V23990 K230 F40 D2 14

V23990-K230-F40-PM
MiniSKiiP®2 PACK
1200V/70A
Features
MiniSKiiP® 2 housing
● Solderless interconnection
4
● Trench Fieldstop IGBT technology
Target Applications
Schematic
● Servo Drives
● Industrial Motor Drives
● UPS
Types
● V23990-K230-F40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
71
A
tp limited by Tjmax
210
A
VCE ≤ 1200V, Tj ≤ Top max
140
A
173
W
±20
V
T1,T2,T3,T4,T5,T6
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Gate-emitter peak voltage
Short circuit ratings
Maximum Junction Temperature
Ptot
Tj=Tjmax
Tj=Tjmax
Th=80°C
Th=80°C
VGE
tSC
Tj≤150°C
10
VCC
VGE=15V
800
µs
V
Tjmax
175
°C
VRRM
1200
V
60
A
121
A
126
W
175
°C
D1,D2,D3,D4,D5,D6
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
Th=80°C
Revision: 2.1
V23990-K230-F40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12.7
mm
Clearance
min 12.7
mm
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 2.1
V23990-K230-F40-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,36
1,95
2,31
2,2
T1,T2,T3,T4,T5,T6
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0024
70
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,12
240
V
V
mA
nA
Ω
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=8Ω
Rgon=8Ω
±15
600
70
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
98
98
21
27
217
285
87
126
3,74
6,39
4,09
6,63
ns
mWs
3900
f=1MHz
0
Tj=25°C
25
310
pF
230
±15
Tj=25°C
Thermal grease
thickness≤50µm
λ=1W/mK
540
nC
0,55
K/W
D1,D2,D3,D4,D5,D6
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
70
Rgon=8Ω
±15
600
di(rec)max
/dt
Erec
RthJH
70
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,3
Thermal grease
thickness≤50µm
λ=1W/mK
2,28
2,18
66,9
85,4
129
312
4,46
11,6
3099
606
1,59
4,43
2,6
V
A
ns
µC
A/µs
mWs
0,75
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
T=25°C
R100=1670 Ω
T=100°C
-3
3
%
T=100°C
1670,313
Ω
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
1/K
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
1/K²
R100
P
Vincotech NTC Reference
copyright Vincotech
E
3
Revision: 2.1
V23990-K230-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
210
IC (A)
IC (A)
210
175
175
140
140
105
105
70
70
35
35
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
350
µs
150
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
210
IF (A)
IC (A)
70
4
60
Tj = 25°C
175
50
140
40
105
30
70
20
Tj = 25°C
Tj = Tjmax-25°C
Tj = Tjmax-25°C
35
10
0
0
0
2
4
6
8
10
V GE (V)
12
0
At
Tj =
tp =
VCE =
0,8
1,6
2,4
3,2
V F (V)
4
At
25/150
350
10
copyright Vincotech
°C
µs
V
tp =
4
350
µs
Revision: 2.1
V23990-K230-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
16
16
E (mWs)
E (mWs)
Eon High T
12
Eon High T
12
Eoff High T
Eon Low T
Eon Low T
8
8
Eoff High T
Eoff Low T
Eoff Low T
4
4
0
0
0
30
60
90
120
I C (A)
0
150
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
RG(Ω)
32
40
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
A
70
D1,D2,D3,D4,D5,D6 FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
8
E (mWs)
E (mWs)
8
6
6
Erec
Tj = Tjmax -25°C
Tj = Tjmax -25°C
4
Erec
4
Erec
Tj = 25°C
2
2
Tj = 25°C
Erec
0
0
0
30
60
90
120
I C (A)
150
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
copyright Vincotech
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
70
A
5
Revision: 2.1
V23990-K230-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
t ( µs)
t ( µs)
1
tdon
tdoff
tf
tf
0,1
0,1
tdon
tr
tr
0,01
0,01
0,001
0,001
0
30
60
90
120
I C (A)
150
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
RG(Ω )
32
40
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
A
70
D1,D2,D3,D4,D5,D6 FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
1
t rr( µs)
t rr( µs)
0,8
trr
0,8
trr
0,6
0,6
Tj = Tjmax -25°C
0,4
trr
Tj = Tjmax -25°C
0,4
trr
Tj = 25°C
0,2
0,2
Tj = 25°C
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
30
25/150
600
±15
8
copyright Vincotech
60
90
120
I C (A)
0
150
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
8
25/150
600
70
±15
16
24
32
R g on ( Ω )
40
°C
V
A
V
Revision: 2.1
V23990-K230-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
18
Qrr( µC)
Qrr( µC)
18
Qrr
15
15
Tj = Tjmax -25°C
12
Qrr
12
Tj = Tjmax -25°C
9
9
Qrr
6
3
6
Tj = 25°C
Qrr
3
Tj = 25°C
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
30
25/150
600
±15
8
60
90
120
I C (A)
150
0
8
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
D1,D2,D3,D4,D5,D6 FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
16
25/150
600
70
±15
24
32
R g on ( Ω)
40
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
250
IrrM (A)
IrrM (A)
100
Tj = Tjmax -25°C
IRRM
80
Tj = Tjmax - 25°C
200
IRRM
150
60
Tj = 25°C
40
100
20
50
IRRM
IRRM
Tj = 25°C
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
30
25/150
600
±15
8
copyright Vincotech
60
90
120
I C (A)
0
150
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
8
25/150
600
70
±15
16
24
32
R gon ( Ω )
40
°C
V
A
V
Revision: 2.1
V23990-K230-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
15000
direc / dt (A/ µs)
direc / dt (A/µ s)
5000
dI0/dt
dIrec/dt
D1,D2,D3,D4,D5,D6 FWD
dIrec/dt
dI0/dt
4000
12000
Tj = Tjmax - 25°C
dIo/dtLow T
3000
9000
Tj = 25°C
2000
6000
dIrec/dtLow T
di0/dtHigh T
3000
1000
dIrec/dtHigh T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
30
25/150
600
±15
8
60
90
120
I C (A)
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
Zth-JH (K/W)
100
10
-2
24
R gon ( Ω )
32
40
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
101
100
10
25/150
600
70
±15
16
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
-1
8
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10110
-1
10
-2
10-5
At
D=
RthJH =
tp / T
0,55
10
K/W
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-4
10-3
R (C/W)
0,07
0,24
0,17
0,05
0,02
R (C/W)
0,05
0,16
0,37
0,10
0,05
0,02
0,01
8
100
t p (s)
1
1010
K/W
FWD thermal model values
copyright Vincotech
10-1
tp / T
0,75
IGBT thermal model values
Tau (s)
2,1E+00
3,0E-01
8,1E-02
1,1E-02
1,3E-03
10-2
Tau (s)
5,7E+00
8,7E-01
2,2E-01
5,5E-02
1,1E-02
1,3E-03
2,9E-04
Revision: 2.1
V23990-K230-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
80
IC (A)
Ptot (W)
350
300
60
250
200
40
150
100
20
50
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
50
At
Tj =
VGE =
°C
D1,D2,D3,D4,D5,D6 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
100
IF (A)
Ptot (W)
250
150
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
Revision: 2.1
V23990-K230-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
IC (A)
VGE (V)
16
14
103
12
240V
100uS
960V
10
102
1mS
8
10mS
101
6
100mS
4
DC
10
0
2
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
10
1
10
2
103
0
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
50
70
100
150
200
250
300
350
Q g (nC)
400
A
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
copyright Vincotech
50
75
100
T (°C)
125
10
Revision: 2.1
V23990-K230-F40-PM
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
Rgon
= 8Ω
Rgoff
= 8Ω
Output inverter IGBT
Figure 1
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
240
%
%
120
tdoff
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
IC
200
VCE
100
VGE 90%
160
VCE 90%
80
120
VCE
IC
60
80
tEoff
40
VGE
tdon
IC 1%
40
20
IC10%
VGE10%
0
VCE 3%
0
VGE
tEon
-20
-0,25
-0,1
0,05
0,2
0,35
0,5
0,65
-40
0,8
2,7
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
70
0,29
0,69
2,9
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,1
3,3
-15
15
600
70
0,10
0,34
3,7
Output inverter IGBT
Turn-on Switching Waveforms & definition of tr
140
240
%
%
120
time(us)
V
V
V
A
µs
µs
Figure 4
Turn-off Switching Waveforms & definition of tf
3,5
fitted
Ic
200
100
VCE
IC 90%
160
80
VCE
120
IC 60%
60
IC90%
80
IC 40%
40
tr
IC
40
20
IC10%
tf
0
-20
0,15
0,2
0,25
IC10%
0
0,3
0,35
0,4
-40
0,45
3
3,05
3,1
3,15
time (us)
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
600
70
0,13
3,2
3,25
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
11
600
70
0,03
V
A
µs
Revision: 2.1
V23990-K230-F40-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
220
%
%
Poff
Eoff
100
Pon
180
80
140
Eon
60
100
40
60
20
VGE 90%
VGE 10%
20
0
VCE 3%
tEoff
tEon
IC 1%
-20
-0,2
-0,05
0,1
0,25
0,4
0,55
0,7
-20
2,95
0,85
3,05
3,15
3,25
3,35
3,45
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
42,05
6,63
0,69
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
42,05
6,39
0,34
kW
mJ
µs
Output inverter IGBT
Figure7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
0
Vd
IRRM10%
-40
fitted
-80
IRRM90%
-120
IRRM100%
-160
2,95
3,1
3,25
3,4
3,55
3,7
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
12
600
70
-85
0,31
V
A
A
µs
Revision: 2.1
V23990-K230-F40-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Erec
%
%
100
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Qrr
Id
100
80
50
tQrr
tErec
60
0
40
-50
20
Prec
-100
-150
2,95
0
3,2
3,45
3,7
3,95
-20
2,95
4,2
3,2
3,45
3,7
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
70
11,55
0,87
3,95
4,2
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
13
42,05
4,43
0,87
kW
mJ
µs
Revision: 2.1
V23990-K230-F40-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K22-T-PM)
with std lid (black V23990-K22-T-PM) and P12
with thin lid (white V23990-K23-T-PM)
with thin lid (white V23990-K23-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K230-F40-/0A/-PM
V23990-K230-F40-/1A/-PM
V23990-K230-F40-/0B/-PM
V23990-K230-F40-/1B/-PM
K230F40
K230F40
K230F40
K230F40
in packaging barcode as
K230F40-/0A/
K230F40-/1A/
K230F40-/0B/
K230F40-/1B/
Outline
Pinout
copyright Vincotech
14
Revision: 2.1
V23990-K230-F40-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
15
Revision: 2.1