V23990-K430-F40-PM MiniSKiiP®3 PACK 1200V/150A MiniSKiiP®3 housing Features ● Solderless interconnection ● Trench Fieldstop IGBT4 technology Target Applications Schematic ● Servo Drives ● Industrial Motor Drives ● UPS Types ● V23990-K430-F40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 123 A tp limited by Tjmax 450 A VCE≤1200V, Tj≤Top max 300 A 282 W ±20 V 10 600 µs V Tjmax 175 °C VRRM 1200 V 87 A 300 A 175 W 175 °C T1,T2,T3,T4,T5,T6 Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Th=80°C Tj≤150°C VGE=15V D1,D2,D3,D4,D5,D6 Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 1 Th=80°C Th=80°C Revision: 2.1 V23990-K430-F40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12.7 mm Clearance min 12.7 mm Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 2.1 V23990-K430-F40-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,6 2,04 2,5 2,2 T1,T2,T3,T4,T5,T6 Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES ±20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,006 150 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,2 650 Rgoff=2Ω Rgon=2Ω ±15 600 150 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 5 tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 175 193 46 53 288 375 58 100 15 23 8,26 14,15 ns mWs 8800 f=1MHz 25 0 Tj=25°C pF 580 470 Tj=25°C ±15 Thermal grease thickness≤50µm λ=1W/mK 1250 nC 0,33 K/W D1,D2,D3,D4,D5,D6 Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 150 Rgon=2Ω ±15 600 di(rec)max /dt Erec RthJH 150 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,5 Thermal grease thickness≤50µm λ=1W/mK 2,5 2,53 77 107 125 492 7,99 24,3 237 1268 2,14 8,21 2,7 V A ns µC A/µs mWs 0,52 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R T=25°C R100=1670 Ω T=100°C -3 3 % T=100°C 1670,313 Ω A-value B(25/50) Tol. % T=25°C 7,635*10-3 1/K B-value B(25/100) Tol. % T=25°C 1,731*10-5 1/K² R100 P Vincotech NTC Reference copyright Vincotech E 3 Revision: 2.1 V23990-K430-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 2 Typical output characteristics IC = f(VCE) 450 IC (A) IC (A) 450 375 375 300 300 225 225 150 150 75 75 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 350 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 350 µs 150 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 450 IF (A) IC (A) 150 4 125 375 100 300 75 225 Tj = 25°C Tj = Tjmax-25°C 50 150 Tj = 25°C 25 75 Tj = Tjmax-25°C 0 0 0 2 4 6 8 10 V GE (V) 12 0 At Tj = tp = VCE = 1 2 3 4 V F (V) 5 At 25/150 350 10 copyright Vincotech °C µs V tp = 4 350 µs Revision: 2.1 V23990-K430-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 75 E (mWs) 75 Eon High T 60 60 45 45 Eon Low T Eon High T 30 30 Eoff High T Eon Low T Eoff Low T 15 Eoff High T 15 Eoff Low T 0 0 0 60 120 180 240 I C (A) 0 300 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 8 RG(Ω) 10 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = A 150 D1,D2,D3,D4,D5,D6 FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 12 E (mWs) E (mWs) 12 10 10 Erec Tj = Tjmax -25°C Erec 8 8 Tj = Tjmax -25°C 6 6 4 4 Tj = 25°C Erec 2 Erec Tj = 25°C 2 0 0 0 60 120 180 240 I C (A) 300 0 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 2 Ω copyright Vincotech 2 4 6 8 RG(Ω) 10 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 150 A 5 Revision: 2.1 V23990-K430-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 tdoff t ( µs) t ( µs) 1 tdoff tdon tdon tf 0,1 tf 0,1 tr tr 0,01 0,01 0,001 0,001 0 60 120 180 240 I C (A) 300 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 8 RG(Ω ) 10 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = A 150 D1,D2,D3,D4,D5,D6 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( µs) 1 t rr( µs) 1 trr 0,8 0,8 trr Tj = Tjmax -25°C Tj = Tjmax -25°C 0,6 0,6 trr 0,4 0,4 Tj = 25°C trr 0,2 0,2 Tj = 25°C 0 0 0 At Tj = VCE = VGE = Rgon = 60 25/150 600 ±15 2 copyright Vincotech 120 180 240 I C (A) 0 300 At Tj = VR = IF = VGE = °C V V Ω 6 2 25/150 600 150 ±15 4 6 8 R g on ( Ω ) 10 °C V A V Revision: 2.1 V23990-K430-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 30 Qrr( µC) Qrr( µC) 30 Qrr 24 Tj = Tjmax -25°C Qrr 24 Tj = Tjmax -25°C 18 18 12 Tj = 25°C 12 Qrr Tj = 25°C 6 Qrr 6 0 0 At 0 At Tj = VCE = VGE = Rgon = 60 25/150 600 ±15 2 120 180 240 I C (A) 300 0 2 At Tj = VR = IF = VGE = °C V V Ω D1,D2,D3,D4,D5,D6 FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 25/150 600 150 ±15 6 8 R g on ( Ω) 10 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 150 IrrM (A) IrrM (A) 150 120 120 Tj = Tjmax - 25°C Tj = Tjmax -25°C 90 90 IRRM IRRM Tj = 25°C 60 60 Tj = 25°C IRRM 30 IRRM 30 0 0 0 At Tj = VCE = VGE = Rgon = 60 25/150 600 ±15 2 copyright Vincotech 120 180 240 I C (A) 0 300 At Tj = VR = IF = VGE = °C V V Ω 7 2 25/150 600 150 ±15 4 6 8 R gon ( Ω ) 10 °C V A V Revision: 2.1 V23990-K430-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 3500 5000 dI0/dt direc / dt (A/ µs) dI0/dt direc / dt (A/µ s) D1,D2,D3,D4,D5,D6 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt 2800 dIrec/dt 4000 Tj = Tjmax - 25°C di0/dtHigh T dIo/dtLow T 2100 3000 Tj = 25°C 1400 2000 dIrec/dtHigh T 700 1000 dIrec/dtHigh T dIrec/dtLow T 0 0 0 At Tj = VCE = VGE = Rgon = 60 25/150 600 ±15 2 120 180 I C (A) 300 240 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 2 25/150 600 150 ±15 4 6 D1,D2,D3,D4,D5,D6 FWD ZthJH (K/W) Zth-JH (K/W) 100 10-1 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 10 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 R gon ( Ω ) 8 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 -2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10110 10 tp / T 0,33 -5 At D= RthJH = K/W 10 -4 10 -3 R (C/W) 0,03 0,06 0,15 0,08 0,02 R (C/W) 0,03 0,07 0,19 0,20 0,06 8 10 -1 10 0 t p (s) 1 10 10 K/W FWD thermal model values copyright Vincotech -2 tp / T 0,52 IGBT thermal model values Tau (s) 3,3E+00 9,3E-01 2,0E-01 7,9E-02 8,3E-03 10 Tau (s) 5,2E+00 1,1E+00 2,3E-01 8,3E-02 8,8E-03 Revision: 2.1 V23990-K430-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 200 IC (A) Ptot (W) 550 440 160 330 120 220 80 110 40 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C D1,D2,D3,D4,D5,D6 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 150 Ptot (W) IF (A) 350 150 280 120 210 90 140 60 70 30 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 9 50 175 100 150 T h ( o C) 200 °C Revision: 2.1 V23990-K430-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 16 IC (A) VGE (V) 103 14 100uS 240V 102 12 960V 1mS 10 8 101 10mS 6 100mS 10 4 DC 0 2 0 10-1 0 10 At D= Th = VGE = Tj = 10 1 102 103 0 100 200 300 400 500 600 700 800 Q g (nC) V CE (V) At IC = single pulse 80 ºC ±15 V Tjmax ºC 150 A Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 copyright Vincotech 50 75 100 T (°C) 125 10 Revision: 2.1 V23990-K430-F40-PM Switching Definitions Output Inverter General conditions Tj = 150 °C Rgon = 2Ω Rgoff = 2Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 200 % % IC 120 tdoff 160 VCE 100 VGE 90% VCE 90% 120 80 VCE IC 60 VGE 80 tdon tEoff 40 40 IC 1% IC10% 20 VCE 3% VGE10% 0 0 tEon VGE -20 -0,3 -0,15 0 0,15 0,3 0,45 0,6 -40 0,75 2,8 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 151 0,38 0,65 2,95 3,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,25 3,4 -15 15 600 151 0,19 0,62 3,7 time(us) 3,85 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,55 Turn-on Switching Waveforms & definition of tr 190 140 % % 120 fitted Ic 160 IC 100 130 VCE IC 90% 80 VCE 100 IC90% IC 60% 60 tr 70 IC 40% 40 40 20 IC10% tf 0 IC10% 10 -20 -20 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 3 3,15 3,3 VC (100%) = IC (100%) = tf = copyright Vincotech 600 151 0,09 3,45 3,6 time(us) time (us) VC (100%) = IC (100%) = tr = V A µs 11 600 151 0,05 V A µs Revision: 2.1 V23990-K430-F40-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 180 % % Pon Eoff 100 Poff 140 80 Eon 100 60 40 60 20 VGE 90% 20 0 VCE 3% VGE 10% tEoff tEon IC 1% -20 -0,2 -20 -0,05 0,1 0,25 0,4 0,55 0,7 2,9 0,85 3,05 3,2 3,35 3,5 3,65 Poff (100%) = Eoff (100%) = tEoff = 90,54 13,82 0,65 3,8 time(us) time (us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 90,54 23,22 0,62 kW mJ µs Output inverter IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 120 Id % 80 trr 40 Vd 0 IRRM10% -40 fitted IRRM90% IRRM100% -80 -120 3 3,2 3,4 3,6 3,8 4 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 12 600 151 -115 0,48 V A A µs Revision: 2.1 V23990-K430-F40-PM Switching Definitions Output Inverter Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 % % Id Erec 100 Qrr 100 80 50 tErec 60 tQrr 40 0 20 Prec -50 0 -100 -20 3 3,2 3,4 3,6 3,8 4 4,2 4,4 3 3,2 3,4 3,6 3,8 time(us) Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 151 24,43 0,97 4 4,2 4,4 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 13 90,54 8,10 0,97 kW mJ µs Revision: 2.1 V23990-K430-F40-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K32-T-PM) with std lid (black V23990-K32-T-PM) and P12 with thin lid (white V23990-K33-T-PM) with thin lid (white V23990-K33-T-PM) and P12 Ordering Code in DataMatrix as V23990-K430-F40-/0A/-PM V23990-K430-F40-/1A/-PM V23990-K430-F40-/0B/-PM V23990-K430-F40-/1B/-PM K430F40 K430F40 K430F40 K430F40 in packaging barcode as K430F40-/0A/ K430F40-/1A/ K430F40-/0B/ K430F40-/1B/ Outline Pinout copyright Vincotech 14 Revision: 2.1 V23990-K430-F40-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 15 Revision: 2.1