V23990-K210-F40-PM MiniSKiiP® 1 PACK 1200V/25A MiniSKiiP® 1 housing Features ● Solderless interconnection ● Trench Fieldstop IGBT4 technology Target Applications Schematic ● Servo Drives ● Industrial Motor Drives ● UPS Types ● V23990-K210-F40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 25 A tp limited by Tjmax 75 A VCE≤1200V, Tj≤Topmax 50 A 82 W ±20 V 10 800 µs V Tjmax 175 °C VRRM 1200 V 20 A 75 A 63 W 175 °C T1,T2,T3,T4,T5,T6 Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Th=80°C Tj≤150°C VGE=15V D1,D2,D3,D4,D5,D6 Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 1 Th=80°C Th=80°C Revision: 2.1 V23990-K210-F40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12.7 mm Clearance min 12.7 mm Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 2.1 V23990-K210-F40-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,6 2,09 2,52 2,15 T1,T2,T3,T4,T5,T6 Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,00085 25 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,06 200 Rgoff=16Ω Rgon=16Ω ±15 600 25 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω - tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 71 72 32 36 199 270 90 135 1,61 2,46 1,53 2,5 ns mWs 1430 f=1MHz 0 Tj=25°C 25 115 pF 85 Tj=25°C ±15 Thermal grease thickness≤50µm λ=1W/mK 200 nC 1 K/W D1,D2,D3,D4,D5,D6 Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 25 Rgon=16Ω ±15 600 di(rec)max /dt Erec RthJH 25 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,3 Thermal grease thickness≤50µm λ=1W/mK 2,64 2,64 11,9 17,4 278 580 1,55 3,88 111 89 0,61 1,63 2,8 V A ns µC A/µs mWs 1,52 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R T=25°C R100=1670 Ω T=100°C -3 3 % T=100°C 1670,313 Ω A-value B(25/50) Tol. % T=25°C 7,635*10-3 1/K B-value B(25/100) Tol. % T=25°C 1,731*10-5 1/K² R100 R Vincotech NTC Reference copyright Vincotech E 3 Revision: 2.1 V23990-K210-F40-PM T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 75 IC (A) IC (A) 75 60 60 45 45 30 30 15 15 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 µs 150 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) IF (A) 75 IC (A) 25 5 Tj = 25°C 20 60 15 45 Tj = 25°C Tj = Tjmax-25°C 10 30 5 15 Tj = Tjmax-25°C 0 0 0 2 4 At tp = VCE = 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 12 0 At tp = 4 1 250 2 3 4 V F (V) 5 µs Revision: 2.1 V23990-K210-F40-PM T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 7,5 E (mWs) E (mWs) 4,5 Eon High T 6 Eon High T 4 3,5 Eon Low T 3 4,5 Eoff High T Eon Low T 2,5 Eoff High T 2 3 Eoff Low T 1,5 Eoff Low T 1 1,5 0,5 0 0 0 10 20 30 40 I C (A) 0 50 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = Ω 16 Rgoff = 16 Ω 16 32 48 64 RG( Ω ) 80 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 25 A IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 2,5 E (mWs) 2,5 Erec 2 2 Tj = Tjmax -25°C Tj = Tjmax -25°C 1,5 1,5 Erec 1 1 Erec Tj = 25°C Tj = 25°C 0,5 Erec 0,5 0 0 0 10 20 30 40 I C (A) 50 0 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω copyright Vincotech 16 32 48 64 RG( Ω ) 80 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 25 A 5 Revision: 2.1 V23990-K210-F40-PM T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff tdoff tdon tf tf 0,1 0,1 tr tr tdon 0,01 0,01 0,001 0,001 0 10 20 30 40 I C (A) 50 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = Ω 16 Rgoff = 16 Ω 16 32 48 RG( Ω ) 64 80 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 25 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 1 t rr( µs) t rr( µs) 1 trr trr 0,8 0,8 Tj = Tjmax -25°C Tj = Tjmax -25°C 0,6 0,6 trr trr 0,4 0,4 Tj = 25°C 0,2 0,2 Tj = 25°C 0 0 0 0 10 At Tj = VCE = VGE = Rgon = 25/150 600 ±15 16 20 30 40 I C (A) At Tj = VR = IF = VGE = °C V V Ω copyright Vincotech 16 32 50 6 25/150 600 25 ±15 48 64 R g on ( Ω ) 80 °C V A V Revision: 2.1 V23990-K210-F40-PM T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 6 Qrr( µC) Qrr( µC) 6 5 5 Qrr Tj = Tjmax -25°C 4 Qrr 4 Tj = Tjmax -25°C 3 3 Qrr 2 2 Tj = 25°C 1 Qrr 1 Tj = 25°C 0 0 At 0 At Tj = VCE = VGE = Rgon = 10 25/150 600 ±15 16 20 30 40 I C (A) 50 °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 16 At Tj = VR = IF = VGE = 25/150 600 25 ±15 32 48 64 R g on ( Ω) 80 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 50 IrrM (A) IrrM (A) 25 40 20 Tj = Tjmax -25°C IRRM 15 30 Tj = Tjmax - 25°C IRRM 20 10 Tj = 25°C IRRM 10 5 Tj = 25°C IRRM 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/150 600 ±15 16 20 30 40 I C (A) 0 50 At Tj = VR = IF = VGE = °C V V Ω copyright Vincotech 7 16 25/150 600 25 ±15 32 48 64 R gon ( Ω ) 80 °C V A V Revision: 2.1 V23990-K210-F40-PM T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) direc / dt (A/ µs) 1200 direc / dt (A/µ s) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt dIrec/dt 1000 5000 dIrec/dt dI0/dt 4000 800 Tj = Tjmax - 25°C 3000 dIo/dtLow T 600 Tj = 25°C di0/dtHigh T 2000 400 1000 dIrec/dtHigh T 200 dIrec/dtLow T dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/150 600 ±15 16 20 30 40 I C (A) 50 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/150 600 25 ±15 32 48 64 R gon ( Ω ) 80 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Zth-JH (K/W) 101 ZthJH (K/W) 101 100 10 10 16 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 10-4 At D= RthJH = tp / T 1 10-3 10-2 10-1 100 t p (s) 10-5 10110 At D= RthJH = K/W 10-4 10-3 R (C/W) 0,05 0,12 0,57 0,19 0,06 0,03 R (C/W) 0,05 0,25 0,97 0,43 0,23 0,08 8 100 t p (s) 10110 K/W FWD thermal model values copyright Vincotech 10-1 tp / T 1,52 IGBT thermal model values Tau (s) 6,6E+00 8,0E-01 1,4E-01 2,9E-02 3,2E-03 2,8E-04 10-2 Tau (s) 9,3E+00 5,6E-01 1,0E-01 1,7E-02 2,3E-03 4,6E-04 Revision: 2.1 V23990-K210-F40-PM T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 30 IC (A) Ptot (W) 180 150 25 120 20 90 15 60 10 30 5 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 30 IF (A) Ptot (W) 120 200 25 90 20 60 15 10 30 5 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C copyright Vincotech 9 50 175 100 150 T h ( o C) 200 °C Revision: 2.1 V23990-K210-F40-PM T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 103 IC (A) VGE (V) 16 14 102 240V 100uS 10 12 960V 10 1 1mS 8 10mS 100 6 100mS 4 10-1 DC 2 0 0 10 At D= Th = VGE = Tj = 10 1 10 2 103 0 V CE (V) At IC = single pulse 80 ºC ±15 V Tjmax ºC 20 25 40 60 80 100 Q g (nC) 120 A Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 50 copyright Vincotech 75 100 T (°C) 125 10 Revision: 2.1 V23990-K210-F40-PM Switching Definitions Output Inverter General conditions Tj = 150 °C Rgon = 16 Ω Rgoff = 16 Ω Output inverter IGBT Figure 1 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 200 % % 120 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) tdoff IC 160 VCE 100 VGE 90% VCE 90% 120 80 IC 60 VCE VGE 80 tdon tEoff 40 40 IC 1% 20 IC10% VGE10% VCE 3% 0 0 VGE tEon -20 -0,25 -0,05 0,15 0,35 0,55 -40 0,75 2,7 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 25 0,27 0,66 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,1 -15 15 600 25 0,07 0,33 3,3 3,5 time(us) 3,7 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 140 180 % fitted % 2,9 Ic 120 IC 140 100 VCE IC 90% 80 100 IC90% VCE IC 60% 60 tr 60 IC 40% 40 20 IC10% -20 0,15 20 tf 0 0,2 0,25 IC10% 0,3 0,35 0,4 -20 0,45 3 3,05 3,1 3,15 time (us) VC (100%) = IC (100%) = tf = 600 25 0,14 copyright Vincotech 3,2 3,25 time(us) VC (100%) = IC (100%) = tr = V A µs 11 600 25 0,04 V A µs Revision: 2.1 V23990-K210-F40-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 180 % Poff Pon % Eoff 100 140 80 100 60 40 Eon 60 20 VGE 90% 20 0 VGE 10% VCE 3% tEoff tEon IC 1% -20 -0,2 0 0,2 0,4 0,6 -20 2,95 0,8 3,05 3,15 3,25 Poff (100%) = Eoff (100%) = tEoff = 15,03 2,50 0,66 3,35 3,45 time(us) time (us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 15,03 2,46 0,33 kW mJ µs Output inverter FWD Figure 7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 0 Vd IRRM10% -40 IRRM90% IRRM100% -80 fitted -120 2,95 3,1 3,25 3,4 3,55 3,7 3,85 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = 600 25 -17 0,58 copyright Vincotech V A A µs 12 Revision: 2.1 V23990-K210-F40-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Erec % % Id Qrr 100 100 80 50 tErec 60 tQrr 40 0 20 Prec -50 0 -100 -20 2,9 3,15 3,4 3,65 3,9 4,15 4,4 2,9 3,15 3,4 3,65 Id (100%) = Qrr (100%) = tQrr = 25 3,88 1,00 copyright Vincotech 3,9 4,15 4,4 time(us) time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 13 15,03 1,63 1,00 kW mJ µs Revision: 2.1 V23990-K210-F40-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K12-T-PM) with std lid (black V23990-K12-T-PM) and P12 with thin lid (white V23990-K13-T-PM) with thin lid (white V23990-K13-T-PM) and P12 Ordering Code in DataMatrix as V23990-K210-F40-/0A/-PM V23990-K210-F40-/1A/-PM V23990-K210-F40-/0B/-PM V23990-K210-F40-/1B/-PM K210F40 K210F40 K210F40 K210F40 in packaging barcode as K210F40-/0A/ K210F40-/1A/ K210F40-/0B/ K210F40-/1B/ Outline Pinout copyright Vincotech 14 Revision: 2.1 V23990-K210-F40-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 15 Revision: 2.1