V23990-K223-A-PM MiniSKiiP® 2 PIM 600V/50A MiniSKiiP® 2 housing Features ● Solderless interconnection ● Trench Fieldstop technology Target Applications Schematic ● Industrial Motor Drives Types ● V23990-K223-A-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1500 V 45 A 370 A 360 A2s 56 W 150 °C D8,D9,D10,D11,D12,D13 Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Tjmax 1 Th=80°C Tc=80°C Revision: 3.1 V23990-K223-A-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 53 A T1,T2,T3,T4,T5,T6,T7 Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Tc=80°C 150 tp limited by Tjmax VCE ≤ 600V, Tj ≤ Top max Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Th=80°C Tj=Tjmax Th=80°C Tc=80°C Tj=Tjmax Tj≤150°C VGE=15V Tjmax A 75 A 100 W ±20 V 6 µs 360 V 175 °C 600 V 40 A D1,D2,D3,D4,D5,D6,D7 Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax 32 Th=80°C A 59 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Tc=80°C Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 3.1 V23990-K223-A-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,1 1,03 0,9 0,77 10 10 1,35 D8,D9,D10,D11,D12,D13 Forward voltage VF Threshold voltage (for power loss calc. only) Vto Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink per chip 25 1500 RthJH Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE V V mΩ 0,1 1,25 mA K/W T1,T2,T3,T4,T5,T6,T7 Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode VCE(sat) 15 ICES 0 Gate-emitter leakage current IGES Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 50 600 20 0 tr td(off) tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5 5,8 6,5 1,5 1,69 0,2 650 Rgoff=8 Ω Rgon=8 Ω ±15 300 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none td(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 0,8 96 95,7 17,8 19,5 146,5 173,5 88,5 90,9 1,18 1,62 1,26 1,57 ns mWs 3140 f=1MHz Tj=25°C 25 0 pF 200 93 Tj=25°C ±15 Thermal grease thickness≤50um λ = 1 W/mK 310 nC 0,95 K/W D1,D2,D3,D4,D5,D6,D7 Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 37 Rgoff=8 Ω ±15 300 di(rec)max /dt Erec RthJH 30 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 Thermal grease thickness≤50um λ = 1 W/mK 1,48 1,54 48,42 50,65 187,6 270,8 3,01 4,99 2442 1889 0,56 0,97 2,7 V A ns µC A/µs mWs 1,6 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R R100 T=25°C R100=1670 Ω T=100°C T=100°C P Power dissipation constant 3 -3 % Ω 1670,313 mW/K T=25°C A-value B(25/50) Tol. % T=25°C 7,635*10-3 1/K B-value B(25/100) Tol. % T=25°C 1,731*10-5 1/K² Vincotech NTC Reference Copyright by Vincotech E 3 Revision: 3.1 V23990-K223-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 150 IC (A) 150 120 120 90 90 60 60 30 30 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6,T7 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 5 250 µs 125 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6,D7 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 150 IF (A) IC (A) 50 V CE (V) 4 Tj = 25°C 40 120 30 90 Tj = Tjmax-25°C Tj = 25°C 20 10 60 30 Tj = Tjmax-25°C 0 0 0 2 4 At tp = VCE = 250 10 µs V Copyright by Vincotech 6 8 10 V GE (V) 12 0,0 At tp = 4 0,5 250 1,0 1,5 2,0 2,5 V F (V) 3,0 µs Revision: 3.1 V23990-K223-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 6 T1,T2,T3,T4,T5,T6,T7 IGBT E (mWs) E (mWs) 6 Eon High T 5 5 Eon Low T 4 4 3 3 Eon High T Eon Low T Eoff High T Eoff Low T 2 2 Eoff High T Eoff Low T 1 1 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG(Ω) 40 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = ±15 V IC = 50 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 1,5 E (mWs) 1,5 T1,T2,T3,T4,T5,T6,T7 IGBT Erec 1,2 Tj = Tjmax -25°C 1,2 Tj = Tjmax -25°C 0,9 0,9 Erec Erec 0,6 0,6 Tj = 25°C Tj = 25°C Erec 0,3 0,3 0,0 0,0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = ±15 V Rgon = 8 Ω Copyright by Vincotech 8 16 24 32 RG(Ω) 40 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = ±15 V IC = 50 A 5 Revision: 3.1 V23990-K223-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff tdon tdoff tf 0,1 0,1 tdon tr tr tf 0,01 0,01 0,001 0,001 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 125 °C VCE = 300 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG(Ω ) 40 With an inductive load at Tj = 125 °C VCE = 300 V VGE = ±15 V IC = 50 A Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,5 t rr( µs) 0,6 D1,D2,D3,D4,D5,D6,D7 FWD t rr( µs) trr trr 0,5 0,4 Tj = Tjmax -25°C 0,4 trr trr 0,3 0,3 0,2 Tj = Tjmax -25°C 0,2 Tj = 25°C Tj = 25°C 0,1 0,1 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 20 25/125 300 ±15 8 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 6 8 25/125 300 50 ±15 16 24 32 R g on ( Ω ) 40 °C V A V Revision: 3.1 V23990-K223-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 7,5 D1,D2,D3,D4,D5,D6,D7 FWD Qrr( µC) Qrr( µC) 7,5 Qrr 6 6 Tj = Tjmax -25°C Qrr Tj = Tjmax -25°C Qrr 4,5 4,5 Tj = 25°C 3 3 Qrr Tj = 25°C 1,5 1,5 0 0 At 0 At Tj = VCE = VGE = Rgon = 20 25/125 300 ±15 8 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD 8 25/125 300 50 ±15 16 24 32 R g on ( Ω) 40 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) D1,D2,D3,D4,D5,D6,D7 FWD 120 IrrM (A) IrrM (A) 60 Tj = Tjmax -25°C Tj = Tjmax - 25°C 100 50 IRRM Tj = 25°C 80 40 IRRM 30 60 20 40 10 20 Tj = 25°C IRRM IRRM 0 0 0 20 At Tj = VCE = VGE = Rgon = 25/125 300 ±15 8 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 8 25/125 300 50 ±15 16 24 32 R gon ( Ω ) 40 °C V A V Revision: 3.1 V23990-K223-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 D1,D2,D3,D4,D5,D6,D7 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 4000 direc / dt (A/ µs) direc / dt (A/µ s) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) dI0/dt dIrec/dt 3200 D1,D2,D3,D4,D5,D6,D7 FWD 8000 dI0/dt dIrec/dt 6000 dIo/dtLow T 2400 4000 1600 dIrec/dtLow T di0/dtHigh T dIrec/dtHigh T 2000 800 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 300 ±15 8 40 60 I C (A) 100 80 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6,T7 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 8 25/125 300 50 ±15 16 24 40 °C V A V D1,D2,D3,D4,D5,D6,D7 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 R gon ( Ω ) 32 100 10 -1 10 -2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 0 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 10110 At D= RthJH = tp / T 0,95 K/W 10-4 10-2 10-1 100 t p (s) 10110 tp / T 1,6 IGBT thermal model values K/W FWD thermal model values Thermal grease Thermal grease R (C/W) 0,02 0,13 0,48 0,20 0,06 0,05 R (C/W) 0,04 0,22 0,66 0,38 0,19 0,11 Tau (s) 9,9E+00 9,6E-01 1,5E-01 3,4E-02 5,2E-03 3,5E-04 Copyright by Vincotech 10-3 8 Tau (s) 9,2E+00 1,0E+00 2,1E-01 4,0E-02 7,0E-03 7,5E-04 Revision: 3.1 V23990-K223-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 80 Ptot (W) IC (A) 200 160 60 120 40 80 20 40 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 D1,D2,D3,D4,D5,D6,D7 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6,D7 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 80 IF (A) Ptot (W) 120 150 100 60 80 60 40 40 20 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 9 50 175 100 150 T h ( o C) 200 °C Revision: 3.1 V23990-K223-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(QGE) 3 VGE (V) 15 IC (A) 10 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 26 Gate voltage vs Gate charge 120V 10uS 12 102 100uS 100mS 10mS 480V 1mS 9 DC 101 6 100 3 0 10-1 0 10 At D= Th = VGE = Tj = 10 1 10 2 V CE (V) 0 103 80 120 160 200 240 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC Copyright by Vincotech 40 10 50 A Revision: 3.1 V23990-K223-A-PM D8,D9,D10,D11,D12,D13 Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) D8,D9,D10,D11,D12,D13 diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 1 ZthJC (K/W) IF (A) 10 D8,D9,D10,D11,D12,D13 diode Tj = 25°C 80 100 Tj = Tjmax-25°C 60 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 20 0 0,0 0,4 0,8 1,2 1,6 V F (V) 10-2 2,0 10-5 At tp = At D= RthJH = µs 250 Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) D8,D9,D10,D11,D12,D13 diode 10-4 10-3 10-2 100 t p (s) 10110 tp / T 1,25 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) D8,D9,D10,D11,D12,D13 diode 80 IF (A) Ptot (W) 120 10-1 100 60 80 60 40 40 20 20 0 0 0 At Tj = 30 150 60 90 120 T h ( o C) 150 0 At Tj = ºC Copyright by Vincotech 11 30 150 60 90 120 T h ( o C) 150 ºC Revision: 3.1 V23990-K223-A-PM Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 50 Copyright by Vincotech 75 100 T (°C) 125 12 Revision: 3.1 V23990-K223-A-PM Switching Definitions Output Inverter General conditions Tj = 125 °C Rgon = 8Ω Rgoff = 8Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 210 % % IC 180 tdoff 120 VCE 150 VGE 90% 90 VCE 90% 120 IC 60 VCE 90 VGE tdon tEoff 60 30 IC 1% 0 30 -30 -0,2 IC10% VGE10% VGE VCE 3% tEon 0 -30 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 2,7 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 300 50 0,17 0,47 2,8 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 2,9 3 -15 15 300 50 0,10 0,30 3,1 time(us) 3,3 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,2 Turn-on Switching Waveforms & definition of tr 140 240 % % 120 Ic 210 VCE fitted 180 100 IC IC 90% 150 80 VCE 120 IC 60% 60 IC90% 90 40 IC 40% 60 20 tr 30 IC10% 0 -20 0,05 VC (100%) = IC (100%) = tf = 0,1 0,15 0,2 300 50 0,09 V A µs Copyright by Vincotech IC10% 0 tf 0,25 -30 2,78 0,3 time (us) 0,35 2,86 2,94 3,02 3,1 3,18 time(us) VC (100%) = IC (100%) = tr = 13 300 50 0,02 V A µs Revision: 3.1 V23990-K223-A-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 180 % Poff Pon % Eoff 100 140 80 Eon 100 60 40 60 20 VGE 10% 20 0 VCE 3% tEoff tEon VGE 90% -20 -0,2 IC 1% -20 -0,06 0,08 0,22 0,36 0,5 2,7 0,64 2,8 2,9 3 3,1 3,2 Poff (100%) = Eoff (100%) = tEoff = 14,90 1,57 0,47 3,3 time(us) time (us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 14,90 1,62 0,30 kW mJ µs Output inverter IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 Vd 0 IRRM10% -40 fitted -80 IRRM90% IRRM100% -120 2,8 Vd (100%) = Id (100%) = IRRM (100%) = trr = Copyright by Vincotech 14 2,9 3 300 50 51 0,27 3,1 3,2 3,3 time(us) 3,4 V A A µs Revision: 3.1 V23990-K223-A-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Erec % % Qrr 100 100 Id 80 50 tQrr tErec 60 0 40 -50 20 Prec -100 0 -150 -20 2,6 2,8 3 3,2 3,4 3,6 3,8 4 2,7 2,95 3,2 3,45 time(us) Id (100%) = Qrr (100%) = tQrr = 50 4,99 0,70 Copyright by Vincotech Prec (100%) = Erec (100%) = tErec = A µC µs 15 14,90 0,97 0,70 3,7 3,95 time(us) kW mJ µs Revision: 3.1 V23990-K223-A-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K22-T-PM) with std lid (black V23990-K22-T-PM) and P12 with thin lid (white V23990-K23-T-PM) with thin lid (white V23990-K23-T-PM) and P12 Ordering Code in DataMatrix as V23990-K223-A-/0A/-PM V23990-K223-A-/1A/-PM V23990-K223-A-/0B/-PM V23990-K223-A-/1B/-PM K223A K223A K223A K223A in packaging barcode as K223A-/0A/ K223A-/1A/ K223A-/0B/ K223A-/1B/ Outline Pinout Copyright by Vincotech 16 Revision: 3.1 V23990-K223-A-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 17 Revision: 3.1