V23990-K438-F40-PM MiniSKiiP®3 PACK 1200V/75A Features MiniSKiiP®3 housing ● Solderless interconnection ● Trench Fieldstop IGBT4 technology Target Applications Schematic ● Servo Drives ● Industrial Motor Drives ● UPS Types ● V23990-K438-F40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 68 A tp limited by Tjmax 225 A VCE≤1200V, Tj≤Top max 150 A 162 W ±20 V 10 600 µs V Tjmax 175 °C VRRM 1200 V 64 A 150 A 126 W 175 °C T1,T2,T3,T4,T5,T6 Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Th=80°C Tj≤150°C VGE=15V D1,D2,D3,D4,D5,D6 Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Th=80°C Th=80°C Revision: 2 V23990-K438-F40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12.7 mm Clearance min 12.7 mm Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 2 V23990-K438-F40-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,6 1,87 2,29 2,2 T1,T2,T3,T4,T5,T6 VCE=VGE Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES ±20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 0,003 75 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,13 650 Rgoff=4Ω Rgon=4Ω ±15 600 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 10 tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 168 187 42 46 276 365 64,2 101 7,56 11,6 4,07 7,43 ns mWs 4400 f=1MHz 0 Tj=25°C 25 290 pF 235 ±15 Tj=25°C Thermal grease thickness≤50µm λ=1W/mK 570 nC 0,58 K/W D1,D2,D3,D4,D5,D6 Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip VF 75 IRRM trr Qrr Rgon=4Ω ±15 600 di(rec)max /dt Erec RthJH 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,5 Thermal grease thickness≤50µm λ=1W/mK 2,02 2,05 47,2 67,7 139 487 5,28 14 424 769 1,53 4,99 2,7 V A ns µC A/µs mWs 0,75 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R R100 T=25°C R100=1670 Ω T=100°C P T=100°C Power dissipation constant -3 3 mW/K A-value B(25/50) Tol. % T=25°C 7,635*10-3 B-value B(25/100) Tol. % T=25°C 1,731*10-5 Copyright by Vincotech Ω 1670,313 T=25°C Vincotech NTC Reference % 1/K 1/K² E 3 Revision: 2 V23990-K438-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 2 Typical output characteristics IC = f(VCE) 210 IC (A) IC (A) 210 180 180 150 150 120 120 90 90 60 60 30 30 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 350 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 µs 350 150 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 210 IF (A) IC (A) 75 4 Tj = 25°C 175 60 140 45 Tj = Tjmax-25°C 105 30 70 Tj = 25°C 15 35 Tj = Tjmax-25°C 0 0 0 At Tj = tp = VCE = 2 4 6 8 10 V GE (V) 12 0 0,8 1,6 2,4 3,2 V F (V) 4 At 25/150 350 10 °C µs V Copyright by Vincotech tp = 4 350 µs Revision: 2 V23990-K438-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 20 E (mWs) E (mWs) 32 Eon High T Eon High T 15 24 Eon Low T Eon Low T 10 16 Eoff High T Eoff High T 5 8 Eoff Low T Eoff Low T 0 0 0 30 60 90 120 I C (A) 0 150 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 RG(Ω) 20 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 75 A D1,D2,D3,D4,D5,D6 FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 7,5 E (mWs) 7,5 Erec 6 6 Tj = Tjmax -25°C Tj = Tjmax -25°C Erec 4,5 4,5 3 3 Erec Tj = 25°C Erec 1,5 1,5 Tj = 25°C 0 0 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 4 Ω Copyright by Vincotech 4 8 12 16 RG(Ω) 20 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 75 A 5 Revision: 2 V23990-K438-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 tdoff t ( µs) t ( µs) 1 tdoff tdon tdon 0,1 tf 0,1 tf tr tr 0,01 0,01 0,001 0,001 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 RG(Ω ) 20 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 75 A D1,D2,D3,D4,D5,D6 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( µs) 1 t rr( µs) 1 trr 0,8 0,8 trr Tj = Tjmax -25°C 0,6 0,6 Tj = Tjmax -25°C trr trr 0,4 0,4 0,2 0,2 Tj = 25°C Tj = 25°C 0 0 0 30 At Tj = VCE = VGE = Rgon = 25/150 600 ±15 4 60 90 120 I C (A) °C V V Ω Copyright by Vincotech 0 4 At Tj = VR = IF = VGE = 25/150 600 75 ±15 8 150 6 12 16 R g on ( Ω ) 20 °C V A V Revision: 2 V23990-K438-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 20 Qrr( µC) Qrr( µC) 20 Qrr 16 16 Tj = Tjmax -25°C Qrr Tj = Tjmax -25°C 12 12 Qrr 8 8 Tj = 25°C Qrr 4 4 Tj = 25°C 0 0 At 0 At Tj = VCE = VGE = Rgon = 30 25/150 600 ±15 4 60 90 120 I C (A) 150 °C V V Ω D1,D2,D3,D4,D5,D6 FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 4 At Tj = VR = IF = VGE = 8 25/150 600 75 ±15 12 16 R g on ( Ω) 20 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 100 IrrM (A) IrrM (A) 100 80 80 Tj = Tjmax -25°C Tj = Tjmax - 25°C 60 60 IRRM IRRM IRRM 40 40 IRRM Tj = 25°C Tj = 25°C 20 20 0 0 0 At Tj = VCE = VGE = Rgon = 30 25/150 600 ±15 4 60 90 120 I C (A) 0 150 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 4 25/150 600 75 ±15 8 12 16 R gon ( Ω ) 20 °C V A V Revision: 2 V23990-K438-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/ µs) direc / dt (A/µ s) 3000 dI0/dt dIrec/dt 2500 D1,D2,D3,D4,D5,D6 FWD 3000 dI0/dt dIrec/dt 2500 Tj = Tjmax - 25°C 2000 2000 di0/dtHigh T Tj = 25°C dIo/dtLow T 1500 1500 1000 1000 dIrec/dtHigh T 500 dIrec/dtHigh T 500 dIrec/dtLow T 0 0 0 At Tj = VCE = VGE = Rgon = 30 25/150 600 ±15 4 60 90 I C (A) 120 150 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/150 600 75 ±15 8 12 R gon ( Ω ) 16 20 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 10 4 0 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10110 -1 10 -2 10-5 At D= RthJH = tp / T 0,58 10 K/W D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-4 10-3 R (C/W) 0,11 0,33 0,08 0,04 0,02 R (C/W) 0,05 0,16 0,37 0,10 0,05 0,02 0,01 8 100 t p (s) 10110 K/W FWD thermal model values Copyright by Vincotech 10-1 tp / T 0,75 IGBT thermal model values Tau (s) 1,0E+00 1,5E-01 3,6E-02 7,3E-03 4,9E-04 10-2 Tau (s) 5,7E+00 8,7E-01 2,2E-01 5,5E-02 1,1E-02 1,3E-03 2,9E-04 Revision: 2 V23990-K438-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 120 IC (A) Ptot (W) 300 240 90 180 60 120 30 60 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 D1,D2,D3,D4,D5,D6 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 100 Ptot (W) IF (A) 250 150 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 9 50 175 100 150 T h ( o C) 200 °C Revision: 2 V23990-K438-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) IC (A) VGE (V) 16 14 10uS 10 3 960V 12 240V 100uS 10 102 101 1mS 8 10mS 6 100mS 4 DC 10 0 2 0 10-1 0 10 At D= Th = VGE = 10 1 10 2 103 0 100 150 200 250 300 350 400 Q g (nC) At IC = single pulse ºC 80 ±15 V Tjmax ºC Tj = 50 V CE (V) 75 A Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 50 Copyright by Vincotech 75 100 T (°C) 125 10 Revision: 2 V23990-K438-F40-PM Switching Definitions Output Inverter General conditions = 150 °C Tj = 4Ω Rgon Rgoff = 4Ω Output inverter IGBT Figure 1 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 200 % % 120 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) tdoff IC 160 VCE 100 VGE 90% VCE 90% 120 80 VCE IC 60 VGE 80 tdon tEoff 40 40 IC 1% IC10% 20 VCE 3% VGE10% 0 0 tEon VGE -20 -0,3 -0,15 0 0,15 0,3 0,45 0,6 0,75 -40 0,9 2,8 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 75 0,37 0,77 2,95 3,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,25 -15 15 600 75 0,19 0,60 3,4 3,7 time(us) 3,85 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,55 Turn-on Switching Waveforms & definition of tr 140 220 % % 120 190 fitted IC 100 160 VCE IC 90% 80 130 VCE IC 60% 60 IC90% 100 40 tr 70 IC 40% 20 40 IC10% 0 IC10% 10 tf Ic -20 0,2 0,25 0,3 0,35 0,4 0,45 0,5 -20 0,55 3 3,15 3,3 3,45 time (us) VC (100%) = IC (100%) = tf = 600 75 0,09 Copyright by Vincotech 3,6 3,75 time(us) VC (100%) = IC (100%) = tr = V A µs 11 600 75 0,05 V A µs Revision: 2 V23990-K438-F40-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 180 % Pon % Poff Eoff 100 140 80 Eon 100 60 40 60 20 VGE 90% 20 VCE 3% VGE 10% 0 tEoff tEon IC 1% -20 -0,2 -20 -0,05 0,1 0,25 0,4 0,55 0,7 2,9 0,85 3,05 3,2 3,35 3,5 3,65 Poff (100%) = Eoff (100%) = tEoff = 45,11 7,46 0,77 3,8 time(us) time (us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 45,11 11,54 0,60 kW mJ µs Output inverter IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 Vd 0 IRRM10% -40 fitted -80 IRRM90% IRRM100% -120 3 3,2 3,4 3,6 3,8 4 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = Copyright by Vincotech 12 600 75 -70 0,48 V A A µs Revision: 2 V23990-K438-F40-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 % % Id Erec 100 Qrr 100 80 50 tErec 60 tQrr 40 0 20 Prec -50 0 -100 -20 3 3,2 3,4 3,6 3,8 4 4,2 4,4 3 3,2 3,4 3,6 3,8 Id (100%) = Qrr (100%) = tQrr = 75 13,94 0,95 Copyright by Vincotech 4 4,2 4,4 time(us) time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 13 45,11 4,91 0,95 kW mJ µs Revision: 2 V23990-K438-F40-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K12-T-PM) with std lid (black V23990-K12-T-PM) and P12 with thin lid (white V23990-K13-T-PM) with thin lid (white V23990-K13-T-PM) and P12 Ordering Code in DataMatrix as V23990-K430-F40-/0A/-PM V23990-K430-F40-/1A/-PM V23990-K430-F40-/0B/-PM V23990-K430-F40-/1B/-PM K430F40 K430F40 K430F40 K430F40 in packaging barcode as K430F40-/0A/ K430F40-/1A/ K430F40-/0B/ K430F40-/1B/ Outline Pinout Copyright by Vincotech 14 Revision: 2 V23990-K438-F40-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 15 Revision: 2