V23990 P823 F P2 14

V23990-P823-F-PM
preliminary datasheet
flowPACK 1 3rd gen
600V/50A
Features
flow1 housing
● Compact flow1 housing
● Trench Fieldstop IGBT3 Technology
● Compact and Low Inductance Design
● AlN substrate for improved performance
● Built-in NTC
Target Applications
Schematic
● Motor Drive
● Power Generation
● UPS
Types
● V23990-P823-F
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
50
150
139
A
A
W
±20
V
6
360
μs
V
175
°C
600
V
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright by Vincotech
Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
50
100
109
175
1
A
A
W
°C
Revision: 2
V23990-P823-F-PM
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+150
°C
4000
VDC
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
copyright by Vincotech
Vis
t=1min
2
Revision: 2
V23990-P823-F-PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,1
1,56
1,79
2,1
Inverter Transistor
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0008
50
tf
0,35
650
Rgoff=8 Ω
Rgon=8 Ω
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Vcc=480
Thermal resistance chip to heatsink per chip
RthJH
Thermal foil
thickness=76um
Kunze foil KU-ALF5
±15
300
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
106
98
19
16
150
173
89
115
0,50
0,75
1,18
1,63
ns
mWs
3140
f=1MHz
25
0
pF
200
Tj=25°C
93
±15
50
Tj=25°C
310
nC
0,68
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
50
Rgon=8 Ω
±15
300
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,2
Thermal foil
thickness=76um
Kunze foil KU-ALF5
1,63
1,60
28
79
144
147
1,91
4,71
1357
4135
0,55
1,09
2,1
V
A
ns
μC
A/μs
mWs
0,87
K/W
Thermistor
Rated resistance
R25
Tol. ±5%
Tj=25°C
Deviation of R100
DR/R
R100=435Ω
Tc=100°C
Power dissipation given Epcos-Typ
B-value
copyright by Vincotech
P
B(25/100)
Tol. ±3%
3
4,46
4,7
4,94
kΩ
2,6
%/K
Tj=25°C
210
mW
Tj=25°C
3530
K
Revision: 2
V23990-P823-F-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
150
IC (A)
150
120
120
90
90
60
60
30
30
0
0
0
1
2
3
4
VCE (V)
5
0
At
tp =
Tj =
1
2
3
4
VCE (V)
5
At
tp =
Tj =
250
μs
25
°C
VGE from 7 V to 17 V in steps of 1 V
250
μs
150
°C
VGE from 7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
Ic = f(VGE)
Output inverter FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
150
IC (A)
IF (A)
50
40
Tj = 25°C
120
30
90
Tj = Tjmax-25°C
Tj = Tjmax-25°C
20
60
10
30
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright by Vincotech
4
6
8
V GE (V)
10
0
At
tp =
μs
V
4
0,5
250
1
1,5
2
2,5
VF (V)
3
μs
Revision: 2
V23990-P823-F-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(Ic)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
3
E (mWs)
3
Eoff
2,5
2,5
Eon
2
2
Eoff
1,5
Eoff
Eon
1,5
Eoff
Eon
1
1
Eon:
0,5
0,5
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
°C
25/150
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
°C
25/150
VCE =
300
V
VGE =
±15
V
IC =
50
A
Output inverter IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
Output inverter IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
1,5
E (mWs)
E (mWs)
2
1,2
1,5
Erec
0,9
Erec
1
0,6
Erec
Erec
0,5
0,3
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
25/150
°C
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
copyright by Vincotech
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
25/150
°C
VCE =
300
V
VGE =
±15
V
IC =
50
A
5
Revision: 2
V23990-P823-F-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
t ( μs)
t ( μs)
1
tdon
tdoff
tf
tf
tdon
0,1
0,1
tr
tr
0,01
0,01
0,001
0,001
0
20
40
60
80
IC (A)
100
0
With an inductive load at
Tj =
150
°C
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
RG (Ω )
32
40
With an inductive load at
Tj =
150
°C
VCE =
300
V
VGE =
±15
V
IC =
50
A
Output inverter FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
Output inverter FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,2
t rr( μs)
t rr( μs)
0,4
0,16
trr
trr
trr
0,3
trr
0,12
0,2
0,08
0,1
0,04
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
300
±15
8
copyright by Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
8
25/150
300
50
±15
16
24
32
R Gon ( Ω ) 40
°C
V
A
V
Revision: 2
V23990-P823-F-PM
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(Ic)
Output inverter FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
7
Qrr ( μC)
Qrr ( μC)
6
Qrr
6
5
Qrr
5
4
4
3
3
Qrr
Qrr
2
2
1
1
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
300
±15
8
40
60
80
I C (A)
100
0
8
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(Ic)
16
25/150
300
50
±15
24
32
R Gon ( Ω)
40
°C
V
A
V
Output inverter FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
150
IrrM (A)
IrrM (A)
120
100
IRRM
120
80
90
60
60
40
IRRM
IRRM
30
20
IRRM
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
300
±15
8
copyright by Vincotech
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
8
25/150
300
50
±15
16
24
32
R Gon ( Ω )
40
°C
V
A
V
Revision: 2
V23990-P823-F-PM
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
12000
dI0/dt
direc / dt (A/ μs)
direc / dt (A/ μs)
6000
Output inverter FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt
5000
dI0/dt
dIrec/dt
10000
4000
8000
3000
6000
2000
4000
1000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
300
±15
8
40
60
I C (A)
80
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
8
25/150
300
50
±15
16
24
40
°C
V
A
V
Output inverter FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
ZthJH (K/W)
100
R Gon ( Ω)
32
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-2
10-5
At
D=
RthJH =
10-4
tp / T
0,68
10-3
10-2
10-1
100
t p (s)
10-5
1011
At
D=
RthJH =
K/W
10-4
10-3
tp / T
0,87
K/W
IGBT thermal model values
FRED thermal model values
R (C/W)
0,02
0,08
0,18
0,26
0,08
0,06
R (C/W)
0,02
0,08
0,15
0,35
0,15
0,11
Tau (s)
9,9E+00
1,2E+00
1,5E-01
4,2E-02
4,6E-03
5,2E-04
copyright by Vincotech
8
10-2
10-1
100
t p (s)
1011
Tau (s)
9,5E+00
1,1E+00
1,4E-01
3,2E-02
4,1E-03
5,0E-04
Revision: 2
V23990-P823-F-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
60
IC (A)
Ptot (W)
300
250
50
200
40
150
30
100
20
50
10
0
0
0
At
Tj =
50
175
100
°C
150
Th ( o C)
200
0
At
Tj =
single heating
overall heating
VGE =
Output inverter FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
Th ( o C)
200
°C
V
Output inverter FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
60
IF (A)
Ptot (W)
240
150
200
50
160
40
120
30
80
20
40
10
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
°C
150
Th ( o C)
200
0
At
Tj =
single heating
overall heating
9
50
175
100
150
Th ( o C)
200
°C
Revision: 2
V23990-P823-F-PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
VGE (V)
IC (A)
20
10u
3
10
15
100u
100m
DC
1m
10m
120V
102
10
480V
1
10
5
100
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
101
102
V CE (V)
0
103
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright by Vincotech
10
100
50
200
300
Qg (nC)
400
A
Revision: 2
V23990-P823-F-PM
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
5000
4000
3000
2000
1000
0
25
50
copyright by Vincotech
75
100
T (°C)
125
11
Revision: 2
V23990-P823-F-PM
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
280
140
Ic
tdoff
120
240
Uce
100
200
Uce 90%
Uge 90%
80
160
Uce
60
Ic
%
120
%
tEoff
40
80
20
Uge
tdon
Ic 1%
40
0
Ic10%
Uge
-20
0
-40
-0,2
0
0,2
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
time (us)
-15
15
300
50
0,17
0,58
0,4
0,6
tEon
-40
0,8
2,8
2,95
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
Uce3%
Uge10%
3,1
-15
15
300
50
0,10
0,22
time(us)
3,25
3,55
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,4
Turn-on Switching Waveforms & definition of tr
140
260
fitted
120
220
Uce
100
Ic
180
Ic 90%
80
140
Ic 60%
% 60
Uce
%
100
Ic90%
Ic 40%
40
tr
60
20
Ic10%
tf
0
-20
0,05
20
Ic
Ic10%
-20
0,1
0,15
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
300
50
0,12
0,2
0,25
time (us)
0,3
0,35
0,4
2,9
VC (100%) =
IC (100%) =
tr =
V
A
μs
12
3
3,1
300
50
0,02
time(us)
3,2
3,3
3,4
V
A
μs
Revision: 2
V23990-P823-F-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
160
Eoff
Poff
Pon
100
130
80
100
Eon
60
70
%
%
40
40
20
Uge10%
Uce3%
10
0
tEon
Uge90%
-20
-0,2
tEoff
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
15,03
1,63
0,58
time (us)
Ic 1%
0,4
0,6
-20
2,95
0,8
3,03
3,19
3,27
Pon (100%) =
Eon (100%) =
tEon =
Output inverter FRED
15,03
0,75
0,22
kW
mJ
μs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
120
15
80
Id
fitted
trr
10
40
5
0
0
% -40
-5
-80
-10
-120
-15
-160
Uge (V)
3,35
time(us)
kW
mJ
μs
Figure 7
Gate voltage vs Gate charge (measured)
3,11
Ud
IRRM10%
IRRM90%
-20
-250
IRRM100%
-200
-100
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright by Vincotech
50
-15
15
300
50
479,76
200
Qg (nC)
350
500
3
650
3,08
3,16
3,24
3,32
3,4
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
13
300
50
-79
0,15
V
A
A
μs
Revision: 2
V23990-P823-F-PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Id
Erec
Qrr
100
100
50
80
tQint
0
60
%
%
tErec
-50
40
-100
20
-150
0
Prec
-200
-20
2,9
3,15
Id (100%) =
Qrr (100%) =
tQint =
copyright by Vincotech
3,4
50
4,71
0,80
time(us)
3,65
3,9
4,15
2,9
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
14
3,15
3,4
15,03
1,09
0,80
time(us)
3,65
3,9
4,15
kW
mJ
μs
Revision: 2
V23990-P823-F-PM
preliminary datasheet
Package Outline and Pinout
Outline
Pinout
copyright by Vincotech
15
Revision: 2
V23990-P823-F-PM
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
16
Revision: 2