V23990 K238 F40 D2 14

V23990-K238-F40-PM
MiniSKiiP®2 PACK
1200V/35A
MiniSKiiP®2 housing
Features
● Solderless interconnection
4
● Trench Fieldstop IGBT technology
Target Applications
Schematic
● Servo Drives
● Industrial Motor Drives
● UPS
Types
● V23990-K238-F40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
41
A
tp limited by Tjmax
105
A
VCE ≤ 1200V, Tj ≤ Top max
70
A
112
W
±20
V
T1,T2,T3,T4,T5,T6
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Gate-emitter peak voltage
Short circuit ratings
Maximum Junction Temperature
Ptot
Tj=Tjmax
Tj=Tjmax
Th=80°C
Th=80°C
VGE
tSC
Tj≤150°C
10
VCC
VGE=15V
800
µs
V
Tjmax
175
°C
VRRM
1200
V
33
A
66
A
77
W
175
°C
D1,D2,D3,D4,D5,D6
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
Th=80°C
Revision: 2.1
V23990-K238-F40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+125
°C
4000
V
Creepage distance
min 12.7
mm
Clearance
min 12.7
mm
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 2.1
V23990-K238-F40-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,6
1,88
2,32
2,2
T1,T2,T3,T4,T5,T6
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0012
35
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,06
120
Rgoff=16Ω
Rgon=16Ω
±15
600
35
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
96
95
22
27
218
291
92
113
1,95
3,07
1,95
3,28
ns
mWs
1950
f=1MHz
0
25
pF
155
Tj=25°C
115
±15
Tj=25°C
Thermal grease
thickness≤50µm
λ=1W/mK
270
nC
0,85
K/W
D1,D2,D3,D4,D5,D6
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
35
Rgon=16Ω
600
±15
di(rec)max
/dt
Erec
RthJH
35
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,3
Thermal grease
thickness≤50µm
λ=1W/mK
2,34
2,32
30,3
40,2
126
292
2,06
5,34
1074
257
0,69
2,07
2,7
V
A
ns
µC
A/µs
mWs
1,2
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
T=25°C
R100=1670 Ω
T=100°C
-3
3
%
T=100°C
1670,313
Ω
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
1/K
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
1/K²
R100
P
Vincotech NTC Reference
copyright Vincotech
E
3
Revision: 2.1
V23990-K238-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
100
IC (A)
IC (A)
100
80
80
60
60
40
40
20
20
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
350
µs
150
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
100
IF (A)
IC (A)
35
4
30
80
25
60
20
15
40
10
20
5
0
0
0
2
4
6
8
10
V GE (V)
12
0
At
Tj =
tp =
VCE =
0,8
1,6
2,4
3,2
V F (V)
4
At
25/150
350
10
copyright Vincotech
°C
µs
V
tp =
4
350
µs
Revision: 2.1
V23990-K238-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
8
E (mWs)
E (mWs)
8
Eon High T
6
Eon High T
6
Eoff High T
Eon Low T
Eon Low T
4
4
Eoff High T
Eoff Low T
Eoff Low T
2
2
0
0
0
15
30
45
60
I C (A)
0
75
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
32
48
64
RG(Ω)
80
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
35
A
D1,D2,D3,D4,D5,D6 FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
3
E (mWs)
E (mWs)
16
Erec
2,5
3
2,5
Tj = Tjmax -25°C
Tj = Tjmax -25°C
2
2
Erec
1,5
1,5
1
1
Tj = 25°C
Erec
Tj = 25°C
Erec
0,5
0,5
0
0
0
15
30
45
60
I C (A)
75
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
copyright Vincotech
16
32
48
64
RG(Ω)
80
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
35
A
5
Revision: 2.1
V23990-K238-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
t ( µs)
t ( µs)
1
tdon
tdoff
tf
tf
0,1
0,1
tdon
tr
tr
0,01
0,01
0,001
0,001
0
16
32
48
64
I C (A)
80
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
16
32
48
64
RG(Ω )
80
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
35
A
D1,D2,D3,D4,D5,D6 FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,8
t rr( µs)
t rr( µs)
0,4
Tj = Tjmax -25°C
trr
trr
0,3
0,6
0,2
0,4
Tj = Tjmax -25°C
trr
trr
Tj = 25°C
0,2
0,1
Tj = 25°C
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
15
25/150
600
±15
16
copyright Vincotech
30
45
60
I C (A)
0
75
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
16
25/150
600
35
±15
32
48
64
R g on ( Ω )
80
°C
V
A
V
Revision: 2.1
V23990-K238-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
8
Qrr( µC)
Qrr( µC)
8
Qrr
Tj = Tjmax -25°C
6
6
Qrr
Tj = Tjmax -25°C
4
4
Qrr
Tj = 25°C
2
2
Qrr
Tj = 25°C
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
15
25/150
600
±15
16
30
45
60
I C (A)
75
0
16
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
D1,D2,D3,D4,D5,D6 FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
32
25/150
600
35
±15
48
R g on ( Ω)
80
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
120
IrrM (A)
50
64
IRRM
Tj = Tjmax -25°C
40
90
IRRM
30
60
Tj = 25°C
20
Tj = Tjmax - 25°C
30
IRRM
10
IRRM
Tj = 25°C
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
15
25/150
600
±15
16
copyright Vincotech
30
45
60
I C (A)
75
°C
V
V
Ω
7
0
16
At
Tj =
VR =
IF =
VGE =
25/150
600
35
±15
32
48
64
R gon ( Ω )
80
°C
V
A
V
Revision: 2.1
V23990-K238-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
9000
direc / dt (A/ µs)
3000
dI0/dt
direc / dt (A/µ s)
D1,D2,D3,D4,D5,D6 FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt
2500
dIrec/dt
dI0/dt
7500
2000
6000
dIo/dtLow T
1500
4500
di0/dtHigh T
Tj = Tjmax - 25°C
1000
3000
Tj = 25°C
dIrec/dtLow T
500
1500
dIrec/dtHigh T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
15
25/150
600
±15
16
30
45
I C (A)
60
75
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
16
25/150
600
35
±15
32
48
80
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
R gon ( Ω )
64
100
10
-1
10
-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
0
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
10110
At
D=
RthJH =
tp / T
0,85
K/W
10-4
10-3
R (C/W)
0,09
0,26
0,35
0,11
0,03
R (C/W)
0,08
0,33
0,50
0,22
0,10
8
100
t p (s)
10110
K/W
FWD thermal model values
copyright Vincotech
10-1
tp / T
1,2
IGBT thermal model values
Tau (s)
1,5E+00
2,7E-01
8,9E-02
1,4E-02
2,8E-03
10-2
Tau (s)
2,1E+00
2,4E-01
6,6E-02
1,3E-02
2,3E-03
Revision: 2.1
V23990-K238-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
60
Ptot (W)
IC (A)
200
160
45
120
30
80
15
40
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
D1,D2,D3,D4,D5,D6 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
IF (A)
Ptot (W)
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
150
150
60
120
45
90
30
60
15
30
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
Revision: 2.1
V23990-K238-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
IC (A)
VGE (V)
16
240V
14
103
12
100uS
960V
10
102
8
1mS
10
1
6
10mS
4
100mS
100
DC
2
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
10
1
10
2
103
0
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
50
35
100
150
200
Q g (nC)
250
A
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
copyright Vincotech
50
75
100
T (°C)
125
10
Revision: 2.1
V23990-K238-F40-PM
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
Rgon
= 16 Ω
Rgoff
= 16 Ω
Output inverter IGBT
Figure 1
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
240
%
%
120
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
IC
200
tdoff
VCE
100
VGE 90%
VCE 90%
160
IC
120
80
60
80
tEoff
40
VCE
VGE
tdon
IC 1%
40
20
IC10%
VGE10%
0
VCE 3%
0
VGE
tEon
-20
-0,3
-0,15
0
0,15
0,3
0,45
0,6
0,75
-40
3,25
0,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
35
0,29
0,67
3,4
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,55
3,7
-15
15
600
35
0,10
0,34
V
V
V
A
µs
µs
3,85
time(us)
4,15
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
4
Turn-on Switching Waveforms & definition of tr
140
220
%
%
120
Ic
190
fitted
IC
100
160
VCE
IC 90%
80
130
VCE
IC 60%
60
100
IC90%
IC 40%
40
70
20
tr
40
IC10%
tf
0
-20
0,15
0,2
0,25
IC10%
10
0,3
0,35
0,4
-20
3,35
0,45
3,45
3,55
3,65
time (us)
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
600
35
0,11
3,75
3,85
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
11
600
35
0,03
V
A
µs
Revision: 2.1
V23990-K238-F40-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
220
%
Poff
%
Eoff
100
Pon
180
80
140
Eon
60
100
40
60
20
VGE 90%
20
0
VGE 10%
tEoff
VCE 3%
tEon
IC 1%
-20
-0,2
-0,05
0,1
0,25
0,4
0,55
0,7
-20
3,25
0,85
3,4
3,55
3,7
3,85
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
21,03
3,28
0,67
4
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
21,03
3,07
0,34
kW
mJ
µs
Output inverter IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
Vd
0
IRRM10%
-40
fitted
-80
IRRM90%
IRRM100%
-120
3,3
3,5
3,7
3,9
4,1
4,3
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
12
600
35
-40
0,29
V
A
A
µs
Revision: 2.1
V23990-K238-F40-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
%
%
Id
100
Qrr
Erec
100
80
50
tQrr
tErec
60
0
40
-50
20
Prec
-100
0
-150
-20
3,2
3,45
3,7
3,95
4,2
4,45
4,7
4,95
3,2
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
35
5,34
0,87
3,45
3,7
3,95
4,2
4,45
4,7
4,95
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
13
21,03
2,07
0,87
kW
mJ
µs
Revision: 2.1
V23990-K238-F40-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K22-T-PM)
with std lid (black V23990-K22-T-PM) and P12
with thin lid (white V23990-K23-T-PM)
with thin lid (white V23990-K23-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K238-F40-/0A/-PM
V23990-K238-F40-/1A/-PM
V23990-K238-F40-/0B/-PM
V23990-K238-F40-/1B/-PM
K238F40
K238F40
K238F40
K238F40
in packaging barcode as
K238F40-/0A/
K238F40-/1A/
K238F40-/0B/
K238F40-/1B/
Outline
Pinout
copyright Vincotech
14
Revision: 2.1
V23990-K238-F40-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
15
Revision: 2.1