V23990 K430 F40 D2 14

V23990-K430-F40-PM
MiniSKiiP®3 PACK
1200V/150A
MiniSKiiP®3 housing
Features
● Solderless interconnection
● Trench Fieldstop IGBT4 technology
Target Applications
Schematic
● Servo Drives
● Industrial Motor Drives
● UPS
Types
● V23990-K430-F40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
123
A
tp limited by Tjmax
450
A
VCE≤1200V, Tj≤Top max
300
A
282
W
±20
V
10
600
µs
V
Tjmax
175
°C
VRRM
1200
V
87
A
300
A
175
W
175
°C
T1,T2,T3,T4,T5,T6
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Th=80°C
Tj≤150°C
VGE=15V
D1,D2,D3,D4,D5,D6
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
Th=80°C
Revision: 2.1
V23990-K430-F40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12.7
mm
Clearance
min 12.7
mm
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 2.1
V23990-K430-F40-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,6
2,04
2,5
2,2
T1,T2,T3,T4,T5,T6
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
±20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,006
150
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,2
650
Rgoff=2Ω
Rgon=2Ω
±15
600
150
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
5
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
175
193
46
53
288
375
58
100
15
23
8,26
14,15
ns
mWs
8800
f=1MHz
25
0
Tj=25°C
pF
580
470
Tj=25°C
±15
Thermal grease
thickness≤50µm
λ=1W/mK
1250
nC
0,33
K/W
D1,D2,D3,D4,D5,D6
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
150
Rgon=2Ω
±15
600
di(rec)max
/dt
Erec
RthJH
150
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,5
Thermal grease
thickness≤50µm
λ=1W/mK
2,5
2,53
77
107
125
492
7,99
24,3
237
1268
2,14
8,21
2,7
V
A
ns
µC
A/µs
mWs
0,52
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
T=25°C
R100=1670 Ω
T=100°C
-3
3
%
T=100°C
1670,313
Ω
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
1/K
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
1/K²
R100
P
Vincotech NTC Reference
copyright Vincotech
E
3
Revision: 2.1
V23990-K430-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
450
IC (A)
IC (A)
450
375
375
300
300
225
225
150
150
75
75
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
350
µs
150
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
450
IF (A)
IC (A)
150
4
125
375
100
300
75
225
Tj = 25°C
Tj = Tjmax-25°C
50
150
Tj = 25°C
25
75
Tj = Tjmax-25°C
0
0
0
2
4
6
8
10
V GE (V)
12
0
At
Tj =
tp =
VCE =
1
2
3
4
V F (V)
5
At
25/150
350
10
copyright Vincotech
°C
µs
V
tp =
4
350
µs
Revision: 2.1
V23990-K430-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
75
E (mWs)
75
Eon High T
60
60
45
45
Eon Low T
Eon High T
30
30
Eoff High T
Eon Low T
Eoff Low T
15
Eoff High T
15
Eoff Low T
0
0
0
60
120
180
240
I C (A)
0
300
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
8
RG(Ω)
10
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
A
150
D1,D2,D3,D4,D5,D6 FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
12
E (mWs)
E (mWs)
12
10
10
Erec
Tj = Tjmax -25°C
Erec
8
8
Tj = Tjmax -25°C
6
6
4
4
Tj = 25°C
Erec
2
Erec
Tj = 25°C
2
0
0
0
60
120
180
240
I C (A)
300
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
2
Ω
copyright Vincotech
2
4
6
8
RG(Ω)
10
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
150
A
5
Revision: 2.1
V23990-K430-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
t ( µs)
t ( µs)
1
tdoff
tdon
tdon
tf
0,1
tf
0,1
tr
tr
0,01
0,01
0,001
0,001
0
60
120
180
240
I C (A)
300
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
8
RG(Ω )
10
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
A
150
D1,D2,D3,D4,D5,D6 FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( µs)
1
t rr( µs)
1
trr
0,8
0,8
trr
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,6
0,6
trr
0,4
0,4
Tj = 25°C
trr
0,2
0,2
Tj = 25°C
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
60
25/150
600
±15
2
copyright Vincotech
120
180
240
I C (A)
0
300
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
2
25/150
600
150
±15
4
6
8
R g on ( Ω )
10
°C
V
A
V
Revision: 2.1
V23990-K430-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
30
Qrr( µC)
Qrr( µC)
30
Qrr
24
Tj = Tjmax -25°C
Qrr
24
Tj = Tjmax -25°C
18
18
12
Tj = 25°C
12
Qrr
Tj = 25°C
6
Qrr
6
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
60
25/150
600
±15
2
120
180
240
I C (A)
300
0
2
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
D1,D2,D3,D4,D5,D6 FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
25/150
600
150
±15
6
8
R g on ( Ω)
10
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
150
IrrM (A)
IrrM (A)
150
120
120
Tj = Tjmax - 25°C
Tj = Tjmax -25°C
90
90
IRRM
IRRM
Tj = 25°C
60
60
Tj = 25°C
IRRM
30
IRRM
30
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
60
25/150
600
±15
2
copyright Vincotech
120
180
240
I C (A)
0
300
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
2
25/150
600
150
±15
4
6
8
R gon ( Ω )
10
°C
V
A
V
Revision: 2.1
V23990-K430-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
3500
5000
dI0/dt
direc / dt (A/ µs)
dI0/dt
direc / dt (A/µ s)
D1,D2,D3,D4,D5,D6 FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt
2800
dIrec/dt
4000
Tj = Tjmax - 25°C
di0/dtHigh T
dIo/dtLow T
2100
3000
Tj = 25°C
1400
2000
dIrec/dtHigh T
700
1000
dIrec/dtHigh T
dIrec/dtLow T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
60
25/150
600
±15
2
120
180
I C (A) 300
240
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
2
25/150
600
150
±15
4
6
D1,D2,D3,D4,D5,D6 FWD
ZthJH (K/W)
Zth-JH (K/W)
100
10-1
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
10
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
R gon ( Ω )
8
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10110
10
tp / T
0,33
-5
At
D=
RthJH =
K/W
10
-4
10
-3
R (C/W)
0,03
0,06
0,15
0,08
0,02
R (C/W)
0,03
0,07
0,19
0,20
0,06
8
10
-1
10
0
t p (s)
1
10 10
K/W
FWD thermal model values
copyright Vincotech
-2
tp / T
0,52
IGBT thermal model values
Tau (s)
3,3E+00
9,3E-01
2,0E-01
7,9E-02
8,3E-03
10
Tau (s)
5,2E+00
1,1E+00
2,3E-01
8,3E-02
8,8E-03
Revision: 2.1
V23990-K430-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
200
IC (A)
Ptot (W)
550
440
160
330
120
220
80
110
40
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
D1,D2,D3,D4,D5,D6 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
150
Ptot (W)
IF (A)
350
150
280
120
210
90
140
60
70
30
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C) 200
0
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
Revision: 2.1
V23990-K430-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
16
IC (A)
VGE (V)
103
14
100uS
240V
102
12
960V
1mS
10
8
101
10mS
6
100mS
10
4
DC
0
2
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
10
1
102
103
0
100
200
300
400
500
600
700
800
Q g (nC)
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
150
A
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
copyright Vincotech
50
75
100
T (°C)
125
10
Revision: 2.1
V23990-K430-F40-PM
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
Rgon
= 2Ω
Rgoff
= 2Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
200
%
%
IC
120
tdoff
160
VCE
100
VGE 90%
VCE 90%
120
80
VCE
IC
60
VGE
80
tdon
tEoff
40
40
IC 1%
IC10%
20
VCE 3%
VGE10%
0
0
tEon
VGE
-20
-0,3
-0,15
0
0,15
0,3
0,45
0,6
-40
0,75
2,8
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
151
0,38
0,65
2,95
3,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,25
3,4
-15
15
600
151
0,19
0,62
3,7
time(us)
3,85
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,55
Turn-on Switching Waveforms & definition of tr
190
140
%
%
120
fitted
Ic
160
IC
100
130
VCE
IC 90%
80
VCE
100
IC90%
IC 60%
60
tr
70
IC 40%
40
40
20
IC10%
tf
0
IC10%
10
-20
-20
0,2
0,25
0,3
0,35
0,4
0,45
0,5
0,55
3
3,15
3,3
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
600
151
0,09
3,45
3,6
time(us)
time (us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
11
600
151
0,05
V
A
µs
Revision: 2.1
V23990-K430-F40-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
%
%
Pon
Eoff
100
Poff
140
80
Eon
100
60
40
60
20
VGE 90%
20
0
VCE 3%
VGE 10%
tEoff
tEon
IC 1%
-20
-0,2
-20
-0,05
0,1
0,25
0,4
0,55
0,7
2,9
0,85
3,05
3,2
3,35
3,5
3,65
Poff (100%) =
Eoff (100%) =
tEoff =
90,54
13,82
0,65
3,8
time(us)
time (us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
90,54
23,22
0,62
kW
mJ
µs
Output inverter IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
120
Id
%
80
trr
40
Vd
0
IRRM10%
-40
fitted
IRRM90%
IRRM100%
-80
-120
3
3,2
3,4
3,6
3,8
4
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
12
600
151
-115
0,48
V
A
A
µs
Revision: 2.1
V23990-K430-F40-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
%
%
Id
Erec
100
Qrr
100
80
50
tErec
60
tQrr
40
0
20
Prec
-50
0
-100
-20
3
3,2
3,4
3,6
3,8
4
4,2
4,4
3
3,2
3,4
3,6
3,8
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
151
24,43
0,97
4
4,2
4,4
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
13
90,54
8,10
0,97
kW
mJ
µs
Revision: 2.1
V23990-K430-F40-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K32-T-PM)
with std lid (black V23990-K32-T-PM) and P12
with thin lid (white V23990-K33-T-PM)
with thin lid (white V23990-K33-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K430-F40-/0A/-PM
V23990-K430-F40-/1A/-PM
V23990-K430-F40-/0B/-PM
V23990-K430-F40-/1B/-PM
K430F40
K430F40
K430F40
K430F40
in packaging barcode as
K430F40-/0A/
K430F40-/1A/
K430F40-/0B/
K430F40-/1B/
Outline
Pinout
copyright Vincotech
14
Revision: 2.1
V23990-K430-F40-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
15
Revision: 2.1