V23990 K219 F D2 1 14

V23990-K219-F-PM
MiniSKiiP® 1 PACK
1200V/15A
MiniSKiiP® 1 housing
Features
● Solderless interconnection
● Trench Fieldstop IGBT4 technology
Target Applications
Schematic
● Servo Drives
● Industrial Motor Drives
● UPS
Types
● V23990-K219-F-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
24
A
tp limited by Tjmax
45
A
VCE≤1200V, Tj≤Topmax
45
A
61
W
±20
V
10
900
µs
V
Tjmax
150
°C
VRRM
1200
V
19
A
45
A
36
W
150
°C
T1,T2,T3,T4,T5,T6
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Th=80°C
Tj≤150°C
VGE=15V
D1,D2,D3,D4,D5,D6
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
Th=80°C
Revision: 2.1
V23990-K219-F-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 2.1
V23990-K219-F-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,35
1,66
1,84
2,15
T1,T2,T3,T4,T5,T6
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. diode
ICES
0
1200
Gate-emitter leakage current
IGES
±20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0006
15
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,1
180
Rgoff=36 Ω
Rgon=36 Ω
±15
300
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
-
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
42
40
18
24
365
442
118
236
1,33
1,74
1,07
1,68
ns
mWs
1
f=1MHz
25
0
0,1
Tj=25°C
pF
0,1
Tj=25°C
±15
Thermal grease
thickness≤50µm
λ=1W/mK
108
nC
1,15
K/W
D1,D2,D3,D4,D5,D6
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
15
diF/dt=tbd A/us
600
15
di(rec)max
/dt
Erec
RthJH
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,61
1,64
16
19
397
559
2,11
3,42
245
170
0,81
1,38
Thermal grease
thickness≤50µm
λ=1W/mK
1,8
1,8
V
A
ns
µC
A/µs
mWs
1,95
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
T=25°C
R100=1670 Ω
T=100°C
-3
3
%
T=100°C
1670,313
Ω
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
1/K
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
1/K²
R100
R
Vincotech NTC Reference
copyright Vincotech
E
3
Revision: 2.1
V23990-K219-F-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
30
IC (A)
IC (A)
30
24
24
18
18
12
12
6
6
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
35
IF (A)
IC (A)
15
4
Tj = 25°C
30
12
25
9
20
Tj = Tjmax-25°C
15
6
10
3
Tj = Tjmax-25°C
5
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
10
0
At
tp =
µs
V
4
0,5
250
1
1,5
2
V F (V)
2,5
µs
Revision: 2.1
V23990-K219-F-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
T1,T2,T3,T4,T5,T6 IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
4
Eon High T
3,5
4
3,5
Eoff High T
3
3
Eon Low T
2,5
Eon High T
2,5
Eon Low T
2
2
Eoff Low T
1,5
1
1
0,5
0,5
Eoff Low T
0
0
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
±15
V
Rgon =
Ω
54
Rgoff =
54
Ω
30
60
90
120
RG( Ω )
150
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
±15
V
IC =
15
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
T1,T2,T3,T4,T5,T6 IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
1,8
E (mWs)
E (mWs)
Eoff High T
1,5
1,6
1,8
1,6
Tj = Tjmax -25°C
1,4
Tj = Tjmax -25°C
1,4
1,2
Erec
1,2
Erec
1
1
Tj = 25°C
Tj = 25°C
0,8
0,8
0,6
0,6
0,4
0,4
0,2
0,2
Erec
0
0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
54
Ω
copyright Vincotech
30
60
90
120
R G ( Ω ) 150
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
IC =
15
A
5
Revision: 2.1
V23990-K219-F-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
t ( µs)
t ( µs)
1
tdoff
tf
tf
0,1
0,1
tdon
tdon
tr
tr
0,01
0,01
0,001
0,001
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
Ω
54
Rgoff =
54
Ω
30
60
90
RG( Ω )
120
150
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
15
A
D1,D2,D3,D4,D5,D6 FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( µs)
0,8
t rr( µs)
0,8
trr
Tj = Tjmax -25°C
trr
Tj = Tjmax -25°C
0,6
0,6
trr
trr
Tj = 25°C
0,4
0,4
Tj = 25°C
0,2
0,2
0
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
600
±15
54
copyright Vincotech
10
15
20
25
I C (A)
30
60
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
25/125
600
15
±15
90
120
R g on ( Ω )
150
°C
V
A
V
Revision: 2.1
V23990-K219-F-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
D1,D2,D3,D4,D5,D6 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
5
Qrr
Qrr( µC)
Qrr( µC)
3,5
Qrr
Tj = Tjmax -25°C
3
4
2,5
Tj = Tjmax -25°C
Tj = 25°C
3
Qrr
2
Qrr
1,5
2
Tj = 25°C
1
1
0,5
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
600
±15
54
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
D1,D2,D3,D4,D5,D6 FWD
30
25/125
600
15
±15
60
90
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
24
IrrM (A)
24
R g on ( Ω) 150
120
Tj = Tjmax -25°C
20
IRRM
IRRM
16
Tj = Tjmax - 25°C
20
IRRM
16
IRRM
Tj = 25°C
Tj = 25°C
12
12
8
8
4
4
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
600
±15
54
copyright Vincotech
10
15
20
25
I C (A)
30
°C
V
V
Ω
7
0
30
At
Tj =
VR =
IF =
VGE =
25/125
600
15
±15
60
90
120
R gon ( Ω ) 150
°C
V
A
V
Revision: 2.1
V23990-K219-F-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
D1,D2,D3,D4,D5,D6 FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
1000
direc / dt (A/ µs)
direc / dt (A/µ s)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
dI0/dt
dIrec/dt
800
1000
dI0/dt
dIrec/dt
800
dIo/dtLow T
600
600
di0/dtHigh T
400
400
dIrec/dtLow T
200
200
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
600
±15
54
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
30
25/125
600
15
±15
60
90
150
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Zth-JH (K/W)
101
ZthJH (K/W)
101
R gon ( Ω )
120
100
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10
-5
At
D=
RthJH =
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
10-5
1
10 10
At
D=
RthJH =
tp / T
1,15
K/W
10-4
10-3
R (C/W)
0,04
0,14
0,51
0,20
0,05
R (C/W)
0,09
0,32
0,88
0,37
0,22
0,04
8
100
t p (s)
10110
K/W
FWD thermal model values
copyright Vincotech
10-1
tp / T
1,95
IGBT thermal model values
Tau (s)
3,0E+00
4,6E-01
1,0E-01
1,4E-02
1,2E-03
10-2
Tau (s)
9,5E-02
3,2E-01
8,9E-01
3,7E-01
2,3E-01
4,4E-02
Revision: 2.1
V23990-K219-F-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
25
IC (A)
Ptot (W)
150
120
20
90
15
60
10
30
5
0
0
0
At
Tj =
30
150
60
90
120
T h ( o C)
150
0
At
Tj =
VGE =
°C
D1,D2,D3,D4,D5,D6 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
30
150
15
60
90
T h ( o C)
150
°C
V
D1,D2,D3,D4,D5,D6 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
25
IF (A)
Ptot (W)
80
120
20
60
15
40
10
20
5
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T h ( o C)
150
0
At
Tj =
°C
9
30
150
60
90
120
T h ( o C)
150
°C
Revision: 2.1
V23990-K219-F-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
103
IC (A)
VGE (V)
16
14
10
2
240V
960V
12
101
10
100uS
8
1mS
100
6
10mS
10
4
100mS
-1
2
DC
0
0
101
10
At
D=
Th =
VGE =
Tj =
102
103
0
20
40
V CE (V)
60
80
100
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
15
A
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
copyright Vincotech
50
75
100
T (°C)
125
10
Revision: 2.1
V23990-K219-F-PM
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
Rgon
= 32 Ω
Rgoff
= 32 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
200
%
%
IC
120
tdoff
160
VCE
100
VGE 90%
VCE 90%
120
80
VCE
IC
60
VGE
80
tdon
tEoff
40
40
IC 1%
20
IC10%
VGE10%
VCE 3%
0
0
VGE
tEon
-20
-0,25
-0,05
0,15
0,35
0,55
-40
0,75
2,7
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
15
0,29
0,65
2,9
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,1
-15
15
600
15
0,10
0,36
3,3
3,5
3,7
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
140
220
%
%
fitted
120
Ic
180
100
VCE
IC 90%
IC
140
80
VCE
IC 60%
60
100
IC90%
IC 40%
40
tr
60
20
IC10%
-20
0,15
20
tf
0
0,2
0,25
IC10%
0,3
0,35
0,4
-20
0,45
3
3,05
3,1
3,15
time (us)
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
600
15
0,13
3,2
3,25
3,3
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
11
600
15
0,04
V
A
µs
Revision: 2.1
V23990-K219-F-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
%
Poff
Pon
%
Eoff
100
140
80
Eon
100
60
40
60
20
VGE 90%
20
0
VGE 10%
VCE 3%
tEoff
tEon
IC 1%
-20
-0,2
0
0,2
0,4
0,6
-20
2,95
0,8
3,05
3,15
3,25
Poff (100%) =
Eoff (100%) =
tEoff =
9,01
1,48
0,65
3,35
3,45
time(us)
time (us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
9,01
1,52
0,36
kW
mJ
µs
Output inverter FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
Vd
0
IRRM10%
-40
IRRM90%
IRRM100%
-80
fitted
-120
3
3,15
3,3
3,45
3,6
3,75
3,9
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
600
15
-11
0,54
V
A
A
µs
12
Revision: 2.1
V23990-K219-F-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Erec
%
%
Id
Qrr
100
100
80
50
tErec
60
tQrr
40
0
20
Prec
-50
0
-100
2,9
3,15
3,4
3,65
3,9
4,15
4,4
-20
2,75
4,65
3,15
3,55
3,95
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
15
2,38
1,11
4,35
4,75
time(us)
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
13
9,01
0,98
1,11
kW
mJ
µs
Revision: 2.1
V23990-K219-F-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K12-T-PM)
with std lid (black V23990-K12-T-PM) and P12
with thin lid (white V23990-K13-T-PM)
with thin lid (white V23990-K13-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K219-F-/0A/-PM
V23990-K219-F-/1A/-PM
V23990-K219-F-/0B/-PM
V23990-K219-F-/1B/-PM
K219F
K219F
K219F
K219F
in packaging barcode as
K219F-/0A/
K219F-/1A/
K219F-/0B/
K219F-/1B/
Outline
Pinout
copyright Vincotech
14
Revision: 2.1
V23990-K219-F-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
15
Revision: 2.1