0 25 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C nA ns ns 28 ns 512 ns 213 mWs 4,31 mWs 4,1 2,53 nF 0,13 nF 0,115 nF 340 ±15 V mA Ohm 317 Thermal grease thickness50um = 0,61 W/mK V nC 1,29 K/W - K/W Diode Inverter Diode forward voltage VF Peak reverse recovery current IRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 35 Rgon=32 Rgoff=32 ±15 600 35 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C 36 Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,62 1,6 2,4 A 56,5 ns 376 PC 6,9 mWs 2,5 Thermal grease thickness50um = 0,61 W/mK V 1,81 K/W - K/W NTC Thermistor Rated resistance R25 Deviation of R100 DR/R Power dissipation given Epcos-Type P B(25/100) B-value Copyright by Vincotech Tj=25°C R100=1503 Tol. ±3% 3 20,9 22 23,1 kOhm Tc=100°C 2,9 %/K Tj=25°C 210 mW Tj=25°C 3980 K Revision: 1 V23990-P700-F-PM final datasheet Output Inverter Figure 1 Typical output characteristics IC = f(VCE) Figure 3 Output inverter IGBT Output inverter IGBT Typical output characteristics IC = f(VCE) 70 IC (A) IC (A) 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 0 1 2 3 4 VCE (V) 5 0 At tp = Tj = 1 2 3 VCE (V) 4 5 At tp = Tj = 250 s 25 °C VGE from 7 V to 17 V in steps of 1 V 250 s 125 °C VGE from 7 V to 17 V in steps of 1 V Figure 4 Typical transfer characteristics Ic = f(VGE) Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) Output inverter IGBT IC (A) 42 54 70 82 IF (A) 39 Output inverter FRED 60 35 50 28 125 oC 40 25 oC 125 oC 21 30 14 20 36 25 oC 7 10 0 0 0 At tp = VCE = 3 250 10 6 9 V GE (V) 12 0 At tp = s V Copyright by Vincotech 4 0,5 250 1 1,5 2 2,5 VF (V) s Revision: 1 3 V23990-P700-F-PM final datasheet Output Inverter Figure 5 Figure 6 Output inverter IGBT Typical switching energy losses as a function of collector current E = f(Ic) Output inverter IGBT Typical switching energy losses as a function of gate resistor E = f(RG) 10 E (mWs) 10 E (mWs) Eon 8 8 Eoff Eon 6 6 4 4 Eoff Erec Erec 2 2 0 0 0 10 20 30 40 50 60 I C (A) 70 0 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 32 Rgoff = 32 15 30 45 60 RG(:) 75 With an inductive load at Tj = 125 °C VCE = VGE = IC = Figure 7 600 ±15 34 V V A Figure 8 Output inverter IGBT Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Typical switching times as a function of gate resistor t = f(RG) 1 1 t ( Ps) t ( Ps) tdoff tdon tdoff tdon tf tf 0,1 0,1 tr tr 0,01 0,01 0,001 0,001 0 10 20 30 40 50 60 IC (A) 0 70 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 32 Rgoff = 32 Copyright by Vincotech 10 20 30 40 50 RG (:) 60 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 34 A 5 Revision: 1 70 V23990-P700-F-PM final datasheet Output Inverter Figure 9 Figure 10 Output inverter FRED diode Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,6 IrrM (A) t rr( Ps) 120 0,5 100 0,4 80 0,3 60 0,2 40 0,1 20 0 0 20 At Tj = 125 VR = IF = VGE = 600 34 ±15 40 60 R Gon ( : ) 0 80 0 20 40 °C At Tj = 125 °C V A V VR = IF = VGE = 600 34 ±15 V A V Figure 11 Typical reverse recovery charge as a Figure 12 Typical rate of fall of forward Output inverter FRED diode function of IGBT turn on gate resistor Qrr = f(Rgon) 60 R Gon ( : ) 80 Output inverter FRED diode and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 9 4500 direc / dt (A/ Ps) Qrr ( PC) Output inverter FRED diode Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 8 7 4000 3500 6 3000 5 2500 4 2000 3 1500 2 1000 1 500 dI0/dt dIrec/dt 0 0 0 At Tj = VR = IF = VGE = 10 20 30 40 50 R60Gon ( :) 0 70 15 30 125 600 34 °C V A At Tj = VR = IF = 125 600 34 °C V A ±15 V VGE = ±15 V Copyright by Vincotech 6 45 60 R Gon ( :) Revision: 1 75 V23990-P700-F-PM final datasheet Output Inverter Figure 13 Figure 14 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 10 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 With D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 101 10-5 With D= RthJH = tp / T 1,29 K/W IGBT thermal model values 10-4 10-3 10-1 100 t p (s) tp / T 1,81 K/W FRED thermal model values R (C/W) Tau (s) R (C/W) Tau (s) 0,06 0,31 0,67 4,2E+00 7,1E-01 1,7E-01 0,04 0,24 0,88 9,9E+00 1,2E+00 2,5E-01 0,16 0,04 0,04 1,9E-02 1,3E-03 1,4E-04 0,39 0,18 0,09 5,6E-02 8,8E-03 5,8E-04 Copyright by Vincotech 10-2 7 Revision: 1 101 V23990-P700-F-PM final datasheet Output Inverter Figure 15 Figure 16 Output inverter IGBT Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Collector current as a function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 150 125 40 100 30 75 20 50 10 25 0 0 0 At Tj = 50 150 100 150 Th ( o C) 0 200 At Tj = °C VGE = Figure 17 Power dissipation as a 50 150 15 100 function of heatsink temperature Ptot = f(Th) Th ( o C) 200 °C V Figure 18 Forward current as a Output inverter FRED 150 Output inverter FRED function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 90 75 40 60 30 45 20 30 10 15 0 0 0 At Tj = 50 150 100 150 Th ( o C) 200 0 At Tj = °C Copyright by Vincotech 8 50 150 100 150 Th ( o C) °C Revision: 1 200 V23990-P700-F-PM final datasheet Thermistor Figure 1 Thermistor Typical NTC characteristic as a function of temperature RT = f (T) NTC-typical temperature characteristic R/ 25000 20000 15000 10000 5000 0 25 50 75 Copyright by Vincotech 100 T (°C) 125 9 Revision: 1 V23990-P700-F-PM final datasheet Switching Definitions Output Inverter General conditions Figure 1 Tj = Rgon Rgoff = = 125 °C 32 32 Figure 2 Output inverter IGBT Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Output inverter IGBT Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 280 140 120 tdoff 100 200 Uce 90% Uge 90% 80 Ic 240 160 Ic 60 % 120 % tEoff 40 Uce 80 20 tdon Uge Uge 40 0 Ic 1% Uce Uge10% Uce3% Ic10% 0 -20 -40 -0,4 tEon -40 -0,2 0 0,2 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,4 time (us) 0,6 0,8 1 1,2 2,6 2,8 3 3,2 3,4 time(us) -15 15 600 V V V VGE (0%) = VGE (100%) = VC (100%) = -15 15 600 V V V 35 0,51 0,85 A s s IC (100%) = tdon = tEon = 35 0,32 0,69 A s s 39 3,6 Figure 3 54 Figure 4 Turn-off Switching Waveforms & definition of tf 82 Turn-on Switching Waveforms & definition of tr 3,8 4 Output inverter IGBT 300 140 Ic 120 260 fitted Ic Uce 220 100 Ic 90% 180 80 % 140 Ic 60% % 60 Uce Ic90% 100 40 36 Ic 40% tr 60 20 20 Ic10% Ic10% tf 0 -20 3,28 -20 0,2 VC (100%) = IC (100%) = tf = 0,3 0,4 600 35 0,22 0,5 0,6 time (us) 0,7 0,8 VC (100%) = IC (100%) = tr = V A s Copyright by Vincotech 3,305 3,33 3,355 3,38 time(us) 3,405 3,43 3,455 0,9 10 600 35 0,03 V A s Revision: 1 3,48 V23990-P700-F-PM final datasheet Switching Definitions Output Inverter Figure 5 Figure 6 Output inverter IGBT Turn-off Switching Waveforms & definition of tEoff Output inverter IGBT Turn-on Switching Waveforms & definition of tEon 120 220 Poff Pon Eoff 100 180 80 140 60 Eon 100 % % 40 60 20 Uge90% 20 0 Uge10% Uce3% tEoff tEon Ic 1% -20 -20 -0,2 0 0,2 Poff (100%) = Eoff (100%) = tEoff = 0,4 0,6 time (us) 0,8 1 2,8 1,2 3 3,2 3,4 time(us) 21,05 4,06 kW mJ Pon (100%) = Eon (100%) = 21,05 4,31 kW mJ 0,85 s tEon = 0,69 s Figure 7 3,6 3,8 4 Figure 8 Output inverter IGBT Output inverter FRED Turn-off Switching Waveforms & definition of trr Gate voltage vs Gate charge 20 120 15 80 10 40 5 0 0 % -40 -5 -80 -10 -120 Id Uge (V) trr Ud IRRM10% fitted IRRM90% -160 -15 -20 IRRM100% -200 -50 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 50 100 -15 15 600 35 342,38 150 200 Qg (nC) 250 300 350 400 3,2 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC Copyright by Vincotech 3,3 11 3,4 3,5 600 35 56 0,38 3,6 time(us) 3,7 3,8 3,9 V A A s Revision: 1 4 V23990-P700-F-PM final datasheet Switching Definitions Output Inverter Figure 9 Figure 10 Output inverter FRED Turn-on Switching Waveforms & definition of tQrr Output inverter FRED Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) (tQrr = integrating time for Qrr) 120 150 Erec Qrr 100 100 Id 80 50 tQint %0 60 % -50 40 -100 20 -150 0 tErec Prec -20 -200 3,1 3,3 3,5 3,7 3,9 4,1 4,3 3,1 4,5 3,3 3,5 time(us) Id (100%) = Qrr (100%) = tQint = 3,7 time(us) 35 6,93 A C Prec (100%) = Erec (100%) = 21,05 2,50 kW mJ 0,78 s tErec = 0,78 s Copyright by Vincotech 12 3,9 4,1 4,3 Revision: 1 4,5 V23990-P700-F-PM final datasheet Package Outline and Pinout Outline Pinout 39 54 82 36 Copyright by Vincotech 13 Revision: 1 V23990-P700-F-PM final datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Tyco Electronics reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Tyco Electronics reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER Tyco Electronics reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Tyco Electronics does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Tyco Electronics products are not authorised for use as critical components in life support devices or systems without the express written approval of Tyco Electronics. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 14 Revision: 1