V23990 K223 A D3 14

V23990-K223-A-PM
MiniSKiiP® 2 PIM
600V/50A
MiniSKiiP® 2 housing
Features
● Solderless interconnection
● Trench Fieldstop technology
Target Applications
Schematic
● Industrial Motor Drives
Types
● V23990-K223-A-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1500
V
45
A
370
A
360
A2s
56
W
150
°C
D8,D9,D10,D11,D12,D13
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Tjmax
1
Th=80°C
Tc=80°C
Revision: 3.1
V23990-K223-A-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
53
A
T1,T2,T3,T4,T5,T6,T7
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Tc=80°C
150
tp limited by Tjmax
VCE ≤ 600V, Tj ≤ Top max
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Th=80°C
Tj=Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
A
75
A
100
W
±20
V
6
µs
360
V
175
°C
600
V
40
A
D1,D2,D3,D4,D5,D6,D7
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
32
Th=80°C
A
59
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 3.1
V23990-K223-A-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,1
1,03
0,9
0,77
10
10
1,35
D8,D9,D10,D11,D12,D13
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink per chip
25
1500
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
V
V
mΩ
0,1
1,25
mA
K/W
T1,T2,T3,T4,T5,T6,T7
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
VCE(sat)
15
ICES
0
Gate-emitter leakage current
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
50
600
20
0
tr
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5
5,8
6,5
1,5
1,69
0,2
650
Rgoff=8 Ω
Rgon=8 Ω
±15
300
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
td(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
0,8
96
95,7
17,8
19,5
146,5
173,5
88,5
90,9
1,18
1,62
1,26
1,57
ns
mWs
3140
f=1MHz
Tj=25°C
25
0
pF
200
93
Tj=25°C
±15
Thermal grease
thickness≤50um
λ = 1 W/mK
310
nC
0,95
K/W
D1,D2,D3,D4,D5,D6,D7
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
37
Rgoff=8 Ω
±15
300
di(rec)max
/dt
Erec
RthJH
30
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
Thermal grease
thickness≤50um
λ = 1 W/mK
1,48
1,54
48,42
50,65
187,6
270,8
3,01
4,99
2442
1889
0,56
0,97
2,7
V
A
ns
µC
A/µs
mWs
1,6
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
R100
T=25°C
R100=1670 Ω
T=100°C
T=100°C
P
Power dissipation constant
3
-3
%
Ω
1670,313
mW/K
T=25°C
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
1/K
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
1/K²
Vincotech NTC Reference
Copyright by Vincotech
E
3
Revision: 3.1
V23990-K223-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
150
IC (A)
150
120
120
90
90
60
60
30
30
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
150
IF (A)
IC (A)
50
V CE (V)
4
Tj = 25°C
40
120
30
90
Tj = Tjmax-25°C
Tj = 25°C
20
10
60
30
Tj = Tjmax-25°C
0
0
0
2
4
At
tp =
VCE =
250
10
µs
V
Copyright by Vincotech
6
8
10
V GE (V)
12
0,0
At
tp =
4
0,5
250
1,0
1,5
2,0
2,5
V F (V)
3,0
µs
Revision: 3.1
V23990-K223-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
6
T1,T2,T3,T4,T5,T6,T7 IGBT
E (mWs)
E (mWs)
6
Eon High T
5
5
Eon Low T
4
4
3
3
Eon High T
Eon Low T
Eoff High T
Eoff Low T
2
2
Eoff High T
Eoff Low T
1
1
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
±15
V
IC =
50
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
1,5
E (mWs)
1,5
T1,T2,T3,T4,T5,T6,T7 IGBT
Erec
1,2
Tj = Tjmax -25°C
1,2
Tj = Tjmax -25°C
0,9
0,9
Erec
Erec
0,6
0,6
Tj = 25°C
Tj = 25°C
Erec
0,3
0,3
0,0
0,0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Copyright by Vincotech
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
±15
V
IC =
50
A
5
Revision: 3.1
V23990-K223-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
tdoff
tdon
tdoff
tf
0,1
0,1
tdon
tr
tr
tf
0,01
0,01
0,001
0,001
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG(Ω )
40
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
±15
V
IC =
50
A
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,5
t rr( µs)
0,6
D1,D2,D3,D4,D5,D6,D7 FWD
t rr( µs)
trr
trr
0,5
0,4
Tj = Tjmax -25°C
0,4
trr
trr
0,3
0,3
0,2
Tj = Tjmax -25°C
0,2
Tj = 25°C
Tj = 25°C
0,1
0,1
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
300
±15
8
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
6
8
25/125
300
50
±15
16
24
32
R g on ( Ω )
40
°C
V
A
V
Revision: 3.1
V23990-K223-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
7,5
D1,D2,D3,D4,D5,D6,D7 FWD
Qrr( µC)
Qrr( µC)
7,5
Qrr
6
6
Tj = Tjmax -25°C
Qrr
Tj = Tjmax -25°C
Qrr
4,5
4,5
Tj = 25°C
3
3
Qrr
Tj = 25°C
1,5
1,5
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
300
±15
8
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
8
25/125
300
50
±15
16
24
32
R g on ( Ω)
40
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
D1,D2,D3,D4,D5,D6,D7 FWD
120
IrrM (A)
IrrM (A)
60
Tj = Tjmax -25°C
Tj = Tjmax - 25°C
100
50
IRRM
Tj = 25°C
80
40
IRRM
30
60
20
40
10
20
Tj = 25°C
IRRM
IRRM
0
0
0
20
At
Tj =
VCE =
VGE =
Rgon =
25/125
300
±15
8
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
8
25/125
300
50
±15
16
24
32
R gon ( Ω )
40
°C
V
A
V
Revision: 3.1
V23990-K223-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
4000
direc / dt (A/ µs)
direc / dt (A/µ s)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
dI0/dt
dIrec/dt
3200
D1,D2,D3,D4,D5,D6,D7 FWD
8000
dI0/dt
dIrec/dt
6000
dIo/dtLow T
2400
4000
1600
dIrec/dtLow T
di0/dtHigh T
dIrec/dtHigh T
2000
800
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
300
±15
8
40
60
I C (A) 100
80
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
8
25/125
300
50
±15
16
24
40
°C
V
A
V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
R gon ( Ω )
32
100
10
-1
10
-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
0
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
10110
At
D=
RthJH =
tp / T
0,95
K/W
10-4
10-2
10-1
100
t p (s)
10110
tp / T
1,6
IGBT thermal model values
K/W
FWD thermal model values
Thermal grease
Thermal grease
R (C/W)
0,02
0,13
0,48
0,20
0,06
0,05
R (C/W)
0,04
0,22
0,66
0,38
0,19
0,11
Tau (s)
9,9E+00
9,6E-01
1,5E-01
3,4E-02
5,2E-03
3,5E-04
Copyright by Vincotech
10-3
8
Tau (s)
9,2E+00
1,0E+00
2,1E-01
4,0E-02
7,0E-03
7,5E-04
Revision: 3.1
V23990-K223-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
80
Ptot (W)
IC (A)
200
160
60
120
40
80
20
40
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
80
IF (A)
Ptot (W)
120
150
100
60
80
60
40
40
20
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C) 200
0
At
Tj =
°C
Copyright by Vincotech
9
50
175
100
150
T h ( o C)
200
°C
Revision: 3.1
V23990-K223-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(QGE)
3
VGE (V)
15
IC (A)
10
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 26
Gate voltage vs Gate charge
120V
10uS
12
102
100uS
100mS
10mS
480V
1mS
9
DC
101
6
100
3
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
10
1
10
2
V CE (V)
0
103
80
120
160
200
240
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Copyright by Vincotech
40
10
50
A
Revision: 3.1
V23990-K223-A-PM
D8,D9,D10,D11,D12,D13
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
D8,D9,D10,D11,D12,D13 diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
1
ZthJC (K/W)
IF (A)
10
D8,D9,D10,D11,D12,D13 diode
Tj = 25°C
80
100
Tj = Tjmax-25°C
60
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
20
0
0,0
0,4
0,8
1,2
1,6
V F (V)
10-2
2,0
10-5
At
tp =
At
D=
RthJH =
µs
250
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
D8,D9,D10,D11,D12,D13 diode
10-4
10-3
10-2
100
t p (s)
10110
tp / T
1,25
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
D8,D9,D10,D11,D12,D13 diode
80
IF (A)
Ptot (W)
120
10-1
100
60
80
60
40
40
20
20
0
0
0
At
Tj =
30
150
60
90
120
T h ( o C)
150
0
At
Tj =
ºC
Copyright by Vincotech
11
30
150
60
90
120
T h ( o C) 150
ºC
Revision: 3.1
V23990-K223-A-PM
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
50
Copyright by Vincotech
75
100
T (°C)
125
12
Revision: 3.1
V23990-K223-A-PM
Switching Definitions Output Inverter
General conditions
Tj
= 125 °C
Rgon
= 8Ω
Rgoff
= 8Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
210
%
%
IC
180
tdoff
120
VCE
150
VGE 90%
90
VCE 90%
120
IC
60
VCE
90
VGE
tdon
tEoff
60
30
IC 1%
0
30
-30
-0,2
IC10%
VGE10%
VGE
VCE 3%
tEon
0
-30
-0,1
0
0,1
0,2
0,3
0,4
0,5
0,6
2,7
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
300
50
0,17
0,47
2,8
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
2,9
3
-15
15
300
50
0,10
0,30
3,1
time(us)
3,3
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,2
Turn-on Switching Waveforms & definition of tr
140
240
%
%
120
Ic
210
VCE
fitted
180
100
IC
IC 90%
150
80
VCE
120
IC 60%
60
IC90%
90
40
IC 40%
60
20
tr
30
IC10%
0
-20
0,05
VC (100%) =
IC (100%) =
tf =
0,1
0,15
0,2
300
50
0,09
V
A
µs
Copyright by Vincotech
IC10%
0
tf
0,25
-30
2,78
0,3 time (us) 0,35
2,86
2,94
3,02
3,1
3,18
time(us)
VC (100%) =
IC (100%) =
tr =
13
300
50
0,02
V
A
µs
Revision: 3.1
V23990-K223-A-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
%
Poff
Pon
%
Eoff
100
140
80
Eon
100
60
40
60
20
VGE 10%
20
0
VCE 3%
tEoff
tEon
VGE 90%
-20
-0,2
IC 1%
-20
-0,06
0,08
0,22
0,36
0,5
2,7
0,64
2,8
2,9
3
3,1
3,2
Poff (100%) =
Eoff (100%) =
tEoff =
14,90
1,57
0,47
3,3
time(us)
time (us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
14,90
1,62
0,30
kW
mJ
µs
Output inverter IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
Vd
0
IRRM10%
-40
fitted
-80
IRRM90%
IRRM100%
-120
2,8
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
Copyright by Vincotech
14
2,9
3
300
50
51
0,27
3,1
3,2
3,3
time(us)
3,4
V
A
A
µs
Revision: 3.1
V23990-K223-A-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Erec
%
%
Qrr
100
100
Id
80
50
tQrr
tErec
60
0
40
-50
20
Prec
-100
0
-150
-20
2,6
2,8
3
3,2
3,4
3,6
3,8
4
2,7
2,95
3,2
3,45
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
50
4,99
0,70
Copyright by Vincotech
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
15
14,90
0,97
0,70
3,7
3,95
time(us)
kW
mJ
µs
Revision: 3.1
V23990-K223-A-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K22-T-PM)
with std lid (black V23990-K22-T-PM) and P12
with thin lid (white V23990-K23-T-PM)
with thin lid (white V23990-K23-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K223-A-/0A/-PM
V23990-K223-A-/1A/-PM
V23990-K223-A-/0B/-PM
V23990-K223-A-/1B/-PM
K223A
K223A
K223A
K223A
in packaging barcode as
K223A-/0A/
K223A-/1A/
K223A-/0B/
K223A-/1B/
Outline
Pinout
Copyright by Vincotech
16
Revision: 3.1
V23990-K223-A-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
17
Revision: 3.1