V23990-K219-F-PM MiniSKiiP® 1 PACK 1200V/15A MiniSKiiP® 1 housing Features ● Solderless interconnection ● Trench Fieldstop IGBT4 technology Target Applications Schematic ● Servo Drives ● Industrial Motor Drives ● UPS Types ● V23990-K219-F-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 24 A tp limited by Tjmax 45 A VCE≤1200V, Tj≤Topmax 45 A 61 W ±20 V 10 900 µs V Tjmax 150 °C VRRM 1200 V 19 A 45 A 36 W 150 °C T1,T2,T3,T4,T5,T6 Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Th=80°C Tj≤150°C VGE=15V D1,D2,D3,D4,D5,D6 Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 1 Th=80°C Th=80°C Revision: 2.1 V23990-K219-F-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 2.1 V23990-K219-F-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,35 1,66 1,84 2,15 T1,T2,T3,T4,T5,T6 Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. diode ICES 0 1200 Gate-emitter leakage current IGES ±20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0006 15 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,1 180 Rgoff=36 Ω Rgon=36 Ω ±15 300 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω - tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 42 40 18 24 365 442 118 236 1,33 1,74 1,07 1,68 ns mWs 1 f=1MHz 25 0 0,1 Tj=25°C pF 0,1 Tj=25°C ±15 Thermal grease thickness≤50µm λ=1W/mK 108 nC 1,15 K/W D1,D2,D3,D4,D5,D6 Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 15 diF/dt=tbd A/us 600 15 di(rec)max /dt Erec RthJH 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,61 1,64 16 19 397 559 2,11 3,42 245 170 0,81 1,38 Thermal grease thickness≤50µm λ=1W/mK 1,8 1,8 V A ns µC A/µs mWs 1,95 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R T=25°C R100=1670 Ω T=100°C -3 3 % T=100°C 1670,313 Ω A-value B(25/50) Tol. % T=25°C 7,635*10-3 1/K B-value B(25/100) Tol. % T=25°C 1,731*10-5 1/K² R100 R Vincotech NTC Reference copyright Vincotech E 3 Revision: 2.1 V23990-K219-F-PM T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 2 Typical output characteristics IC = f(VCE) 30 IC (A) IC (A) 30 24 24 18 18 12 12 6 6 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 250 µs 125 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 35 IF (A) IC (A) 15 4 Tj = 25°C 30 12 25 9 20 Tj = Tjmax-25°C 15 6 10 3 Tj = Tjmax-25°C 5 Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0 At tp = µs V 4 0,5 250 1 1,5 2 V F (V) 2,5 µs Revision: 2.1 V23990-K219-F-PM T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT T1,T2,T3,T4,T5,T6 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 4 Eon High T 3,5 4 3,5 Eoff High T 3 3 Eon Low T 2,5 Eon High T 2,5 Eon Low T 2 2 Eoff Low T 1,5 1 1 0,5 0,5 Eoff Low T 0 0 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = ±15 V Rgon = Ω 54 Rgoff = 54 Ω 30 60 90 120 RG( Ω ) 150 With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = ±15 V IC = 15 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) T1,T2,T3,T4,T5,T6 IGBT T1,T2,T3,T4,T5,T6 IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 1,8 E (mWs) E (mWs) Eoff High T 1,5 1,6 1,8 1,6 Tj = Tjmax -25°C 1,4 Tj = Tjmax -25°C 1,4 1,2 Erec 1,2 Erec 1 1 Tj = 25°C Tj = 25°C 0,8 0,8 0,6 0,6 0,4 0,4 0,2 0,2 Erec 0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V Rgon = 54 Ω copyright Vincotech 30 60 90 120 R G ( Ω ) 150 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V IC = 15 A 5 Revision: 2.1 V23990-K219-F-PM T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 tdoff t ( µs) t ( µs) 1 tdoff tf tf 0,1 0,1 tdon tdon tr tr 0,01 0,01 0,001 0,001 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = Ω 54 Rgoff = 54 Ω 30 60 90 RG( Ω ) 120 150 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 15 A D1,D2,D3,D4,D5,D6 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( µs) 0,8 t rr( µs) 0,8 trr Tj = Tjmax -25°C trr Tj = Tjmax -25°C 0,6 0,6 trr trr Tj = 25°C 0,4 0,4 Tj = 25°C 0,2 0,2 0 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 600 ±15 54 copyright Vincotech 10 15 20 25 I C (A) 30 60 30 At Tj = VR = IF = VGE = °C V V Ω 6 25/125 600 15 ±15 90 120 R g on ( Ω ) 150 °C V A V Revision: 2.1 V23990-K219-F-PM T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6 FWD D1,D2,D3,D4,D5,D6 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 5 Qrr Qrr( µC) Qrr( µC) 3,5 Qrr Tj = Tjmax -25°C 3 4 2,5 Tj = Tjmax -25°C Tj = 25°C 3 Qrr 2 Qrr 1,5 2 Tj = 25°C 1 1 0,5 0 0 At 0 At Tj = VCE = VGE = Rgon = 5 25/125 600 ±15 54 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) D1,D2,D3,D4,D5,D6 FWD 30 25/125 600 15 ±15 60 90 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 24 IrrM (A) 24 R g on ( Ω) 150 120 Tj = Tjmax -25°C 20 IRRM IRRM 16 Tj = Tjmax - 25°C 20 IRRM 16 IRRM Tj = 25°C Tj = 25°C 12 12 8 8 4 4 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 600 ±15 54 copyright Vincotech 10 15 20 25 I C (A) 30 °C V V Ω 7 0 30 At Tj = VR = IF = VGE = 25/125 600 15 ±15 60 90 120 R gon ( Ω ) 150 °C V A V Revision: 2.1 V23990-K219-F-PM T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD D1,D2,D3,D4,D5,D6 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 1000 direc / dt (A/ µs) direc / dt (A/µ s) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) dI0/dt dIrec/dt 800 1000 dI0/dt dIrec/dt 800 dIo/dtLow T 600 600 di0/dtHigh T 400 400 dIrec/dtLow T 200 200 dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 600 ±15 54 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 30 25/125 600 15 ±15 60 90 150 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Zth-JH (K/W) 101 ZthJH (K/W) 101 R gon ( Ω ) 120 100 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10 -5 At D= RthJH = 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 10-5 1 10 10 At D= RthJH = tp / T 1,15 K/W 10-4 10-3 R (C/W) 0,04 0,14 0,51 0,20 0,05 R (C/W) 0,09 0,32 0,88 0,37 0,22 0,04 8 100 t p (s) 10110 K/W FWD thermal model values copyright Vincotech 10-1 tp / T 1,95 IGBT thermal model values Tau (s) 3,0E+00 4,6E-01 1,0E-01 1,4E-02 1,2E-03 10-2 Tau (s) 9,5E-02 3,2E-01 8,9E-01 3,7E-01 2,3E-01 4,4E-02 Revision: 2.1 V23990-K219-F-PM T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 25 IC (A) Ptot (W) 150 120 20 90 15 60 10 30 5 0 0 0 At Tj = 30 150 60 90 120 T h ( o C) 150 0 At Tj = VGE = °C D1,D2,D3,D4,D5,D6 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 30 150 15 60 90 T h ( o C) 150 °C V D1,D2,D3,D4,D5,D6 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 25 IF (A) Ptot (W) 80 120 20 60 15 40 10 20 5 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T h ( o C) 150 0 At Tj = °C 9 30 150 60 90 120 T h ( o C) 150 °C Revision: 2.1 V23990-K219-F-PM T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 103 IC (A) VGE (V) 16 14 10 2 240V 960V 12 101 10 100uS 8 1mS 100 6 10mS 10 4 100mS -1 2 DC 0 0 101 10 At D= Th = VGE = Tj = 102 103 0 20 40 V CE (V) 60 80 100 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC 15 A Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 copyright Vincotech 50 75 100 T (°C) 125 10 Revision: 2.1 V23990-K219-F-PM Switching Definitions Output Inverter General conditions Tj = 150 °C Rgon = 32 Ω Rgoff = 32 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 200 % % IC 120 tdoff 160 VCE 100 VGE 90% VCE 90% 120 80 VCE IC 60 VGE 80 tdon tEoff 40 40 IC 1% 20 IC10% VGE10% VCE 3% 0 0 VGE tEon -20 -0,25 -0,05 0,15 0,35 0,55 -40 0,75 2,7 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 15 0,29 0,65 2,9 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,1 -15 15 600 15 0,10 0,36 3,3 3,5 3,7 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 140 220 % % fitted 120 Ic 180 100 VCE IC 90% IC 140 80 VCE IC 60% 60 100 IC90% IC 40% 40 tr 60 20 IC10% -20 0,15 20 tf 0 0,2 0,25 IC10% 0,3 0,35 0,4 -20 0,45 3 3,05 3,1 3,15 time (us) VC (100%) = IC (100%) = tf = copyright Vincotech 600 15 0,13 3,2 3,25 3,3 time(us) VC (100%) = IC (100%) = tr = V A µs 11 600 15 0,04 V A µs Revision: 2.1 V23990-K219-F-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 180 % Poff Pon % Eoff 100 140 80 Eon 100 60 40 60 20 VGE 90% 20 0 VGE 10% VCE 3% tEoff tEon IC 1% -20 -0,2 0 0,2 0,4 0,6 -20 2,95 0,8 3,05 3,15 3,25 Poff (100%) = Eoff (100%) = tEoff = 9,01 1,48 0,65 3,35 3,45 time(us) time (us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 9,01 1,52 0,36 kW mJ µs Output inverter FWD Figure 7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 Vd 0 IRRM10% -40 IRRM90% IRRM100% -80 fitted -120 3 3,15 3,3 3,45 3,6 3,75 3,9 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 600 15 -11 0,54 V A A µs 12 Revision: 2.1 V23990-K219-F-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Erec % % Id Qrr 100 100 80 50 tErec 60 tQrr 40 0 20 Prec -50 0 -100 2,9 3,15 3,4 3,65 3,9 4,15 4,4 -20 2,75 4,65 3,15 3,55 3,95 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 15 2,38 1,11 4,35 4,75 time(us) time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 13 9,01 0,98 1,11 kW mJ µs Revision: 2.1 V23990-K219-F-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K12-T-PM) with std lid (black V23990-K12-T-PM) and P12 with thin lid (white V23990-K13-T-PM) with thin lid (white V23990-K13-T-PM) and P12 Ordering Code in DataMatrix as V23990-K219-F-/0A/-PM V23990-K219-F-/1A/-PM V23990-K219-F-/0B/-PM V23990-K219-F-/1B/-PM K219F K219F K219F K219F in packaging barcode as K219F-/0A/ K219F-/1A/ K219F-/0B/ K219F-/1B/ Outline Pinout copyright Vincotech 14 Revision: 2.1 V23990-K219-F-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 15 Revision: 2.1