V23990-P700-F-PM flow 90 PACK 1 1200V / 35A

V23990-P700-F-PM
final datasheet
flow 90 PACK 1
1200V / 35A
flow 90 1 housing
Features
90° housing
Compact and low inductance design
Clip in or screw heatsink mouting
Target Applications
Schematic
Motor Drives
Types
V23990-P700-F-PM
Maximum Ratings
Parameter
Condition
Symbol
Value
Unit
1200
V
Transistor Inverter
Collector-emitter break down voltage
DC collector current
VCE
IC
Tj=Tjmax
Repetitive peak collector current
Icpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
SC withstand time*
tSC
Maximum junction temperature
Th=80°C
Tc=80°C
30
39
105
Th=80°C
Tc=80°C
Tj150°C
VCC=900V
VGE=15V
Tjmax
54
82
A
A
W
±20
V
10
Ps
150
°C
* It is recommended to not exceed 1000 short circuit situations in the lifetime of the module and to allow at least 1between short circuits
Diode Inverter
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum junction temperature
Copyright by Vincotech
Tjmax
Th=80°C
Tc=80°C
27
36
70
Th=80°C
Tc=80°C
39
59
150
1
Revision: 1
A
A
W
°C
V23990-P700-F-PM
final datasheet
Maximum Ratings
Parameter
Condition
Symbol
Value
Unit
Thermal properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature
Top
-40…+125
°C
4000
Vdc
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation properties
Insulation voltage
Copyright by Vincotech
Vis
t=1min
2
Revision: 1
V23990-P700-F-PM
final datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE(V) or
VGS(V)
Vr(V) or
VCE(V) or
VDS(V)
Value
IC(A) or IF(A)
T(C°)
or ID(A)
Unit
Min
Typ
Max
5
5,8
6,5
1,69
1,91
2,25
Transistor Inverter
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,0015
VCE(sat)
15
Collector-emitter cut-off
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Collector-emitter saturation voltage
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
35
td(off)
tf
Fall time
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
0,25
650
6
tr
Rise time
Turn-off delay time
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=32 Rgon=32 600
±15
25
0
f=1MHz
35
0
25
0
25
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
nA
ns
ns
28
ns
512
ns
213
mWs
4,31
mWs
4,1
2,53
nF
0,13
nF
0,115
nF
340
±15
V
mA
Ohm
317
Thermal grease
thickness50um
= 0,61 W/mK
V
nC
1,29
K/W
-
K/W
Diode Inverter
Diode forward voltage
VF
Peak reverse recovery current
IRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
35
Rgon=32 Rgoff=32 ±15
600
35
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
36
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,62
1,6
2,4
A
56,5
ns
376
PC
6,9
mWs
2,5
Thermal grease
thickness50um
= 0,61 W/mK
V
1,81
K/W
-
K/W
NTC Thermistor
Rated resistance
R25
Deviation of R100
DR/R
Power dissipation given Epcos-Type
P
B(25/100)
B-value
Copyright by Vincotech
Tj=25°C
R100=1503
Tol. ±3%
3
20,9
22
23,1
kOhm
Tc=100°C
2,9
%/K
Tj=25°C
210
mW
Tj=25°C
3980
K
Revision: 1
V23990-P700-F-PM
final datasheet
Output Inverter
Figure 1
Typical output characteristics
IC = f(VCE)
Figure 3
Output inverter IGBT
Output inverter IGBT
Typical output characteristics
IC = f(VCE)
70
IC (A)
IC (A)
70
60
60
50
50
40
40
30
30
20
20
10
10
0
0
0
1
2
3
4
VCE (V)
5
0
At
tp =
Tj =
1
2
3
VCE (V)
4
5
At
tp =
Tj =
250
s
25
°C
VGE from 7 V to 17 V in steps of 1 V
250
s
125
°C
VGE from 7 V to 17 V in steps of 1 V
Figure 4
Typical transfer characteristics
Ic = f(VGE)
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Output inverter IGBT
IC (A)
42
54
70
82
IF (A)
39
Output inverter FRED
60
35
50
28
125 oC
40
25 oC
125 oC
21
30
14
20
36
25 oC
7
10
0
0
0
At
tp =
VCE =
3
250
10
6
9
V GE (V)
12
0
At
tp =
s
V
Copyright by Vincotech
4
0,5
250
1
1,5
2
2,5
VF (V)
s
Revision: 1
3
V23990-P700-F-PM
final datasheet
Output Inverter
Figure 5
Figure 6
Output inverter IGBT
Typical switching energy losses
as a function of collector current
E = f(Ic)
Output inverter IGBT
Typical switching energy losses
as a function of gate resistor
E = f(RG)
10
E (mWs)
10
E (mWs)
Eon
8
8
Eoff
Eon
6
6
4
4
Eoff
Erec
Erec
2
2
0
0
0
10
20
30
40
50
60 I C (A)
70
0
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Rgoff =
32
15
30
45
60
RG(:)
75
With an inductive load at
Tj =
125
°C
VCE =
VGE =
IC =
Figure 7
600
±15
34
V
V
A
Figure 8
Output inverter IGBT
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Typical switching times as a
function of gate resistor
t = f(RG)
1
1
t ( Ps)
t ( Ps)
tdoff
tdon
tdoff
tdon
tf
tf
0,1
0,1
tr
tr
0,01
0,01
0,001
0,001
0
10
20
30
40
50
60
IC (A)
0
70
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Rgoff =
32
Copyright by Vincotech
10
20
30
40
50
RG (:)
60
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
34
A
5
Revision: 1
70
V23990-P700-F-PM
final datasheet
Output Inverter
Figure 9
Figure 10
Output inverter FRED diode
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,6
IrrM (A)
t rr( Ps)
120
0,5
100
0,4
80
0,3
60
0,2
40
0,1
20
0
0
20
At
Tj =
125
VR =
IF =
VGE =
600
34
±15
40
60
R Gon ( : )
0
80
0
20
40
°C
At
Tj =
125
°C
V
A
V
VR =
IF =
VGE =
600
34
±15
V
A
V
Figure 11
Typical reverse recovery charge as a
Figure 12
Typical rate of fall of forward
Output inverter FRED diode
function of IGBT turn on gate resistor
Qrr = f(Rgon)
60
R Gon ( : )
80
Output inverter FRED diode
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
9
4500
direc / dt (A/ Ps)
Qrr ( PC)
Output inverter FRED diode
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
8
7
4000
3500
6
3000
5
2500
4
2000
3
1500
2
1000
1
500
dI0/dt
dIrec/dt
0
0
0
At
Tj =
VR =
IF =
VGE =
10
20
30
40
50
R60Gon ( :)
0
70
15
30
125
600
34
°C
V
A
At
Tj =
VR =
IF =
125
600
34
°C
V
A
±15
V
VGE =
±15
V
Copyright by Vincotech
6
45
60 R Gon ( :)
Revision: 1
75
V23990-P700-F-PM
final datasheet
Output Inverter
Figure 13
Figure 14
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
10
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
With
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
101
10-5
With
D=
RthJH =
tp / T
1,29
K/W
IGBT thermal model values
10-4
10-3
10-1
100
t p (s)
tp / T
1,81
K/W
FRED thermal model values
R (C/W)
Tau (s)
R (C/W)
Tau (s)
0,06
0,31
0,67
4,2E+00
7,1E-01
1,7E-01
0,04
0,24
0,88
9,9E+00
1,2E+00
2,5E-01
0,16
0,04
0,04
1,9E-02
1,3E-03
1,4E-04
0,39
0,18
0,09
5,6E-02
8,8E-03
5,8E-04
Copyright by Vincotech
10-2
7
Revision: 1
101
V23990-P700-F-PM
final datasheet
Output Inverter
Figure 15
Figure 16
Output inverter IGBT
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Collector current as a
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
150
125
40
100
30
75
20
50
10
25
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
0
200
At
Tj =
°C
VGE =
Figure 17
Power dissipation as a
50
150
15
100
function of heatsink temperature
Ptot = f(Th)
Th ( o C)
200
°C
V
Figure 18
Forward current as a
Output inverter FRED
150
Output inverter FRED
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
90
75
40
60
30
45
20
30
10
15
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
8
50
150
100
150
Th ( o C)
°C
Revision: 1
200
V23990-P700-F-PM
final datasheet
Thermistor
Figure 1
Thermistor
Typical NTC characteristic
as a function of temperature
RT = f (T)
NTC-typical temperature characteristic
R/
25000
20000
15000
10000
5000
0
25
50
75
Copyright by Vincotech
100
T (°C)
125
9
Revision: 1
V23990-P700-F-PM
final datasheet
Switching Definitions Output Inverter
General conditions
Figure 1
Tj
=
Rgon
Rgoff
=
=
125 °C
32 32 Figure 2
Output inverter IGBT
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Output inverter IGBT
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
280
140
120
tdoff
100
200
Uce 90%
Uge 90%
80
Ic
240
160
Ic
60
%
120
%
tEoff
40
Uce
80
20
tdon
Uge
Uge
40
0
Ic 1%
Uce
Uge10%
Uce3%
Ic10%
0
-20
-40
-0,4
tEon
-40
-0,2
0
0,2
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,4
time (us)
0,6
0,8
1
1,2
2,6
2,8
3
3,2
3,4
time(us)
-15
15
600
V
V
V
VGE (0%) =
VGE (100%) =
VC (100%) =
-15
15
600
V
V
V
35
0,51
0,85
A
s
s
IC (100%) =
tdon =
tEon =
35
0,32
0,69
A
s
s
39
3,6
Figure 3
54
Figure 4
Turn-off Switching Waveforms & definition of tf
82
Turn-on Switching Waveforms & definition of tr
3,8
4
Output inverter IGBT
300
140
Ic
120
260
fitted
Ic
Uce
220
100
Ic 90%
180
80
% 140
Ic 60%
% 60
Uce
Ic90%
100
40
36
Ic 40%
tr
60
20
20
Ic10%
Ic10%
tf
0
-20
3,28
-20
0,2
VC (100%) =
IC (100%) =
tf =
0,3
0,4
600
35
0,22
0,5
0,6
time (us)
0,7
0,8
VC (100%) =
IC (100%) =
tr =
V
A
s
Copyright by Vincotech
3,305
3,33
3,355
3,38
time(us)
3,405
3,43
3,455
0,9
10
600
35
0,03
V
A
s
Revision: 1
3,48
V23990-P700-F-PM
final datasheet
Switching Definitions Output Inverter
Figure 5
Figure 6
Output inverter IGBT
Turn-off Switching Waveforms & definition of tEoff
Output inverter IGBT
Turn-on Switching Waveforms & definition of tEon
120
220
Poff
Pon
Eoff
100
180
80
140
60
Eon
100
%
%
40
60
20
Uge90%
20
0
Uge10%
Uce3%
tEoff
tEon
Ic 1%
-20
-20
-0,2
0
0,2
Poff (100%) =
Eoff (100%) =
tEoff =
0,4
0,6
time (us)
0,8
1
2,8
1,2
3
3,2
3,4
time(us)
21,05
4,06
kW
mJ
Pon (100%) =
Eon (100%) =
21,05
4,31
kW
mJ
0,85
s
tEon =
0,69
s
Figure 7
3,6
3,8
4
Figure 8
Output inverter IGBT
Output inverter FRED
Turn-off Switching Waveforms & definition of trr
Gate voltage vs Gate charge
20
120
15
80
10
40
5
0
0
% -40
-5
-80
-10
-120
Id
Uge (V)
trr
Ud
IRRM10%
fitted
IRRM90%
-160
-15
-20
IRRM100%
-200
-50
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
50
100
-15
15
600
35
342,38
150
200
Qg (nC)
250
300
350
400
3,2
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
Copyright by Vincotech
3,3
11
3,4
3,5
600
35
56
0,38
3,6
time(us)
3,7
3,8
3,9
V
A
A
s
Revision: 1
4
V23990-P700-F-PM
final datasheet
Switching Definitions Output Inverter
Figure 9
Figure 10
Output inverter FRED
Turn-on Switching Waveforms & definition of tQrr
Output inverter FRED
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
(tQrr = integrating time for Qrr)
120
150
Erec
Qrr
100
100
Id
80
50
tQint
%0
60
%
-50
40
-100
20
-150
0
tErec
Prec
-20
-200
3,1
3,3
3,5
3,7
3,9
4,1
4,3
3,1
4,5
3,3
3,5
time(us)
Id (100%) =
Qrr (100%) =
tQint =
3,7
time(us)
35
6,93
A
C
Prec (100%) =
Erec (100%) =
21,05
2,50
kW
mJ
0,78
s
tErec =
0,78
s
Copyright by Vincotech
12
3,9
4,1
4,3
Revision: 1
4,5
V23990-P700-F-PM
final datasheet
Package Outline and Pinout
Outline
Pinout
39
54
82
36
Copyright by Vincotech
13
Revision: 1
V23990-P700-F-PM
final datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Tyco Electronics reserves the right to make changes at
any time without notice in order to improve design. The
data contained is exclusively intended for technically
trained staff.
Full Production
This datasheet contains final specifications. Tyco
Electronics reserves the right to make changes at any
time without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
DISCLAIMER
Tyco Electronics reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Tyco Electronics does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Tyco Electronics products are not authorised for use as critical components in life support devices or systems without the express written
approval of Tyco Electronics.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
14
Revision: 1