V23990-K230-F40-PM MiniSKiiP®2 PACK 1200V/70A Features MiniSKiiP® 2 housing ● Solderless interconnection 4 ● Trench Fieldstop IGBT technology Target Applications Schematic ● Servo Drives ● Industrial Motor Drives ● UPS Types ● V23990-K230-F40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 71 A tp limited by Tjmax 210 A VCE ≤ 1200V, Tj ≤ Top max 140 A 173 W ±20 V T1,T2,T3,T4,T5,T6 Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Turn off safe operating area Power dissipation per IGBT Gate-emitter peak voltage Short circuit ratings Maximum Junction Temperature Ptot Tj=Tjmax Tj=Tjmax Th=80°C Th=80°C VGE tSC Tj≤150°C 10 VCC VGE=15V 800 µs V Tjmax 175 °C VRRM 1200 V 60 A 121 A 126 W 175 °C D1,D2,D3,D4,D5,D6 Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 1 Th=80°C Th=80°C Revision: 2.1 V23990-K230-F40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12.7 mm Clearance min 12.7 mm Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 2.1 V23990-K230-F40-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,36 1,95 2,31 2,2 T1,T2,T3,T4,T5,T6 Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0024 70 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,12 240 V V mA nA Ω tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Rgoff=8Ω Rgon=8Ω ±15 600 70 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 98 98 21 27 217 285 87 126 3,74 6,39 4,09 6,63 ns mWs 3900 f=1MHz 0 Tj=25°C 25 310 pF 230 ±15 Tj=25°C Thermal grease thickness≤50µm λ=1W/mK 540 nC 0,55 K/W D1,D2,D3,D4,D5,D6 Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 70 Rgon=8Ω ±15 600 di(rec)max /dt Erec RthJH 70 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,3 Thermal grease thickness≤50µm λ=1W/mK 2,28 2,18 66,9 85,4 129 312 4,46 11,6 3099 606 1,59 4,43 2,6 V A ns µC A/µs mWs 0,75 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R T=25°C R100=1670 Ω T=100°C -3 3 % T=100°C 1670,313 Ω A-value B(25/50) Tol. % T=25°C 7,635*10-3 1/K B-value B(25/100) Tol. % T=25°C 1,731*10-5 1/K² R100 P Vincotech NTC Reference copyright Vincotech E 3 Revision: 2.1 V23990-K230-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 2 Typical output characteristics IC = f(VCE) 210 IC (A) IC (A) 210 175 175 140 140 105 105 70 70 35 35 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 350 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 350 µs 150 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 210 IF (A) IC (A) 70 4 60 Tj = 25°C 175 50 140 40 105 30 70 20 Tj = 25°C Tj = Tjmax-25°C Tj = Tjmax-25°C 35 10 0 0 0 2 4 6 8 10 V GE (V) 12 0 At Tj = tp = VCE = 0,8 1,6 2,4 3,2 V F (V) 4 At 25/150 350 10 copyright Vincotech °C µs V tp = 4 350 µs Revision: 2.1 V23990-K230-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 16 16 E (mWs) E (mWs) Eon High T 12 Eon High T 12 Eoff High T Eon Low T Eon Low T 8 8 Eoff High T Eoff Low T Eoff Low T 4 4 0 0 0 30 60 90 120 I C (A) 0 150 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 RG(Ω) 32 40 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = A 70 D1,D2,D3,D4,D5,D6 FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 8 E (mWs) E (mWs) 8 6 6 Erec Tj = Tjmax -25°C Tj = Tjmax -25°C 4 Erec 4 Erec Tj = 25°C 2 2 Tj = 25°C Erec 0 0 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 8 Ω copyright Vincotech 8 16 24 32 RG(Ω) 40 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 70 A 5 Revision: 2.1 V23990-K230-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 tdoff t ( µs) t ( µs) 1 tdon tdoff tf tf 0,1 0,1 tdon tr tr 0,01 0,01 0,001 0,001 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 RG(Ω ) 32 40 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = A 70 D1,D2,D3,D4,D5,D6 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 1 t rr( µs) t rr( µs) 0,8 trr 0,8 trr 0,6 0,6 Tj = Tjmax -25°C 0,4 trr Tj = Tjmax -25°C 0,4 trr Tj = 25°C 0,2 0,2 Tj = 25°C 0 0 0 At Tj = VCE = VGE = Rgon = 30 25/150 600 ±15 8 copyright Vincotech 60 90 120 I C (A) 0 150 At Tj = VR = IF = VGE = °C V V Ω 6 8 25/150 600 70 ±15 16 24 32 R g on ( Ω ) 40 °C V A V Revision: 2.1 V23990-K230-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 18 Qrr( µC) Qrr( µC) 18 Qrr 15 15 Tj = Tjmax -25°C 12 Qrr 12 Tj = Tjmax -25°C 9 9 Qrr 6 3 6 Tj = 25°C Qrr 3 Tj = 25°C 0 0 At 0 At Tj = VCE = VGE = Rgon = 30 25/150 600 ±15 8 60 90 120 I C (A) 150 0 8 At Tj = VR = IF = VGE = °C V V Ω D1,D2,D3,D4,D5,D6 FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 16 25/150 600 70 ±15 24 32 R g on ( Ω) 40 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 250 IrrM (A) IrrM (A) 100 Tj = Tjmax -25°C IRRM 80 Tj = Tjmax - 25°C 200 IRRM 150 60 Tj = 25°C 40 100 20 50 IRRM IRRM Tj = 25°C 0 0 0 At Tj = VCE = VGE = Rgon = 30 25/150 600 ±15 8 copyright Vincotech 60 90 120 I C (A) 0 150 At Tj = VR = IF = VGE = °C V V Ω 7 8 25/150 600 70 ±15 16 24 32 R gon ( Ω ) 40 °C V A V Revision: 2.1 V23990-K230-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 15000 direc / dt (A/ µs) direc / dt (A/µ s) 5000 dI0/dt dIrec/dt D1,D2,D3,D4,D5,D6 FWD dIrec/dt dI0/dt 4000 12000 Tj = Tjmax - 25°C dIo/dtLow T 3000 9000 Tj = 25°C 2000 6000 dIrec/dtLow T di0/dtHigh T 3000 1000 dIrec/dtHigh T dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 30 25/150 600 ±15 8 60 90 120 I C (A) 150 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) Zth-JH (K/W) 100 10 -2 24 R gon ( Ω ) 32 40 °C V A V D1,D2,D3,D4,D5,D6 FWD 101 100 10 25/150 600 70 ±15 16 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 -1 8 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10110 -1 10 -2 10-5 At D= RthJH = tp / T 0,55 10 K/W D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-4 10-3 R (C/W) 0,07 0,24 0,17 0,05 0,02 R (C/W) 0,05 0,16 0,37 0,10 0,05 0,02 0,01 8 100 t p (s) 1 1010 K/W FWD thermal model values copyright Vincotech 10-1 tp / T 0,75 IGBT thermal model values Tau (s) 2,1E+00 3,0E-01 8,1E-02 1,1E-02 1,3E-03 10-2 Tau (s) 5,7E+00 8,7E-01 2,2E-01 5,5E-02 1,1E-02 1,3E-03 2,9E-04 Revision: 2.1 V23990-K230-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 80 IC (A) Ptot (W) 350 300 60 250 200 40 150 100 20 50 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 50 At Tj = VGE = °C D1,D2,D3,D4,D5,D6 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 100 IF (A) Ptot (W) 250 150 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 9 50 175 100 150 T h ( o C) 200 °C Revision: 2.1 V23990-K230-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) IC (A) VGE (V) 16 14 103 12 240V 100uS 960V 10 102 1mS 8 10mS 101 6 100mS 4 DC 10 0 2 0 10-1 0 10 At D= Th = VGE = Tj = 10 1 10 2 103 0 V CE (V) At IC = single pulse 80 ºC ±15 V Tjmax ºC 50 70 100 150 200 250 300 350 Q g (nC) 400 A Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 copyright Vincotech 50 75 100 T (°C) 125 10 Revision: 2.1 V23990-K230-F40-PM Switching Definitions Output Inverter General conditions Tj = 150 °C Rgon = 8Ω Rgoff = 8Ω Output inverter IGBT Figure 1 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 240 % % 120 tdoff Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) IC 200 VCE 100 VGE 90% 160 VCE 90% 80 120 VCE IC 60 80 tEoff 40 VGE tdon IC 1% 40 20 IC10% VGE10% 0 VCE 3% 0 VGE tEon -20 -0,25 -0,1 0,05 0,2 0,35 0,5 0,65 -40 0,8 2,7 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 70 0,29 0,69 2,9 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,1 3,3 -15 15 600 70 0,10 0,34 3,7 Output inverter IGBT Turn-on Switching Waveforms & definition of tr 140 240 % % 120 time(us) V V V A µs µs Figure 4 Turn-off Switching Waveforms & definition of tf 3,5 fitted Ic 200 100 VCE IC 90% 160 80 VCE 120 IC 60% 60 IC90% 80 IC 40% 40 tr IC 40 20 IC10% tf 0 -20 0,15 0,2 0,25 IC10% 0 0,3 0,35 0,4 -40 0,45 3 3,05 3,1 3,15 time (us) VC (100%) = IC (100%) = tf = copyright Vincotech 600 70 0,13 3,2 3,25 time(us) VC (100%) = IC (100%) = tr = V A µs 11 600 70 0,03 V A µs Revision: 2.1 V23990-K230-F40-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 220 % % Poff Eoff 100 Pon 180 80 140 Eon 60 100 40 60 20 VGE 90% VGE 10% 20 0 VCE 3% tEoff tEon IC 1% -20 -0,2 -0,05 0,1 0,25 0,4 0,55 0,7 -20 2,95 0,85 3,05 3,15 3,25 3,35 3,45 time (us) Poff (100%) = Eoff (100%) = tEoff = 42,05 6,63 0,69 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 42,05 6,39 0,34 kW mJ µs Output inverter IGBT Figure7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 0 Vd IRRM10% -40 fitted -80 IRRM90% -120 IRRM100% -160 2,95 3,1 3,25 3,4 3,55 3,7 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 12 600 70 -85 0,31 V A A µs Revision: 2.1 V23990-K230-F40-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Erec % % 100 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Qrr Id 100 80 50 tQrr tErec 60 0 40 -50 20 Prec -100 -150 2,95 0 3,2 3,45 3,7 3,95 -20 2,95 4,2 3,2 3,45 3,7 time(us) Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 70 11,55 0,87 3,95 4,2 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 13 42,05 4,43 0,87 kW mJ µs Revision: 2.1 V23990-K230-F40-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K22-T-PM) with std lid (black V23990-K22-T-PM) and P12 with thin lid (white V23990-K23-T-PM) with thin lid (white V23990-K23-T-PM) and P12 Ordering Code in DataMatrix as V23990-K230-F40-/0A/-PM V23990-K230-F40-/1A/-PM V23990-K230-F40-/0B/-PM V23990-K230-F40-/1B/-PM K230F40 K230F40 K230F40 K230F40 in packaging barcode as K230F40-/0A/ K230F40-/1A/ K230F40-/0B/ K230F40-/1B/ Outline Pinout copyright Vincotech 14 Revision: 2.1 V23990-K230-F40-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 15 Revision: 2.1