V23990-K237-F40-PM MiniSKiiP®2 PACK 1200V / 25A Features MiniSKiiP® 2 housing ● Solderless interconnection ● Trench Fieldstop IGBT4 technology Target Applications Schematic ● Servo Drives ● Industrial Motor Drives ● UPS Types ● V23990-K237-F40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 33 40 A 75 A 89 135 W ±20 V 10 µs T1,T2,T3,T4,T5,T6 Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Th=80°C Power dissipation Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC 800 V Tjmax 175 °C Maximum Junction Temperature copyright Vincotech Tc=80°C Tj≤150°C VGE=15V 1 Revision: 1 V23990-K237-F40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 25 32 A 160 A 62 95 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm D1,D2,D3,D4,D5,D6 Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp=10ms half sine Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 1 V23990-K237-F40-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,35 1,88 2,2 2,15 T1,T2,T3,T4,T5,T6 Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,00085 25 tf 0,05 300 Rgoff=32 Ω Rgon=32 Ω Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Vcc=960V Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50µm λ=1W/mK V V mA nA Ω Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 112 113 29,3 34,7 231 303 91 137 1,87 2,77 1,49 2,43 ns mWs 1430 f=1MHz 0 Tj=25°C 25 115 pF 85 ±15 40 Tj=25°C 120 nC 1,2 K/W D1,D2,D3,D4,D5,D6 Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip VF 25 IRRM trr Qrr di(rec)max /dt Erec RthJH Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,5 Thermal grease thickness≤50µm λ=1W/mK 2,47 2,49 13,5 18,3 319 544 1,48 3,69 174 64 0,52 1,44 2,75 V A ns µC A/µs mWs 1,52 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R R100 T=25°C R100=1670 Ω T=100°C P T=100°C -3 3 mW/K A-value B(25/50) Tol. % T=25°C 7,635*10-3 B-value B(25/100) Tol. % T=25°C 1,731*10-5 Vincotech NTC Reference copyright Vincotech Ω 1670,313 T=25°C Power dissipation constant % 1/K 1/K² E 3 Revision: 1 V23990-K237-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 2 Typical output characteristics IC = f(VCE) 75 IC (A) IC (A) 75 60 60 45 45 30 30 15 15 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 250 µs 150 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 75 IC (A) IF (A) 25 4 20 60 15 45 Tj = 25°C Tj = Tjmax-25°C Tj = Tjmax-25°C 10 30 Tj = 25°C 5 15 0 0 0 2 4 At tp = VCE = 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 12 0 At tp = 4 1 250 2 3 4 V F (V) 5 µs Revision: 1 V23990-K237-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 8 E (mWs) 8 Eon High T 6 Eon High T 6 Eon Low T Eon Low T 4 4 Eoff High T Eoff High T Eoff Low T 2 2 Eoff Low T 0 0 0 10 20 30 40 I C (A) 50 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 30 60 90 120 RG( Ω ) 150 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 25 A T1,T2,T3,T4,T5,T6 IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 2 E (mWs) 2 Erec Tj = Tjmax -25°C 1,6 1,6 1,2 1,2 Tj = Tjmax -25°C 0,8 Erec 0,8 Erec Tj = 25°C Tj = 25°C Erec 0,4 0,4 0 0 0 10 20 30 40 I C (A) 50 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 32 Ω copyright Vincotech 30 60 90 120 RG( Ω ) 150 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 25 A 5 Revision: 1 V23990-K237-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 1 t ( µs) 1 tdoff tdoff tdon tf 0,1 tf 0,1 tdon tr tr 0,01 0,01 0,001 0,001 0 10 20 30 40 I C (A) 50 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 30 60 90 120 RG( Ω ) 150 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 25 A D1,D2,D3,D4,D5,D6 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 1 t rr( µs) t rr( µs) 1 0,8 trr 0,8 trr Tj = Tjmax -25°C Tj = Tjmax -25°C 0,6 0,6 trr trr Tj = 25°C 0,4 0,4 Tj = 25°C 0,2 0,2 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/150 600 ±15 32 copyright Vincotech 20 30 40 I C (A) 50 °C V V Ω 6 0 30 At Tj = VR = IF = VGE = 25/150 600 25 ±15 60 90 120 R g on ( Ω ) 150 °C V A V Revision: 1 V23990-K237-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 5 5 Qrr( µC) Qrr( µC) Qrr Tj = Tjmax -25°C 4 4 Tj = Tjmax -25°C Qrr 3 3 Qrr 2 2 Tj = 25°C Tj = 25°C Qrr 1 1 0 0 At 0 At Tj = VCE = VGE = Rgon = 10 25/150 600 ±15 32 20 30 40 I C (A) 50 0 30 At Tj = VR = IF = VGE = °C V V Ω D1,D2,D3,D4,D5,D6 FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 25/150 600 25 ±15 60 90 120 R g on ( Ω) 150 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 50 IrrM (A) IrrM (A) 25 40 20 Tj = Tjmax -25°C IRRM 30 15 Tj = 25°C IRRM 20 10 Tj = Tjmax - 25°C 10 5 Tj = 25°C IRRM 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/150 600 ±15 32 copyright Vincotech 20 30 40 I C (A) 50 °C V V Ω 7 0 30 At Tj = VR = IF = VGE = 25/150 600 25 ±15 60 90 120 R gon ( Ω ) 150 °C V A V Revision: 1 V23990-K237-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 1800 direc / dt (A/ µs) 1000 direc / dt (A/µ s) D1,D2,D3,D4,D5,D6 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt dIrec/dt dI0/dt dIrec/dt 1500 800 1200 dIo/dtLow T 600 900 di0/dtHigh T 400 600 200 300 dIrec/dtLow T dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/150 600 ±15 32 20 30 I C (A) 40 50 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 30 25/150 600 25 ±15 60 90 150 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Zth-JH (K/W) 101 ZthJH (K/W) 101 R gon ( Ω ) 120 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 101 10 At D= RthJH = tp / T 1,20 K/W 10-4 10-3 R (K/W) 0,03 0,14 0,51 0,27 0,17 0,07 R (K/W) 0,03 0,22 0,63 0,37 0,17 0,10 8 100 t p (s) 10110 K/W FWD thermal model values copyright Vincotech 10-1 tp / T 1,52 IGBT thermal model values Tau (s) 5,7E+00 8,1E-01 1,6E-01 4,9E-02 1,0E-02 9,8E-04 10-2 Tau (s) 9,3E+00 7,6E-01 1,5E-01 3,0E-02 4,4E-03 6,5E-04 Revision: 1 V23990-K237-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 40 IC (A) Ptot (W) 160 120 30 80 20 40 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C D1,D2,D3,D4,D5,D6 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 40 Ptot (W) IF (A) 120 150 90 30 60 20 30 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 9 50 175 100 150 T h ( o C) 200 °C Revision: 1 V23990-K237-F40-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 103 VGE (V) IC (A) 16 100uS 14 1mS 10 2 240V 12 960V 10 10mS 100mS 8 101 DC 6 4 100 2 0 10-1 0 10 At D= Th = VGE = Tj = 10 1 10 2 V CE (V) 0 103 At IC = single pulse 80 ºC ±15 V Tjmax ºC copyright Vincotech 10 20 25 40 60 80 100 Q g (nC) 120 A Revision: 1 V23990-K237-F40-PM Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 copyright Vincotech 50 75 100 T (°C) 125 11 Revision: 1 V23990-K237-F40-PM Switching Definitions Output Inverter General conditions = 150 °C Tj Rgon = 32 Ω Rgoff = 32 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 180 130 % % tdoff 110 IC VCE VGE 90% 90 150 VCE 90% 120 VCE 70 90 IC 50 tEoff VGE tdon 60 30 IC 1% 10 30 -30 -0,2 -0,05 0,1 0,25 0,4 0,55 -15 15 600 25 0,30 0,68 VCE 3% 0 0,7 tEon -30 0,85 5,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = IC10% VGE10% VGE -10 6 6,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 6,2 6,3 -15 15 600 25 0,11 0,42 6,4 6,6 6,7 time(us) V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 6,5 Turn-on Switching Waveforms & definition of tr 140 180 % % 120 VCE Ic 150 100 IC 120 IC 90% VCE 80 90 IC90% IC 60% 60 tr 60 IC 40% 40 30 20 IC10% IC10% tf 0 0 fitted -20 0,2 0,25 0,3 0,35 0,4 0,45 0,5 -30 0,55 6,1 time (us) VC (100%) = IC (100%) = tf = copyright Vincotech 600 25 0,14 6,2 6,3 6,4 6,5 6,6 time(us) VC (100%) = IC (100%) = tr = V A µs 12 600 25 0,03 V A µs Revision: 1 V23990-K237-F40-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 180 % Poff Pon % Eoff 100 140 80 Eon 100 60 40 60 20 VGE 10% 20 0 VCE 3% tEoff tEon VGE 90% -20 -0,2 IC 1% 0 0,2 0,4 0,6 0,8 -20 5,85 1 6 6,15 6,3 6,45 6,6 Poff (100%) = Eoff (100%) = tEoff = 14,95 2,43 0,68 6,75 time(us) time (us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 14,95 2,77 0,42 kW mJ µs Output inverter FWD Figure 7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 Vd 0 IRRM10% -40 IRRM90% IRRM100% -80 fitted -120 6 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 13 6,2 6,4 600 25 18 0,54 6,6 6,8 time(us) 7 V A A µs Revision: 1 V23990-K237-F40-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Erec % % Qrr 100 100 Id 80 50 tErec 60 tQrr 40 0 20 Prec -50 0 -100 -20 6 6,2 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 6,4 6,6 25 3,69 0,90 A µC µs 6,8 7 time(us) 7,2 6 Prec (100%) = Erec (100%) = tErec = 14 6,2 6,4 6,6 14,95 1,44 0,90 kW mJ µs 6,8 7 time(us) 7,2 Revision: 1 V23990-K237-F40-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K22-T-PM) with std lid (black V23990-K22-T-PM) and P12 with thin lid (white V23990-K23-T-PM) with thin lid (white V23990-K23-T-PM) and P12 Ordering Code in DataMatrix as V23990-K237-F40-/0A/-PM V23990-K237-F40-/1A/-PM V23990-K237-F40-/0B/-PM V23990-K237-F40-/1B/-PM K237F40 K237F40 K237F40 K237F40 in packaging barcode as K237F40-/0A/ K237F40-/1A/ K237F40-/0B/ K237F40-/1B/ Outline Pinout copyright Vincotech 15 Revision: 1 V23990-K237-F40-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 16 Revision: 1