4.1 MB

The following document contains information on Cypress products.
S6E2D5 Series
®
®
32-bit ARM Cortex -M4F based Microcontroller
S6E2D55J0A/S6E2D55G0A/S6E2D55GJA
Data Sheet (Full Production)
Notice to Readers: This document states the current technical specifications regarding the Spansion
product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume
such that subsequent versions of this document are not expected to change. However, typographical or
specification corrections, or modifications to the valid combinations offered may occur.
Publication Number S6E2D5_DS709-00021
CONFIDENTIAL
Revision 1.0
Issue Date April 21, 2015
D a t a S h e e t
Notice On Data Sheet Designations
Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers of
product information or intended specifications throughout the product life cycle, including development,
qualification, initial production, and full production. In all cases, however, readers are encouraged to verify
that they have the latest information before finalizing their design. The following descriptions of Spansion
data sheet designations are presented here to highlight their presence and definitions.
Advance Information
The Advance Information designation indicates that Spansion Inc. is developing one or more specific
products, but has not committed any design to production. Information presented in a document with this
designation is likely to change, and in some cases, development on the product may discontinue. Spansion
Inc. therefore places the following conditions upon Advance Information content:
“This document contains information on one or more products under development at Spansion Inc.
The information is intended to help you evaluate this product. Do not design in this product without
contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this
proposed product without notice.”
Preliminary
The Preliminary designation indicates that the product development has progressed such that a commitment
to production has taken place. This designation covers several aspects of the product life cycle, including
product qualification, initial production, and the subsequent phases in the manufacturing process that occur
before full production is achieved. Changes to the technical specifications presented in a Preliminary
document should be expected while keeping these aspects of production under consideration. Spansion
places the following conditions upon Preliminary content:
“This document states the current technical specifications regarding the Spansion product(s)
described herein. The Preliminary status of this document indicates that product qualification has
been completed, and that initial production has begun. Due to the phases of the manufacturing
process that require maintaining efficiency and quality, this document may be revised by subsequent
versions or modifications due to changes in technical specifications.”
Combination
Some data sheets contain a combination of products with different designations (Advance Information,
Preliminary, or Full Production). This type of document distinguishes these products and their designations
wherever necessary, typically on the first page, the ordering information page, and pages with the DC
Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first
page refers the reader to the notice on this page.
Full Production (No Designation on Document)
When a product has been in production for a period of time such that no changes or only nominal changes
are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include
those affecting the number of ordering part numbers available, such as the addition or deletion of a speed
option, temperature range, package type, or VIO range. Changes may also include those needed to clarify a
description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following
conditions to documents in this category:
“This document states the current technical specifications regarding the Spansion product(s)
described herein. Spansion Inc. deems the products to have been in sufficient production volume
such that subsequent versions of this document are not expected to change. However,
typographical or specification corrections, or modifications to the valid combinations offered may
occur.”
Questions regarding these document designations may be directed to your local sales office.
2
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
S6E2D5 Series
32-bit ARM® Cortex®-M4F based Microcontroller
S6E2D55J0A/S6E2D55G0A/S6E2D55GJA
Data Sheet (Full Production)
1.
Description
Devices in the S6E2D5 Series are highly integrated 32-bit microcontrollers with high performance and
competitive cost.
This series is based on the ARM Cortex-M4F Processor with on-chip Flash memory and SRAM. The series
has peripheral functions such as graphics engine, display controller, motor control timers, ADCs, and
2
Communication Interfaces (USB, CAN, UART, CSIO, I C, LIN).
The products that are described in this data sheet are TYPE4-M4 category products. See the FM4 Family
Peripheral Manual Main Part (MN709-00001).
Note:
−
ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.
Publication Number S6E2D5_DS709-00021
Revision 1.0
Issue Date April 21, 2015
This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient
production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the
valid combinations offered may occur.
CONFIDENTIAL
D a t a S h e e t
Table of Contents
1. Description ................................................................................................................................................. 3
2. Features ...................................................................................................................................................... 6
3. Product Lineup ........................................................................................................................................ 13
4. Packages .................................................................................................................................................. 15
5. Pin Assignment........................................................................................................................................ 16
6. Pin Descriptions ...................................................................................................................................... 20
7. I/O Circuit Type ........................................................................................................................................ 53
8. Handling Precautions .............................................................................................................................. 60
8.1. Precautions for Product Design ..................................................................................................... 60
8.2. Precautions for Package Mounting ................................................................................................ 61
8.3. Precautions for Use Environment .................................................................................................. 63
9. Handling Devices ..................................................................................................................................... 64
10. Block Diagram........................................................................................................................................ 67
11. Memory Size ........................................................................................................................................... 68
12. Memory Map ........................................................................................................................................... 68
13. Pin Status in Each CPU State ............................................................................................................... 70
14. Electrical Characteristics ...................................................................................................................... 78
14.1. Absolute Maximum Ratings ......................................................................................................... 78
14.2. Recommended Operating Conditions .......................................................................................... 80
14.3. DC Characteristics ....................................................................................................................... 84
14.3.1. Current Rating.................................................................................................................. 84
14.3.2. Pin Characteristics ........................................................................................................... 94
14.4. AC Characteristics ....................................................................................................................... 95
14.4.1. Main Clock Input Characteristics...................................................................................... 95
14.4.2. Sub Clock Input Characteristics ....................................................................................... 96
14.4.3. Built-in CR Oscillation Characteristics .............................................................................. 96
14.4.4. Operating Conditions of Main PLL (In the Case of Using Main Clock for Input Clock
of PLL)
......................................................................................................................... 97
2
14.4.5. Operating Conditions of USB/I S/GDC PLL (In the Case of Using Main Clock for Input
Clock of PLL) ..................................................................................................................... 97
14.4.6. Operating Conditions of Main PLL (In the Case of Using Built-in High-Speed CR Clock for
Input Clock of Main PLL) ................................................................................................... 98
14.4.7. Reset Input Characteristics .............................................................................................. 98
14.4.8. Power-on Reset Timing ................................................................................................... 99
14.4.9. GPIO Output Characteristics ........................................................................................... 99
14.4.10. External Bus Timing ..................................................................................................... 100
14.4.11. Base Timer Input Timing .............................................................................................. 111
14.4.12. CSIO Timing ................................................................................................................ 112
14.4.13. External Input Timing ................................................................................................... 145
14.4.14. Quadrature Position/Revolution Counter Timing .......................................................... 146
2
14.4.15. I C Timing .................................................................................................................... 148
14.4.16. ETM Timing.................................................................................................................. 150
14.4.17. JTAG Timing ................................................................................................................ 151
2
14.4.18. I S Timing .................................................................................................................... 152
14.4.19. GDC:Panel Output Timing ........................................................................................... 157
14.4.20. GDC: SDRAM-IF Timing .............................................................................................. 158
14.4.21. GDC: High-Speed Quad SPI Timing ............................................................................ 160
14.4.22. GDC: HyperBus I/F Timing .......................................................................................... 161
14.5. 12-bit A/D Converter .................................................................................................................. 163
14.6. USB Characteristics ................................................................................................................... 166
4
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
14.7. Low-Voltage Detection Characteristics ...................................................................................... 170
14.7.1. Low-Voltage Detection Reset ........................................................................................ 170
14.7.2. Interrupt of Low-Voltage Detection................................................................................. 170
14.8. MainFlash Memory Write/Erase Characteristics ........................................................................ 171
14.9. VFLASH Memory Write/Erase Characteristics ........................................................................... 171
14.10. Standby Recovery Time ........................................................................................................... 172
14.10.1. Recovery Cause: Interrupt/WKUP ............................................................................... 172
14.10.2. Recovery Cause: Reset ............................................................................................... 174
15. Ordering Information ........................................................................................................................... 176
16. Package Dimensions ........................................................................................................................... 177
17. Major Changes ..................................................................................................................................... 181
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
5
D a t a S h e e t
2.
Features
32-bit ARM Cortex-M4F Core
 Processor version: r0p1
 Up to 160 MHz frequency operation
 Built-in FPU
 Supports DSP instructions
 Memory Protection Unit (MPU): improves the reliability of an embedded system
 Integrated Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and 128 peripheral
interrupts and 16 priority levels
 24-bit system timer (Sys Tick): System timer for OS task management
On-Chip Memories
 Flash memory
This series has on-chip flash memory with these features:
− 384 Kbytes
− Built-in Flash Accelerator System with 16 Kbytes trace buffer memory
− Security function for code protection
Notes:
−
The read access to flash memory can be achieved without wait-cycle up to operation frequency of
72 MHz.
−
Even at the operation frequency more than 72 MHz, an equivalent access to flash memory can be
obtained by Flash Accelerator System.
 SRAM
This is composed of two independent SRAMs (SRAM0 and SRAM2). SRAM0 is connected to I-code bus
and D-code bus of Cortex-M4F core. SRAM2 is connected to the system bus of Cortex-M4F core.
− SRAM0: 32 Kbytes
− SRAM2: 4 Kbytes
 VRAM
This series is equipped with a SRAM for GDC.
− Max 512 Kbytes
 VFLASH
S6E2D55GJA is equipped with a Flash for GDC.
− 2 Mbytes
External Bus Interface
 Supports SRAM, NOR, NAND Flash and SDRAM devices
 Up to two chip selects CS0 and CS8 (CS8 is only for SDRAM)
 8-/16-bit data width
 Up to 25-bit address bit
 Maximum area size : Up to 256 Mbytes
 Supports address/data multiplexing
 Supports external RDY function
 Supports the scramble function
− Possible to set the validity/invalidity of the scramble function for the external areas 0x6000_0000 to
0x7FFF_FFFF in 4 Mbytes units.
− Possible to set two kinds of the scramble key.
Note:
−
6
CONFIDENTIAL
It is necessary to prepare the dedicated software library to use the scramble function.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
USB Interface (One channel)
A USB interface is composed of function and host.
 USB function
− USB2.0 Full-Speed supported
− Max 6 EndPoint supported
−
−
−
−
−
EndPoint 0 is for control transfer
EndPoint 1, 2 can be selected for bulk-transfer, interrupt-transfer or isochronous-transfer
EndPoint 3 to 5 can select bulk-transfer or interrupt-transfer
EndPoint 1 to 5 comprise the double buffer
The size of each endpoint is as follows.
−
Endpoint 0, 2 to 5: 64 bytes
−
EndPoint 1: 256 bytes
 USB host
− USB2.0 Full-Speed / Low-Speed supported
− Bulk-transfer, interrupt-transfer and isochronous-transfer support
− USB device connected/disconnected automatically detect
− In/out token handshake packet automatically accepted
− Max 256-byte packet-length supported
− Wake-up function supported
CAN-FD Interface (One channel)
− Compatible with CAN Specification 2.0A/B
− Maximum transfer rate: 5 Mbps
− Message buffer for receiver: Up to 192 messages
− Message buffer for transmitter: Up to 32 messages
− CAN with flexible data rate (non-ISO CAN FD)
Notes:
−
CAN FD cannot communicate between non-ISO CAN FD and ISO CAN FD, because non-ISO CAN
FD and ISO CAN FD are different frame format.
−
About the problem of "non-ISO CAN FD", see the White Paper from CiA(CAN in Automation).
http://www.can-newsletter.org/engineering/standardization/141222_can-fd-and-crc-issued_white-pa
per_bosch
Multi-function Serial Interface (Max eight channels)
 64 bytes with FIFO (the FIFO step numbers vary depending on the settings of the communication mode or
bit length.)
 Operation mode is selectable from the following for each channel.
− UART
− CSIO
− LIN
− I2 C
 UART
− Full-duplex double buffer
− Selection with or without parity supported
− Built-in dedicated baud rate generator
− External clock available as a serial clock
− Various error detect functions available (parity errors, framing errors, and overrun errors)
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
7
D a t a S h e e t
 CSIO
− Full-duplex double buffer
− Built-in dedicated baud rate generator
− Overrun error detect function available
− Serial chip select function (ch.6 and ch.7 only)
− Supports High-speed SPI (ch.6 only)
− Data length 5 to 16-bit
 LIN
− LIN protocol Rev.2.1 supported
− Full-duplex double buffer
− Master/Slave mode supported
− LIN break field generation (can change to 13 to 16-bit length)
− LIN break delimiter generation (can change to 1 to 4-bit length)
− Various error detect functions available (parity errors, framing errors, and overrun errors)
 I2 C
− Standard mode (Max 100 kbps) / Fast mode (Max 400 kbps) supported
− Fast mode Plus (Fm+) (Max 1000 kbps, only for ch.4=ch.A) supported
DMA Controller (Eight channels)
The DMA controller has an independent bus for the CPU, so the CPU and the DMA controller can process
simultaneously.







8 independently configured and operated channels
Transfer can be started by software or requested from the built-in peripherals
Transfer address area: 32-bit (4 Gbytes)
Transfer mode: Block transfer/Burst transfer/Demand transfer
Transfer data type: bytes/half-word/word
Transfer block count: 1 to 16
Number of transfers: 1 to 65536
DSTC (Descriptor System Data Transfer Controller) (128 channels)
The DSTC can transfer data at high-speed without going via the CPU. The DSTC adopts the descriptor
system and, following the specified contents of the descriptor that has already been constructed on the
memory, can directly access the memory/peripheral device and performs the data transfer operation.
It supports the software activation, the hardware activation, and the chain activation functions.
A/D Converter (Max 24 channels)
 12-bit A/D Converter
− Successive Approximation type
− Built-in 2 units
− Conversion time: 1.0 μs @ 3.3 V
− Priority conversion available (priority at two levels)
− Scanning conversion mode
− Built-in FIFO for conversion data storage (for SCAN conversion: 16 steps, for priority conversion: four
steps)
8
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Base Timer (Max eight channels)
Operation mode is selectable from the followings for each channel.




16-bit PWM timer
16-bit PPG timer
16-/32-bit reload timer
16-/32-bit PWC timer
General-Purpose I/O Port
This series can use its pins as general-purpose I/O ports when they are not used for external bus or
peripherals. Moreover, the port relocate function is built in. It can set to which I/O port the peripheral function
can be allocated.





Capable of pull-up control per pin
Capable of reading pin level directly
Built-in port relocate function
Up to 98 general-purpose I/O ports @ 120-pin package
Some I/O pins are 5V tolerant.
See "6. Pin Descriptions" and "7. I/O Circuit Type" for the corresponding pins.
Multi-Function Timer (One unit)
The multi-function timer is composed of the following blocks.
Minimum resolution : 6.25 ns






16-bit free-run timer × 3ch.
Input capture × 4ch.
Output compare × 6ch.
A/D activation compare × 6ch.
Waveform generator × 3ch.
16-bit PPG timer × 3ch.
The following functions can be used to achieve motor control.






PWM signal output function
DC chopper waveform output function
Dead time function
Input capture function
A/D converter activate function
DTIF (motor emergency stop) interrupt function
Real-Time Clock (RTC)
The real-time clock can count Year/Month/Day/Hour/Minute/Second/A day of the week from 01 to 99.
 Interrupt function with specifying date and time (Year/Month/Day/Hour/Minute/Second/A day of the week.)
is available. This function is also available by specifying only Year, Month, Day, Hour or Minute.
 Timer interrupt function after set time or each set time.
 Capable of rewriting the time with continuing the time count.
 Leap year automatic count is available.
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
9
D a t a S h e e t
Quadrature Position/Revolution Counter (QPRC) (One channel)
The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position
encoder. Moreover, it is possible to use up/down counter.




The detection edge of the three external event input pins AIN, BIN and ZIN is configurable.
16-bit position counter
16-bit revolution counter
Two 16-bit compare registers
Dual Timer (32-/16-bit Down Counter)
The dual timer consists of two programmable 32-/16-bit down counters.
Operation mode is selectable from the followings for each channel.
 Free-running
 Periodic (=Reload)
 One-shot
Watch Counter
The watch counter is used for wake up from the low-power consumption mode. It is possible to select the
main clock, sub clock, built-in High-speed CR clock or built-in Low-speed CR clock as the clock source.
Interval timer: up to 64 s (Max) @ Sub Clock: 32.768 kHz
External Interrupt Controller Unit
 External interrupt input pin: Max 16 pins
 Include one non-maskable interrupt (NMI)
Watchdog Timer (Two channels)
A watchdog timer can generate interrupts or a reset when a time-out value is reached.
This series consists of two different watchdogs, a hardware watchdog and a software watchdog.
The hardware watchdog timer is clocked by low-speed internal CR oscillator. Therefore, the hardware
watchdog is active in any power saving mode except RTC mode and stop mode.
CRC (Cyclic Redundancy Check) Accelerator
The CRC accelerator helps verify data transmission or storage integrity.
CCITT CRC16 and IEEE-802.3 CRC32 are supported.
 CCITT CRC16 Generator Polynomial: 0x1021
 IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7
PRGCRC (Programmable Cyclic Redundancy Check) Accelerator
The CRC accelerator helps verify data transmission or storage integrity.
CCITT CRC16, IEEE-802.3 CRC32 and a generating polynominal are supported.
 CCITT CRC16 Generator Polynomial: 0x1021
 IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7
 Generating polynominal
10
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
2
I S Interface (TX x two channels, RX x two channels)
 Support three transfer protocols
− I2 S
− Left Justified
− DSP mode





Master/Slave Mode selectable
RX only, TX only or TX and RX simultaneous operation selectable
Word length is programmable from 7 bits to 32 bits
RX/TX FIFO integrated (RX: 66 words x 32 bits, TX: 66 words x 32 bits)
DMA, interrupts, or polling based data transfer supported
GDC Unit
 Controller for external graphics display
 Accelerator for 2D block image transfer (blit) operations
 Embedded SRAM video memory
 High-Speed Quad SPI (Serial Peripheral Interface for external memory extensions)
 SDRAM interface for external memory extensions
 HBI (Hyper Bus Interface) interface for external memory extensions
 Maximum core system clock frequency : 160 MHz
Clock and Reset
 Clocks
Five clock sources (two external oscillators, two internal CR oscillator, and Main PLL) that are dynamically
selectable.
−
−
−
−
−
Main clock:
Sub Clock :
High-speed internal CR Clock:
Low-speed internal CR Clock:
Main PLL Clock
4 MHz to 20 MHz
32.768 kHz
4 MHz
100 kHz
 Resets
− Reset requests from INITX pin
− Power on reset
− Software reset
− Watchdog timers reset
− Low voltage detector reset
− Clock supervisor reset
Clock Super Visor (CSV)
Clocks generated by internal CR oscillators are used to supervise abnormality of the external clocks.
 External OSC clock failure (clock stop) is detected, reset is asserted.
 External OSC frequency anomaly is detected, interrupt or reset is asserted.
Low-Voltage Detector (LVD)
This Series include 2-stage monitoring of voltage on the VCC pins. When the voltage falls below the voltage
has been set, Low-Voltage Detector generates an interrupt or reset.
 LVD1: error reporting via interrupt
 LVD2: auto-reset operation
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
11
D a t a S h e e t
Low-Power Consumption Mode
Six low-power consumption modes are supported.






Sleep
Timer
RTC
Stop
Deep standby RTC (selectable from with/without RAM retention)
Deep standby Stop (selectable from with/without RAM retention)
Peripheral Clock Gating
The system can reduce the current consumption of the total system with gating the operation clocks of
peripheral functions not used.
VBAT
The consumption power during the RTC operation can be reduced by supplying the power supply
independent from the RTC (calendar circuit)/32 kHz oscillation circuit. The following circuits can also be
used.





RTC
32 kHz oscillation circuit
Power-on circuit
Back up register : 32 bytes
Port circuit
Debug
 Serial Wire Debug Port (SWJ-DP)
 Embedded Trace Macrocells (ETM) provide comprehensive debug and trace facilities.
Unique ID
Unique value of the device (41-bit) is set.
Power Supply
 Two Power Supplies
− Power supply:
VCC
= 2.7 V to 3.6 V (when USB or GDC unit is not used)
= 3.0 V to 3.6 V (when USB or GDC unit is used)
− Power supply for VBAT:
12
CONFIDENTIAL
VBAT
= 1.65 V to 3.6 V
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
3.
Product Lineup
Memory Size
S6E2D55G0A
Product Name
S6E2D55GJA
S6E2D55J0A
On-chip Flash memory
On-chip SRAM
384 Kbytes
SRAM
36 Kbytes
SRAM0
32 Kbytes
SRAM2
4 Kbytes
VRAM for GDC
512 Kbytes
―
VFLASH for GDC
2 Mbytes
Function
Product Name
Pin count
S6E2D55G0A
S6E2D55J0A
S6E2D55GJA
120/161
176
120
Cortex-M4F, MPU, NVIC 128ch.
CPU
Freq.
160 MHz
Power supply voltage range
2.7 V to 3.6 V
USB2.0 (Function/Host)
1ch.
CAN-FD (non-ISO CAN FD)
1ch.
DMAC
8ch.
DSTC
128ch.
1ch.
Graphics・Display controller
GDC
High-Speed Quad SPI
unit
Hyper Bus Interface
1ch.
1ch.
SDRAM-IF
-
1ch.
Addr:25-bit (Max), Data: 8-/16-bit, CS:2 (Max)
External Bus Interface
SRAM, NOR Flash, NAND Flash, SDRAM
8ch. (Max)
Base Timer (PWC/Reload timer/PWM/PPG)
8ch. (Max)
MF Timer
Multi-function Serial Interface (UART/CSIO/LIN/I2C)
A/D activation compare
6ch.
Input capture
4ch.
Free-run timer
3ch.
Output compare
6ch.
Waveform generator
3ch.
PPG
3ch.
1 unit
I2S
2 units
QPRC
1ch.
Dual Timer
1 unit
Real-Time Clock
1 unit
Watch Counter
1 unit
CRC Accelerator
Yes(Fixed, Programmable)
Watchdog Timer
1ch. (SW) + 1ch. (HW)
External Interrupts
16 pins (Max)+ NMI × 1
I/O ports
12-bit A/D converter
98 pins (Max)
154 pins (Max)
Yes
LVD (Low-Voltage Detector)
2ch.
CONFIDENTIAL
90 pins (Max)
24ch. (2 units)
CSV (Clock Super Visor)
April 21, 2015, S6E2D5_DS709-00021-1v0-E
-
13
D a t a S h e e t
Product Name
S6E2D55G0A
High-speed
Built-in CR
Low-speed
Debug Function
S6E2D55J0A
S6E2D55GJA
4 MHz
100 kHz
SWJ-DP/ETM
Unique ID
Yes
Notes:
14
CONFIDENTIAL
−
All signals of the peripheral function in each product cannot be allocated by limiting the pins of
package.
It is necessary to use the port relocate function of the I/O port according to your function use.
−
See 14.4.3 Built-in CR Oscillation Characteristics for the accuracy of the built-in CR.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
4.
Packages
Product Name
Package
S6E2D55G0A
LQFP: FPT-120P-M21 (0.5 mm pitch)

LQFP: FPT-176P-M07 (0.5 mm pitch)
-
PFBGA:
FDJ161 (0.5 mm pitch)
Ex_LQFP(TEQFP): LEM120 (0.5 mm pitch)

S6E2D55J0A
-
S6E2D55GJA


-
-
-

: Supported
Note:
−
See 16. Package Dimensions for detailed information on each package.
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
15
D a t a S h e e t
5.
Pin Assignment
FPT-120P-M21 / LEM120
VSS
P81/UDP0
P80/UDM0
VCC
P60/SIN4_0/INT15_1/WKUP3/MALE_0
P61/UHCONX0/SOT4_0/TX2_0/RTCCO_0/SUBOUT_0/MDQM0_0
P62/SCK4_0/RX2_0/INT14_1/MDQM1_0
P63/ADTG_3/RTS4_0/PNL_PD0
P64/CTS4_0/PNL_PD1
P65/PNL_PD2
P66/SIN3_1/INT13_1/PNL_PD3
P67/SOT3_1/PNL_PD4/MSDCKE_0
P68/SCK3_1/PNL_PD5/MSDCLK_0
VSS
P0E/WKUP2/PNL_PD6/MCSX8_0
P0D/PNL_PD7/MSDWEX_0
P0C/SCK5_1/PNL_PD8/MAD11_0
P0B/SOT5_1/TIOB7_1/PNL_PD9/MAD12_0
P0A/SIN5_1/TIOA7_1/INT12_1/PNL_PD10/MAD13_0
P09/SCK2_1/PNL_PD11/MAD14_0
P08/SOT2_1/PNL_PD12/MAD15_0
P07/SIN2_1/INT11_1/PNL_PD13/MAD16_0
P06/TX2_2/PNL_PD14/MAD17_0
P05/RX2_2/INT10_1/PNL_PD15/MAD18_0
P04/TDO/SWO
P03/TMS/SWDIO
P02/TDI/MAD24_0
P01/TCK/SWCLK
P00/TRSTX
VCC
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
(TOP VIEW)
VCC
1
90
VSS
P3B/TIOA0_1/INT04_1/AIN0_1/I2SMCLK0_0/RTO00_0/MAD10_0
2
89
P97/AN23/PNL_PD16/MCASX_0
P3C/SCS70_0/TIOA1_1/INT05_1/BIN0_1/I2SDO0_0/RTO01_0/MAD09_0
3
88
P96/AN22/PNL_TSIG5/PNL_PD17/MRASX_0
P3D/SIN7_0/TIOA2_1/INT06_1/ZIN0_1/I2SWS0_0/RTO02_0/MAD08_0
4
87
P95/AN21/SCK1_1/PNL_TSIG6/PNL_PD18/MAD19_0
P3E/SOT7_0/TIOA3_1/INT07_1/I2SDI0_0/RTO03_0/MAD07_0
5
86
P94/AN20/SOT1_1/TRACED3/PNL_TSIG7/PNL_PD19/MAD20_0
P3F/SCK7_0/TIOA4_1/I2SCK0_0/RTO04_0/MAD06_0
6
85
P93/AN19/SIN1_1/TRACED2/INT09_1/PNL_TSIG8/PNL_PD20/MNREX_0/MAD21_0
P7C/TIOA5_1/RTO05_0/MWEX_0
7
84
P92/AN18/SCK0_1/TRACED1/PNL_TSIG9/PNL_PD21/MNWEX_0/MAD22_0
P7B/ADTG_2/MOEX_0/GE_HBCSX_1
8
83
P91/AN17/SOT0_1/TRACED0/PNL_TSIG10/PNL_PD22/MNCLE_0/MAD23_0
P33/SIN6_0/INT00_1
9
82
P90/AN16/SIN0_1/TRACECLK/INT08_1/PNL_TSIG11/PNL_PD23/MNALE_0/MCLKOUT_0
P34/SOT6_0/FRCK0_0
10
81
P1F/AN15/SCK6_1/TIOB7_0/MADATA15_0
P35/SCK6_0/IC03_0
11
80
P1E/AN14/SOT6_1/TIOA7_0/RTO05_1/MADATA14_0
P36/SCS60_0/INT01_1/IC02_0
12
79
P1D/AN13/SIN6_1/TIOB6_0/INT15_0/RTO04_1/MADATA13_0
VCC
13
78
P1C/AN12/SCS60_1/TIOA6_0/INT14_0/RTO03_1/MADATA12_0
VSS
14
77
P1B/AN11/SCK5_0/TIOB5_0/ZIN0_2/RTO02_1/MADATA11_0
P37/RX2_1/INT02_1/GE_HBRESETX/IC01_0
15
76
P1A/AN10/SOT5_0/TIOA5_0/BIN0_2/RTO01_1/MADATA10_0
P38/TX2_1/INT03_1/GE_HBINTX/IC00_0
16
75
P19/AN09/SIN5_0/TIOB4_0/INT13_0/AIN0_2/RTO00_1/MADATA09_0
P39/ADTG_0/GE_HBRSTOX/DTTIX_0
17
74
P18/AN08/SCK3_0/TIOA4_0/IC03_1/MADATA08_0
P3A/GE_HBWPX
18
73
P17/AN07/SOT3_0/TIOB3_0/IC02_1/MADATA07_0
P7A/GE_HBRWDS
19
72
P16/AN06/SIN3_0/TIOA3_0/INT12_0/IC01_1/MADATA06_0
P70/GE_SPCK/GE_HBCK
20
71
P15/AN05/SCK2_0/TIOB2_0/INT11_0/IC00_1/MADATA05_0
P71/GE_SPDQ0/GE_HBCSX_0
21
70
P14/AN04/SOT2_0/TIOA2_0/DTTI0X_1/MADATA04_0
120pin Package
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
P50/WKUP1/MCSX0_0
P51/TIOB0_1/PNL_TSIG4/PNL_PWE
P52/TIOB1_1/PNL_DCLK
P53/TIOB2_1/PNL_TSIG2/PNL_DEN
P54/TIOB3_1/PNL_TSIG3/PNL_LE
P55/TIOB4_1/PNL_TSIG0/PNL_LH_SYNC
P56/TIOB5_1/PNL_TSIG1/PNL_FV_SYNC
INITX
P46/X0A
P47/X1A
VBATVCC
P48/VREGCTL
P49/VWAKEUP
PE0/MD1
MD0
PE2/X0
PE3/X1
VSS
42
VCC
P27/ADTG_1/CROUT_1/MRDY_0
61
41
30
40
AVCC
VCC
VCC
62
P26/RTCCO_1/SUBOUT_1/MAD00_0
29
39
AVSS
P79/INT07_0/GE_HBDQ7
VSS
AVRL
63
38
64
28
37
27
P78/INT06_0/GE_HBDQ6
C
AVRH
P77/INT05_0/GE_HBDQ5
P25/I2SCK1_0/MAD01_0
65
36
26
P24/SCK0_0/TIOB6_1/I2SDI1_0/MAD02_0
P10/AN00/SIN1_0/TIOA0_0/INT09_0/AIN0_0/MADATA00_0
P76/INT04_0/GE_HBDQ4
35
66
34
25
P23/SOT0_0/TIOA6_1/I2SWS1_0/MAD03_0
P11/AN01/SOT1_0/TIOB0_0/BIN0_0/MADATA01_0
P75/INT03_0/GE_SPDQ2/GE_HBDQ3
P22/SIN0_0/INT08_0/I2SDO1_0/CROUT_0/MAD04_0
67
33
24
32
P12/AN02/SCK1_0/TIOA1_0/ZIN0_0/MADATA02_0
P74/INT02_0/GE_SPDQ1/GE_HBDQ2
31
P13/AN03/SIN2_0/TIOB1_0/INT10_0/FRCK0_1/MADATA03_0
68
VSS
69
23
P20/NMIX/WKUP0
22
P21/I2SMCLK1_0/MAD05_0
P72/INT00_0/GE_SPDQ3/GE_HBDQ0
P73/INT01_0/GE_SPCSX_0/GE_HBDQ1
Note:
−
16
CONFIDENTIAL
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the
relocated port number. For these pins, there are multiple pins that provide the same function for the
same channel.
Use the extended port function register (EPFR) to select the pin.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
FPT-120P-M21
(S6E2D55GJA)
VSS
P81/UDP0
P80/UDM0
VCC
P60/SIN4_0/INT15_1/WKUP3/MALE_0
P61/UHCONX0/SOT4_0/TX2_0/RTCCO_0/SUBOUT_0/MDQM0_0
P62/SCK4_0/RX2_0/INT14_1/MDQM1_0
P63/ADTG_3/RTS4_0/PNL_PD0
P64/CTS4_0/PNL_PD1
P65/PNL_PD2
P66/SIN3_1/INT13_1/PNL_PD3
P67/SOT3_1/PNL_PD4/MSDCKE_0
P68/SCK3_1/PNL_PD5/MSDCLK_0
VSS
P0E/WKUP2/PNL_PD6/MCSX8_0
P0D/PNL_PD7/MSDWEX_0
P0C/SCK5_1/PNL_PD8/MAD11_0
P0B/SOT5_1/TIOB7_1/PNL_PD9/MAD12_0
P0A/SIN5_1/TIOA7_1/INT12_1/PNL_PD10/MAD13_0
P09/SCK2_1/PNL_PD11/MAD14_0
P08/SOT2_1/PNL_PD12/MAD15_0
P07/SIN2_1/INT11_1/PNL_PD13/MAD16_0
P06/TX2_2/PNL_PD14/MAD17_0
P05/RX2_2/INT10_1/PNL_PD15/MAD18_0
P04/TDO/SWO
P03/TMS/SWDIO
P02/TDI/MAD24_0
P01/TCK/SWCLK
P00/TRSTX
VCC
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
(TOP VIEW)
VCC
1
90
VSS
P3B/TIOA0_1/INT04_1/AIN0_1/I2SMCLK0_0/RTO00_0/MAD10_0
2
89
P97/AN23/PNL_PD16/MCASX_0
P3C/SCS70_0/TIOA1_1/INT05_1/BIN0_1/I2SDO0_0/RTO01_0/MAD09_0
3
88
P96/AN22/PNL_TSIG5/PNL_PD17/MRASX_0
P3D/SIN7_0/TIOA2_1/INT06_1/ZIN0_1/I2SWS0_0/RTO02_0/MAD08_0
4
87
P95/AN21/SCK1_1/PNL_TSIG6/PNL_PD18/MAD19_0
P3E/SOT7_0/TIOA3_1/INT07_1/I2SDI0_0/RTO03_0/MAD07_0
5
86
P94/AN20/SOT1_1/TRACED3/PNL_TSIG7/PNL_PD19/MAD20_0
P3F/SCK7_0/TIOA4_1/I2SCK0_0/RTO04_0/MAD06_0
6
85
P93/AN19/SIN1_1/TRACED2/INT09_1/PNL_TSIG8/PNL_PD20/MNREX_0/MAD21_0
P7C/TIOA5_1/RTO05_0/MWEX_0
7
84
P92/AN18/SCK0_1/TRACED1/PNL_TSIG9/PNL_PD21/MNWEX_0/MAD22_0
P7B/ADTG_2/MOEX_0
8
83
P91/AN17/SOT0_1/TRACED0/PNL_TSIG10/PNL_PD22/MNCLE_0/MAD23_0
P33/SIN6_0/INT00_1
9
82
P90/AN16/SIN0_1/TRACECLK/INT08_1/PNL_TSIG11/PNL_PD23/MNALE_0/MCLKOUT_0
P34/SOT6_0/FRCK0_0
10
81
P1F/AN15/SCK6_1/TIOB7_0/MADATA15_0
P35/SCK6_0/IC03_0
11
80
P1E/AN14/SOT6_1/TIOA7_0/RTO05_1/MADATA14_0
P36/SCS60_0/INT01_1/IC02_0
12
79
P1D/AN13/SIN6_1/TIOB6_0/INT15_0/RTO04_1/MADATA13_0
VCC
13
78
P1C/AN12/SCS60_1/TIOA6_0/INT14_0/RTO03_1/MADATA12_0
77
P1B/AN11/SCK5_0/TIOB5_0/ZIN0_2/RTO02_1/MADATA11_0
76
P1A/AN10/SOT5_0/TIOA5_0/BIN0_2/RTO01_1/MADATA10_0
75
P19/AN09/SIN5_0/TIOB4_0/INT13_0/AIN0_2/RTO00_1/MADATA09_0
74
P18/AN08/SCK3_0/TIOA4_0/IC03_1/MADATA08_0
VSS
14
P37/RX2_1/INT02_1/IC01_0
15
P38/TX2_1/INT03_1/IC00_0
16
P39/ADTG_0/DTTIX_0
17
P3A
18
73
P17/AN07/SOT3_0/TIOB3_0/IC02_1/MADATA07_0
(N.C.)
19
72
P16/AN06/SIN3_0/TIOA3_0/INT12_0/IC01_1/MADATA06_0
(N.C.)
20
71
P15/AN05/SCK2_0/TIOB2_0/INT11_0/IC00_1/MADATA05_0
(N.C.)
21
70
P14/AN04/SOT2_0/TIOA2_0/DTTI0X_1/MADATA04_0
VCC
22
69
P13/AN03/SIN2_0/TIOB1_0/INT10_0/FRCK0_1/MADATA03_0
(DNU0)*1
23
68
P12/AN02/SCK1_0/TIOA1_0/ZIN0_0/MADATA02_0
(DNU1)*1
24
67
P11/AN01/SOT1_0/TIOB0_0/BIN0_0/MADATA01_0
(N.C.)
25
66
P10/AN00/SIN1_0/TIOA0_0/INT09_0/AIN0_0/MADATA00_0
120pin Package
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
C
VSS
VCC
P26/RTCCO_1/SUBOUT_1/MAD00_0
P27/ADTG_1/CROUT_1/MRDY_0
P50/WKUP1/MCSX0_0
P51/TIOB0_1/PNL_TSIG4/PNL_PWE
P52/TIOB1_1/PNL_DCLK
P53/TIOB2_1/PNL_TSIG2/PNL_DEN
P54/TIOB3_1/PNL_TSIG3/PNL_LE
P55/TIOB4_1/PNL_TSIG0/PNL_LH_SYNC
P56/TIOB5_1/PNL_TSIG1/PNL_FV_SYNC
INITX
P46/X0A
P47/X1A
VBATVCC
P48/VREGCTL
P49/VWAKEUP
PE0/MD1
MD0
PE2/X0
PE3/X1
VSS
VCC
36
61
P25/I2SCK1_0/MAD01_0
30
P24/SCK0_0/TIOB6_1/I2SDI1_0/MAD02_0
AVCC
VCC
35
62
P23/SOT0_0/TIOA6_1/I2SWS1_0/MAD03_0
29
34
AVSS
P79/INT07_0
33
63
P21/I2SMCLK1_0/MAD05_0
28
P22/SIN0_0/INT08_0/I2SDO1_0/CROUT_0/MAD04_0
AVRL
P78/INT06_0
32
AVRH
64
31
65
27
VSS
26
P20/NMIX/WKUP0
(N.C.)
P77/INT05_0
*1: The DNU0 / 1 (23 pin / 24 pin), please pull up and short-circuit on the board.
For more information, please refer to the 9. Handling Devices.
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the
relocated port number. For these pins, there are multiple pins that provide the same function for the
same channel.
Use the extended port function register (EPFR) to select the pin.
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
17
D a t a S h e e t
FPT-176P-M07
VSS
P81/UDP0
P80/UDM0
VCC
P60/SIN4_0/INT15_1/WKUP3/MALE_0
P61/UHCONX0/SOT4_0/TX2_0/RTCCO_0/SUBOUT_0/MDQM0_0
P62/SCK4_0/RX2_0/INT14_1/MDQM1_0
PDD/GE_SDCSX
PDC/GE_SDCASX
PDB/GE_SDRASX
PDA/GE_SDWEX
P63/ADTG_3/RTS4_0/PNL_PD0
P64/CTS4_0/PNL_PD1
P65/PNL_PD2
P66/SIN3_1/INT13_1/PNL_PD3
P67/SOT3_1/PNL_PD4/MSDCKE_0
P68/SCK3_1/PNL_PD5/MSDCLK_0
VSS
P0E/WKUP2/PNL_PD6/MCSX8_0
P0D/PNL_PD7/MSDWEX_0
P0C/SCK5_1/PNL_PD8/MAD11_0
P0B/SOT5_1/TIOB7_1/PNL_PD9/MAD12_0
P0A/SIN5_1/TIOA7_1/INT12_1/PNL_PD10/MAD13_0
P09/SCK2_1/PNL_PD11/MAD14_0
P08/SOT2_1/PNL_PD12/MAD15_0
P07/SIN2_1/INT11_1/PNL_PD13/MAD16_0
P06/TX2_2/PNL_PD14/MAD17_0
P05/RX2_2/INT10_1/PNL_PD15/MAD18_0
PD9/GE_SDDQM0
PD8/GE_SDDQM1
PD7/GE_SDDQM2
PD6/GE_SDDQM3
PD5/GE_SDA0
P04/TDO/SWO
P03/TMS/SWDIO
P02/TDI/MAD24_0
P01/TCK/SWCLK
P00/TRSTX
PD4/GE_SDA1
PD3/GE_SDA2
PD2/GE_SDA3
PD1/GE_SDA4
PD0/GE_SDA5
VCC
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
(TOP VIEW)
VCC
1
132
VSS
PA0/GE_SDCKE
2
131
P97/AN23/PNL_PD16/MCASX_0
PA1/GE_SDCLK
3
130
P96/AN22/PNL_TSIG5/PNL_PD17/MRASX_0
PA2/GE_SDDQ31
4
129
PCD/GE_SDA6
PA3/GE_SDDQ30
5
128
PCC/GE_SDA7
P3B/TIOA0_1/INT04_1/AIN0_1/I2SMCLK0_0/RTO00_0/MAD10_0
6
127
PCB/GE_SDA8
P3C/SCS70_0/TIOA1_1/INT05_1/BIN0_1/I2SDO0_0/RTO01_0/MAD09_0
7
126
PCA/GE_SDA9
P3D/SIN7_0/TIOA2_1/INT06_1/ZIN0_1/I2SWS0_0/RTO02_0/MAD08_0
8
125
P95/AN21/SCK1_1/PNL_TSIG6/PNL_PD18/MAD19_0
P3E/SOT7_0/TIOA3_1/INT07_1/I2SDI0_0/RTO03_0/MAD07_0
9
124
P94/AN20/SOT1_1/TRACED3/PNL_TSIG7/PNL_PD19/MAD20_0
P3F/SCK7_0/TIOA4_1/I2SCK0_0/RTO04_0/MAD06_0
10
123
P93/AN19/SIN1_1/TRACED2/INT09_1/PNL_TSIG8/PNL_PD20/MNREX_0/MAD21_0
P7C/TIOA5_1/RTO05_0/MWEX_0
11
122
P92/AN18/SCK0_1/TRACED1/PNL_TSIG9/PNL_PD21/MNWEX_0/MAD22_0
P7B/ADTG_2/MOEX_0/GE_HBCSX_1
12
121
P91/AN17/SOT0_1/TRACED0/PNL_TSIG10/PNL_PD22/MNCLE_0/MAD23_0
PA8/GE_SDDQ29
13
120
P90/AN16/SIN0_1/TRACECLK/INT08_1/PNL_TSIG11/PNL_PD23/MNALE_0/MCLKOUT_0
PA9/GE_SDDQ28
14
119
P1F/AN15/SCK6_1/TIOB7_0/MADATA15_0
PAA/GE_SDDQ27
15
118
P1E/AN14/SOT6_1/TIOA7_0/RTO05_1/MADATA14_0
PAB/GE_SDDQ26
16
117
P1D/AN13/SIN6_1/TIOB6_0/INT15_0/RTO04_1/MADATA13_0
PAC/GE_SDDQ25
17
116
P1C/AN12/SCS60_1/TIOA6_0/INT14_0/RTO03_1/MADATA12_0
PAD/GE_SDDQ24
18
115
PC9/GE_SDA10
P33/SIN6_0/INT00_1
19
114
PC8/GE_SDA11
P34/SOT6_0/FRCK0_0
20
113
PC7/GE_SDBA0
P35/SCK6_0/IC03_0
21
112
PC6/GE_SDBA1
P36/SCS60_0/INT01_1/IC02_0
22
111
P1B/AN11/SCK5_0/TIOB5_0/ZIN0_2/RTO02_1/MADATA11_0
VCC
23
110
P1A/AN10/SOT5_0/TIOA5_0/BIN0_2/RTO01_1/MADATA10_0
VSS
24
109
P19/AN09/SIN5_0/TIOB4_0/INT13_0/AIN0_2/RTO00_1/MADATA09_0
P37/RX2_1/INT02_1/GE_HBRESETX/IC01_0
25
108
P18/AN08/SCK3_0/TIOA4_0/IC03_1/MADATA08_0
P38/TX2_1/INT03_1/GE_HBINTX/IC00_0
26
107
P17/AN07/SOT3_0/TIOB3_0/IC02_1/MADATA07_0
P39/ADTG_0/GE_HBRSTOX/DTTIX_0
27
106
P16/AN06/SIN3_0/TIOA3_0/INT12_0/IC01_1/MADATA06_0
P3A/GE_HBWPX
28
105
P15/AN05/SCK2_0/TIOB2_0/INT11_0/IC00_1/MADATA05_0
PA4/GE_SDDQ23
29
104
P14/AN04/SOT2_0/TIOA2_0/DTTI0X_1/MADATA04_0
PA5/GE_SDDQ22
30
103
P13/AN03/SIN2_0/TIOB1_0/INT10_0/FRCK0_1/MADATA03_0
PA6/GE_SDDQ21
31
102
P12/AN02/SCK1_0/TIOA1_0/ZIN0_0/MADATA02_0
PA7/GE_SDDQ20
32
101
P11/AN01/SOT1_0/TIOB0_0/BIN0_0/MADATA01_0
P7A/GE_HBRWDS
33
100
P10/AN00/SIN1_0/TIOA0_0/INT09_0/AIN0_0/MADATA00_0
P70/GE_SPCK/GE_HBCK
34
99
PC5/GE_SDDQ0
P71/GE_SPDQ0/GE_HBCSX_0
35
98
PC4/GE_SDDQ1
P72/INT00_0/GE_SPDQ3/GE_HBDQ0
36
97
PC3/GE_SDDQ2
P73/INT01_0/GE_SPCSX_0/GE_HBDQ1
37
96
PC2/GE_SDDQ3
P74/INT02_0/GE_SPDQ1/GE_HBDQ2
38
95
PC1/GE_SDDQ4
P75/INT03_0/GE_SPDQ2/GE_HBDQ3
39
94
PC0/GE_SDDQ5
P76/INT04_0/GE_HBDQ4
40
93
AVRH
P77/INT05_0/GE_HBDQ5
41
92
AVRL
P78/INT06_0/GE_HBDQ6
42
91
AVSS
P79/INT07_0/GE_HBDQ7
43
90
AVCC
VCC
44
89
VCC
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
PB4/GE_SDDQ15
PB5/GE_SDDQ14
PB6/GE_SDDQ13
PB7/GE_SDDQ12
C
VSS
VCC
P26/RTCCO_1/SUBOUT_1/MAD00_0
P27/ADTG_1/CROUT_1/MRDY_0
P50/WKUP1/MCSX0_0
P51/TIOB0_1/PNL_TSIG4/PNL_PWE
P52/TIOB1_1/PNL_DCLK
P53/TIOB2_1/PNL_TSIG2/PNL_DEN
P54/TIOB3_1/PNL_TSIG3/PNL_LE
P55/TIOB4_1/PNL_TSIG0/PNL_LH_SYNC
P56/TIOB5_1/PNL_TSIG1/PNL_FV_SYNC
PB8/GE_SDDQ11
PB9/GE_SDDQ10
PBA/GE_SDDQ9
PBB/GE_SDDQ8
PBC/GE_SDDQ7
PBD/GE_SDDQ6
INITX
P46/X0A
P47/X1A
VBATVCC
P48/VREGCTL
P49/VWAKEUP
PE0/MD1
MD0
PE2/X0
PE3/X1
VSS
51
P21/I2SMCLK1_0/MAD05_0
P25/I2SCK1_0/MAD01_0
50
PB3/GE_SDDQ16
54
49
PB2/GE_SDDQ17
P24/SCK0_0/TIOB6_1/I2SDI1_0/MAD02_0
48
PB1/GE_SDDQ18
53
47
P23/SOT0_0/TIOA6_1/I2SWS1_0/MAD03_0
46
PB0/GE_SDDQ19
P22/SIN0_0/INT08_0/I2SDO1_0/CROUT_0/MAD04_0 52
45
VSS
P20/NMIX/WKUP0
176pin Package
Note:
−
18
CONFIDENTIAL
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the
relocated port number. For these pins, there are multiple pins that provide the same function for the
same channel.
Use the extended port function register (EPFR) to select the pin.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
FDJ161
(TOP VIEW)
1
2
3
4
5
6
7
8
9
10
11
12
13
VCC
VSS
A
VSS UDP0 UDM0 VCC
VSS
P66
VSS
P0C
P09
VSS
TCK
B
VSS
P60
P61
P62
P64
P67
P0E
P0B
P08
TDO
TMS TRSTX VSS
C
VCC
P3C
P3B
P63
P65
P68
P0D
P0A
P07
P05
TDI
P96
P97
D
P3F
P3E
P3D
P7C
VSS
VSS
VSS
VSS
P06
P92
P93
P94
P95
E
P35
P34
P33
P7B
VSS
VSS
VSS
VSS
VSS
P1E
P1F
P90
P91
F
P39
P38
P37
P36
VSS
VSS
VSS
P1A
P1B
P1C
P1D
G
VCC
P7A
P3A
VSS
VSS
VSS
P16
P17
P18
P19
H
VSS
P72
P73
VSS
VSS
VSS
P12
P13
P14
P15
J
P70
P74
P75
VSS
VSS
VSS
VSS
VSS
VSS
VSS
P11
AVRH AVRL
K
P71
P76
P77
VSS
P24
VSS
P50
P52
P54
VSS
P10
AVSS AVCC
L
VCC
P78
P79
P22
P25
VSS
P51
P53
P55
P56
P48
P49
VCC
M
VSS
P20
P21
P23
P26
VSS
VSS
INITX VBAT VSS
MD0
MD1
VSS
N
VSS
C
VSS
VCC
P27
VSS
X0A
VSS
X0
X1
VSS
X1A
VSS
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the
relocated port number. For these pins, there are multiple pins that provide the same function for the
same channel.
Use the extended port function register (EPFR) to select the pin.
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
19
D a t a S h e e t
6.
Pin Descriptions
List of Pin Functions
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port
number. For these pins, there are multiple pins that provide the same function for the same channel.
Use the extended port function register (EPFR) to select the pin.
Pin No.
LQFP176
1
LQFP120
LQFP120
Ex_LQFP120
(S6E2D55GJA)
1
1
-
PFBGA161
C1
2
-
-
3
-
-
-
4
-
-
-
5
-
-
-
Pin name
VCC
PA0
GE_SDCKE
PA1
GE_SDCLK
PA2
GE_SDDQ31
PA3
GE_SDDQ30
I/O
Pin
circuit
state
type
type
-
-
K
I
K
I
L
I
L
I
G
K
G
K
G
K
P3B
TIOA0_1
INT04_1
6
2
2
C3
AIN0_1
I2SMCLK0_0
RTO00_0
(PPG00_0)
MAD10_0
P3C
SCS70_0
TIOA1_1
INT05_1
7
3
3
C2
BIN0_1
I2SDO0_0
RTO01_0
(PPG00_0)
MAD09_0
P3D
SIN7_0
TIOA2_1
INT06_1
8
4
4
D3
ZIN0_1
I2SWS0_0
RTO02_0
(PPG02_0)
MAD08_0
20
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Pin No.
LQFP176
LQFP120
LQFP120
Ex_LQFP120
(S6E2D55GJA)
PFBGA161
Pin name
I/O
Pin
circuit
state
type
type
G
K
G
I
G
I
K
I
K
I
L
I
L
I
L
I
L
I
L
I
L
I
D
K
P3E
SOT7_0
(SDA7_0)
TIOA3_1
9
5
5
D2
INT07_1
I2SDI0_0
RTO03_0
(PPG02_0)
MAD07_0
P3F
SCK7_0
(SCL7_0)
10
6
6
D1
TIOA4_1
I2SCK0_0
RTO04_0
(PPG04_0)
MAD06_0
P7C
TIOA5_1
11
7
7
D4
RTO05_0
(PPG04_0)
MWEX_0
P7B
12
8
-
E4
ADTG_2
GE_HBCSX_1
MOEX_0
P7B
-
-
8
-
ADTG_2
MOEX_0
13
-
-
-
14
-
-
-
15
-
-
-
16
-
-
-
17
-
-
-
18
-
-
-
19
9
PA8
GE_SDDQ29
PA9
GE_SDDQ28
PAA
GE_SDDQ27
PAB
GE_SDDQ26
PAC
GE_SDDQ25
PAD
GE_SDDQ24
P33
9
E3
SIN6_0
INT00_1
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
21
D a t a S h e e t
Pin No.
LQFP176
LQFP120
LQFP120
Ex_LQFP120
(S6E2D55GJA)
PFBGA161
Pin name
I/O
Pin
circuit
state
type
type
D
I
D
I
D
K
P34
20
10
10
E2
SOT6_0
(SDA6_0)
FRCK0_0
P35
21
11
11
E1
SCK6_0
(SCL6_0)
IC03_0
P36
SCS60_0
22
12
12
F4
23
13
13
G1
VCC
-
-
24
14
14
H1
VSS
-
-
D
K
D
K
D
K
D
K
E
I
E
I
INT01_1
IC02_0
P37
RX2_1
25
15
-
F3
GE_HBRESETX
INT02_1
IC01_0
P37
-
-
15
-
RX2_1
INT02_1
IC01_0
P38
TX2_1
26
16
-
F2
GE_HBINTX
INT03_1
IC00_0
P38
-
-
16
-
TX2_1
INT03_1
IC00_0
P39
27
17
-
F1
ADTG_0
GE_HBRSTOX
DTTI0X_0
P39
-
-
17
-
ADTG_0
DTTI0X_0
22
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Pin No.
LQFP176
LQFP120
LQFP120
Ex_LQFP120
(S6E2D55GJA)
28
18
-
G3
-
-
18
-
PFBGA161
Pin name
P3A
GE_HBWPX
P3A
PA4
29
-
-
-
30
-
-
-
31
-
-
-
32
-
-
-
33
19
-
G2
-
-
19
-
(N.C.)
34
20
-
J1
GE_SPCK
-
-
20
-
(N.C.)
35
21
-
K1
GE_SPDQ0
-
-
21
-
GE_SDDQ23
PA5
GE_SDDQ22
PA6
GE_SDDQ21
PA7
GE_SDDQ20
P7A
GE_HBRWDS
I/O
Pin
circuit
state
type
type
E
I
E
I
L
I
L
I
L
I
L
I
K
I
-
-
K
I
-
-
K
I
-
-
K
K
-
-
K
K
-
-
K
K
-
-
P70
GE_HBCK
P71
GE_HBCSX_0
(N.C.)
P72
36
22
-
H2
GE_SPDQ3
GE_HBDQ0
INT00_0
-
-
22
-
VCC
P73
37
23
-
H3
-
-
23
-
GE_SPCSX_0
GE_HBDQ1
INT01_0
(DNU0)
P74
38
24
-
J2
GE_SPDQ1
GE_HBDQ2
INT02_0
-
-
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
24
-
(DNU1)
23
D a t a S h e e t
Pin No.
LQFP176
LQFP120
LQFP120
Ex_LQFP120
(S6E2D55GJA)
PFBGA161
Pin name
I/O
Pin
circuit
state
type
type
K
K
-
-
K
K
-
-
K
K
K
K
K
K
K
K
K
K
K
K
P75
39
25
-
J3
GE_SPDQ2
GE_HBDQ3
INT03_0
-
-
25
-
(N.C.)
P76
40
26
-
K2
GE_HBDQ4
INT04_0
-
-
26
-
(N.C.)
P77
41
27
-
K3
GE_HBDQ5
INT05_0
-
-
27
-
42
28
-
L2
P77
INT05_0
P78
GE_HBDQ6
INT06_0
-
-
28
-
P78
INT06_0
P79
43
29
-
L3
GE_HBDQ7
INT07_0
-
P79
-
-
29
44
30
30
L1
VCC
-
-
45
31
31
M1
VSS
-
-
46
32
32
M2
NMIX
I
F
L
I
L
I
L
I
L
I
E
I
E
K
INT07_0
P20
WKUP0
47
-
-
-
48
-
-
-
49
-
-
-
50
-
-
-
PB0
GE_SDDQ19
PB1
GE_SDDQ18
PB2
GE_SDDQ17
PB3
GE_SDDQ16
P21
51
33
33
M3
I2SMCLK1_0
MAD05_0
P22
CROUT_0
52
34
34
L4
SIN0_0
INT08_0
I2SDO1_0
MAD04_0
24
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Pin No.
LQFP176
LQFP120
LQFP120
Ex_LQFP120
(S6E2D55GJA)
PFBGA161
Pin name
I/O
Pin
circuit
state
type
type
E
I
E
I
E
I
L
I
L
I
L
I
L
I
P23
SOT0_0
(SDA0_0)
53
35
35
M4
TIOA6_1
I2SWS1_0
MAD03_0
P24
SCK0_0
(SCL0_0)
54
36
36
K5
TIOB6_1
I2SDI1_0
MAD02_0
P25
55
37
37
L5
I2SCK1_0
MAD01_0
-
-
PB4
56
-
57
-
-
-
58
-
-
-
59
-
-
-
60
38
38
N2
C
-
-
61
39
39
N3
VSS
-
-
62
40
40
N4
VCC
-
-
E
I
E
I
D
P
E
I
D
I
GE_SDDQ15
PB5
GE_SDDQ14
PB6
GE_SDDQ13
PB7
GE_SDDQ12
P26
63
41
41
M5
RTCCO_1
SUBOUT_1
MAD00_0
P27
64
42
42
N5
ADTG_1
CROUT_1
MRDY_0
P50
65
43
43
K7
WKUP1
MCSX0_0
P51
66
44
44
L7
TIOB0_1
PNL_PWE
PNL_TSIG4
P52
67
45
45
K8
TIOB1_1
PNL_DCLK
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
25
D a t a S h e e t
Pin No.
LQFP176
LQFP120
LQFP120
Ex_LQFP120
(S6E2D55GJA)
PFBGA161
Pin name
I/O
Pin
circuit
state
type
type
E
I
E
I
E
I
E
I
L
I
L
I
L
I
L
I
L
I
L
I
B
C
P
S
Q
T
-
-
O
U
O
U
C
E
J
D
A
A
A
B
-
-
P53
68
46
46
L8
TIOB2_1
PNL_DEN
PNL_TSIG2
P54
69
47
47
K9
TIOB3_1
PNL_LE
PNL_TSIG3
P55
70
48
48
L9
TIOB4_1
PNL_LH_SYNC
PNL_TSIG0
P56
71
49
49
L10
TIOB5_1
PNL_FV_SYNC
PNL_TSIG1
26
CONFIDENTIAL
72
-
-
-
73
-
-
-
74
-
-
-
75
-
-
-
76
-
-
-
77
-
-
-
78
50
PB8
GE_SDDQ11
PB9
GE_SDDQ10
PBA
GE_SDDQ9
PBB
GE_SDDQ8
PBC
GE_SDDQ7
PBD
GE_SDDQ6
50
M8
79
51
51
N7
80
52
52
N9
81
53
53
M9
82
54
54
L11
83
55
55
L12
84
56
56
M12
85
57
57
M11
86
58
58
N11
87
59
59
N12
88
60
60
M13
INITX
P46
X0A
P47
X1A
VBAT
P48
VREGCTL
P49
VWAKEUP
PE0
MD1
MD0
PE2
X0
PE3
X1
VSS
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Pin No.
LQFP176
Pin
circuit
state
type
type
LQFP120
LQFP120
Ex_LQFP120
(S6E2D55GJA)
89
61
61
L13
VCC
-
-
90
62
62
K13
AVCC
-
-
91
63
63
K12
AVSS
-
-
92
64
64
J13
AVRL
-
-
93
65
65
J12
AVRH
-
-
L
I
L
I
L
I
L
I
L
I
L
I
F
M
F
L
F
L
F
M
-
PFBGA161
94
-
-
95
-
-
-
96
-
-
-
97
-
-
-
98
-
-
-
99
-
-
-
Pin name
I/O
PC0
GE_SDDQ5
PC1
GE_SDDQ4
PC2
GE_SDDQ3
PC3
GE_SDDQ2
PC4
GE_SDDQ1
PC5
GE_SDDQ0
P10
AN00
SIN1_0
100
66
66
K11
TIOA0_0
INT09_0
AIN0_0
MADATA00_0
P11
AN01
SOT1_0
101
67
67
J11
(SDA1_0)
TIOB0_0
BIN0_0
MADATA01_0
P12
AN02
SCK1_0
102
68
68
H10
(SCL1_0)
TIOA1_0
ZIN0_0
MADATA02_0
P13
AN03
SIN2_0
103
69
69
H11
TIOB1_0
INT10_0
FRCK0_1
MADATA03_0
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
27
D a t a S h e e t
Pin No.
LQFP176
LQFP120
LQFP120
Ex_LQFP120
(S6E2D55GJA)
PFBGA161
Pin name
I/O
Pin
circuit
state
type
type
F
L
F
M
F
M
F
L
F
L
F
M
P14
AN04
SOT2_0
104
70
70
H12
(SDA2_0)
TIOA2_0
DTTI0X_1
MADATA04_0
P15
AN05
SCK2_0
(SCL2_0)
105
71
71
H13
TIOB2_0
INT11_0
IC00_1
MADATA05_0
P16
AN06
SIN3_0
106
72
72
G10
TIOA3_0
INT12_0
IC01_1
MADATA06_0
P17
AN07
SOT3_0
107
73
73
G11
(SDA3_0)
TIOB3_0
IC02_1
MADATA07_0
P18
AN08
SCK3_0
108
74
74
G12
(SCL3_0)
TIOA4_0
IC03_1
MADATA08_0
P19
AN09
SIN5_0
TIOB4_0
109
75
75
G13
INT13_0
AIN0_2
RTO00_1
(PPG00_1)
MADATA09_0
28
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Pin No.
LQFP176
LQFP120
LQFP120
Ex_LQFP120
(S6E2D55GJA)
PFBGA161
Pin name
I/O
Pin
circuit
state
type
type
F
L
F
L
K
I
K
I
K
I
K
I
F
M
F
M
P1A
AN10
SOT5_0
(SDA5_0)
110
76
76
F10
TIOA5_0
BIN0_2
RTO01_1
(PPG00_1)
MADATA10_0
P1B
AN11
SCK5_0
(SCL5_0)
111
77
77
F11
TIOB5_0
ZIN0_2
RTO02_1
(PPG02_1)
MADATA11_0
112
-
-
-
113
-
-
-
114
-
-
-
115
-
PC6
GE_SDBA1
PC7
GE_SDBA0
PC8
GE_SDA11
-
-
PC9
GE_SDA10
P1C
AN12
SCS60_1
116
78
78
F12
TIOA6_0
INT14_0
RTO03_1
(PPG02_1)
MADATA12_0
P1D
AN13
SIN6_1
117
79
79
F13
TIOB6_0
INT15_0
RTO04_1
(PPG04_1)
MADATA13_0
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
29
D a t a S h e e t
Pin No.
LQFP176
LQFP120
LQFP120
Ex_LQFP120
(S6E2D55GJA)
PFBGA161
Pin name
I/O
Pin
circuit
state
type
type
F
L
F
L
F
O
F
N
F
N
P1E
AN14
SOT6_1
118
80
80
E10
(SDA6_1)
TIOA7_0
RTO05_1
(PPG04_1)
MADATA14_0
P1F
AN15
119
81
81
E11
SCK6_1
(SCL6_1)
TIOB7_0
MADATA15_0
P90
AN16
SIN0_1
INT08_1
120
82
82
E12
PNL_PD23
PNL_TSIG11
MCLKOUT_0
MNALE_0
TRACECLK
P91
AN17
SOT0_1
(SDA0_1)
121
83
83
E13
PNL_PD22
PNL_TSIG10
MAD23_0
MNCLE_0
TRACED0
P92
AN18
SCK0_1
(SCL0_1)
122
84
84
D10
PNL_PD21
PNL_TSIG9
MAD22_0
MNWEX_0
TRACED1
30
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Pin No.
LQFP176
LQFP120
LQFP120
Ex_LQFP120
(S6E2D55GJA)
PFBGA161
Pin name
I/O
Pin
circuit
state
type
type
F
O
F
N
F
L
K
I
K
I
K
I
K
I
F
L
F
L
P93
AN19
SIN1_1
INT09_1
123
85
85
D11
PNL_PD20
PNL_TSIG8
MAD21_0
MNREX_0
TRACED2
P94
AN20
SOT1_1
(SDA1_1)
124
86
86
D12
PNL_PD19
PNL_TSIG7
MAD20_0
TRACED3
P95
AN21
SCK1_1
125
87
87
D13
(SCL1_1)
PNL_PD18
PNL_TSIG6
MAD19_0
126
-
-
-
127
-
-
-
128
-
-
-
129
-
-
-
PCA
GE_SDA9
PCB
GE_SDA8
PCC
GE_SDA7
PCD
GE_SDA6
P96
AN22
130
88
88
C12
PNL_PD17
PNL_TSIG5
MRASX_0
P97
131
89
89
C13
AN23
PNL_PD16
MCASX_0
132
90
90
B13
VSS
-
-
133
91
91
A12
VCC
-
-
134
-
-
-
K
I
135
-
-
-
K
I
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
PD0
GE_SDA5
PD1
GE_SDA4
31
D a t a S h e e t
Pin No.
LQFP176
LQFP120
LQFP120
Ex_LQFP120
(S6E2D55GJA)
136
-
-
-
137
-
-
-
138
-
-
-
139
92
92
B12
140
93
93
A11
PFBGA161
Pin name
PD2
GE_SDA3
PD3
GE_SDA2
PD4
GE_SDA1
P00
TRSTX
I/O
Pin
circuit
state
type
type
K
I
K
I
K
I
E
G
E
G
E
H
E
G
E
G
K
I
K
I
K
I
K
I
K
I
E
K
E
I
E
K
P01
TCK
SWCLK
P02
141
94
94
C11
TDI
MAD24_0
P03
142
95
95
B11
TMS
SWDIO
P04
143
96
96
B10
TDO
SWO
144
-
-
-
145
-
-
-
146
-
-
-
147
-
-
-
148
-
PD5
GE_SDA0
PD6
GE_SDDQM3
PD7
GE_SDDQM2
PD8
GE_SDDQM1
-
-
PD9
GE_SDDQM0
P05
RX2_2
149
97
97
C10
INT10_1
PNL_PD15
MAD18_0
P06
150
98
98
D9
TX2_2
PNL_PD14
MAD17_0
P07
SIN2_1
151
99
99
C9
INT11_1
PNL_PD13
MAD16_0
32
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Pin No.
LQFP176
LQFP120
LQFP120
Ex_LQFP120
(S6E2D55GJA)
PFBGA161
Pin name
I/O
Pin
circuit
state
type
type
E
I
E
I
E
K
E
I
E
I
D
I
D
P
-
-
D
I
D
I
P08
SOT2_1
152
100
100
B9
(SDA2_1)
PNL_PD12
MAD15_0
P09
SCK2_1
153
101
101
A9
(SCL2_1)
PNL_PD11
MAD14_0
P0A
SIN5_1
154
102
102
C8
TIOA7_1
INT12_1
PNL_PD10
MAD13_0
P0B
SOT5_1
(SDA5_1)
155
103
103
B8
TIOB7_1
PNL_PD9
MAD12_0
P0C
SCK5_1
156
104
104
A8
(SCL5_1)
PNL_PD8
MAD11_0
P0D
157
105
105
C7
PNL_PD7
MSDWEX_0
P0E
158
106
106
B7
WKUP2
PNL_PD6
MCSX8_0
159
107
107
A7
VSS
P68
SCK3_1
160
108
108
C6
(SCL3_1)
PNL_PD5
MSDCLK_0
P67
SOT3_1
161
109
109
B6
(SDA3_1)
PNL_PD4
MSDCKE_0
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
33
D a t a S h e e t
Pin No.
LQFP176
LQFP120
LQFP120
Ex_LQFP120
(S6E2D55GJA)
PFBGA161
Pin name
I/O
Pin
circuit
state
type
type
E
K
E
I
E
I
E
I
K
I
K
I
K
I
K
I
N
K
N
I
I
Q
-
-
H
R
H
R
P66
162
110
110
A6
SIN3_1
INT13_1
PNL_PD3
163
111
111
C5
164
112
112
B5
P65
PNL_PD2
P64
CTS4_0
PNL_PD1
P63
165
113
113
C4
ADTG_3
RTS4_0
PNL_PD0
166
-
-
-
167
-
-
-
168
-
-
-
169
-
PDA
GE_SDWEX
PDB
GE_SDRASX
PDC
GE_SDCASX
-
-
PDD
GE_SDCSX
P62
RX2_0
170
114
114
B4
SCK4_0
(SCL4_0)
INT14_1
MDQM1_0
P61
UHCONX0
RTCCO_0
171
115
115
B3
SUBOUT_0
TX2_0
SOT4_0
(SDA4_0)
MDQM0_0
P60
WKUP3
172
116
116
B2
SIN4_0
INT15_1
MALE_0
34
CONFIDENTIAL
173
117
117
A4
174
118
118
A3
175
119
119
A2
VCC
P80
UDM0
P81
UDP0
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Pin No.
LQFP176
176
LQFP120
LQFP120
Ex_LQFP120
(S6E2D55GJA)
120
120
PFBGA161
B1
I/O
Pin
circuit
state
type
type
VSS
-
-
VSS
-
-
Pin name
A1, A5, A10,
A13, D5, D6,
D7, D8, E5,
E6, E7, E8,
E9, F5, F6,
F9, G4, G5,
G9, H4, H5,
-
-
-
H9, J4, J5,
J6, J7, J8,
J9, J10, K4,
K6, K10, L6,
M6, M7,
M10,
N1, N6, N8,
N10, N13
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
35
D a t a S h e e t
Signal Description
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port
number. For these pins, there are multiple pins that provide the same function for the same channel.
Use the extended port function register (EPFR) to select the pin.
PFBGA161
17
17
F1
64
42
42
N5
A/D converter external trigger input pin
12
8
8
E4
ADTG_3
165
113
113
C4
AN00
100
66
66
K11
AN01
101
67
67
J11
AN02
102
68
68
H10
AN03
103
69
69
H11
AN04
104
70
70
H12
AN05
105
71
71
H13
AN06
106
72
72
G10
AN07
107
73
73
G11
AN08
108
74
74
G12
AN09
109
75
75
G13
AN10
110
76
76
F10
AN11
A/D converter analog input pin.
111
77
77
F11
AN12
ANxx describes ADC ch.xx.
116
78
78
F12
AN13
117
79
79
F13
AN14
118
80
80
E10
AN15
119
81
81
E11
AN16
120
82
82
E12
AN17
121
83
83
E13
AN18
122
84
84
D10
AN19
123
85
85
D11
AN20
124
86
86
D12
AN21
125
87
87
D13
AN22
130
88
88
C12
AN23
131
89
89
C13
100
66
66
K11
6
2
2
C3
101
67
67
J11
66
44
44
L7
102
68
68
H10
7
3
3
C2
103
69
69
H11
67
45
45
K8
TIOA0_0
TIOA0_1
0
TIOB0_0
TIOB0_1
TIOA1_0
Base Timer
TIOA1_1
1
TIOB1_0
TIOB1_1
CONFIDENTIAL
LQFP120
27
ADTG_1
Base Timer
36
(S6E2D55GJA)
ADTG_0
ADTG_2
ADC
Function
LQFP120
Pin Name
Ex_LQFP120
Module
LQFP176
Pin No.
Base Timer ch.0 TIOA Pin
Base Timer ch.0 TIOB Pin
Base Timer ch.1 TIOA Pin
Base Timer ch.1 TIOB Pin
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
TIOA2_0
Base Timer
TIOA2_1
2
TIOB2_0
TIOB2_1
TIOA3_0
Base Timer
TIOA3_1
3
TIOB3_0
TIOB3_1
TIOA4_0
Base Timer
TIOA4_1
4
TIOB4_0
TIOB4_1
TIOA5_0
Base Timer
TIOA5_1
5
TIOB5_0
TIOB5_1
TIOA6_0
Base Timer
TIOA6_1
6
TIOB6_0
TIOB6_1
TIOA7_0
Base Timer
TIOA7_1
7
TIOB7_0
TIOB7_1
Base Timer ch.2 TIOA Pin
Base Timer ch.2 TIOB Pin
Base Timer ch.3 TIOA Pin
Base Timer ch.3 TIOB Pin
Base Timer ch.4 TIOA Pin
Base Timer ch.4 TIOB Pin
Base Timer ch.5 TIOA Pin
Base Timer ch.5 TIOB Pin
Base Timer ch.6 TIOA Pin
Base Timer ch.6 TIOB Pin
Base Timer ch.7 TIOA Pin
Base Timer ch.7 TIOB Pin
TX2_0
TX2_1
CAN-FD interface TX output pin
PFBGA161
LQFP120
(S6E2D55GJA)
Function
LQFP120
Pin Name
Ex_LQFP120
Module
LQFP176
Pin No.
104
70
70
H12
8
4
4
D3
105
71
71
H13
68
46
46
L8
106
72
72
G10
9
5
5
D2
107
73
73
G11
69
47
47
K9
108
74
74
G12
10
6
6
D1
109
75
75
G13
70
48
48
L9
110
76
76
F10
11
7
7
D4
111
77
77
F11
71
49
49
L10
116
78
78
F12
53
35
35
M4
117
79
79
F13
54
36
36
K5
118
80
80
E10
154
102
102
C8
119
81
81
E11
155
103
103
B8
171
115
115
B3
26
16
16
F2
CAN
TX2_2
150
98
98
D9
(CAN-FD)
RX2_0
170
114
114
B4
RX2_1
CAN-FD interface RX input pin
RX2_2
Debugger
15
15
F3
97
97
C10
SWCLK
Serial wire debug interface clock input pin
140
93
93
A11
SWDIO
Serial wire debug interface data input / output pin
142
95
95
B11
SWO
Serial wire viewer output pin
143
96
96
B10
TCK
J-TAG test clock input pin
140
93
93
A11
TDI
J-TAG test data input pin
141
94
94
C11
TDO
J-TAG debug data output pin
143
96
96
B10
TMS
J-TAG test mode state output pin
142
95
95
B11
Trace CLK output pin of ETM
120
82
82
E12
TRACED0
121
83
83
E13
TRACED1
122
84
84
D10
123
85
85
D11
124
86
86
D12
139
92
92
B12
TRACECLK
TRACED2
Trace data output pin of ETM
TRACED3
TRSTX
J-TAG test reset Input pin
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
25
149
37
D a t a S h e e t
Bus
PFBGA161
41
41
M5
55
37
37
L5
MAD02_0
54
36
36
K5
MAD03_0
53
35
35
M4
MAD04_0
52
34
34
L4
MAD05_0
51
33
33
M3
MAD06_0
10
6
6
D1
MAD07_0
9
5
5
D2
MAD08_0
8
4
4
D3
MAD09_0
7
3
3
C2
MAD10_0
6
2
2
C3
MAD11_0
156
104
104
A8
155
103
103
B8
MAD13_0
154
102
102
C8
MAD14_0
153
101
101
A9
MAD15_0
152
100
100
B9
MAD16_0
151
99
99
C9
MAD17_0
150
98
98
D9
MAD18_0
149
97
97
C10
MAD19_0
125
87
87
D13
MAD20_0
124
86
86
D12
MAD21_0
123
85
85
D11
MAD22_0
122
84
84
D10
MAD23_0
121
83
83
E13
MAD24_0
141
94
94
C11
MCSX0_0
65
43
43
K7
External bus interface address bus
External bus interface chip select output pin
158
106
106
B7
MADATA00_0
100
66
66
K11
MADATA01_0
101
67
67
J11
MADATA02_0
102
68
68
H10
MADATA03_0
103
69
69
H11
MADATA04_0
104
70
70
H12
MADATA05_0
105
71
71
H13
MADATA06_0
106
72
72
G10
107
73
73
G11
108
74
74
G12
MADATA09_0
109
75
75
G13
MADATA10_0
110
76
76
F10
External
MADATA07_0
Bus
MADATA08_0
CONFIDENTIAL
LQFP120
63
MAD01_0
MCSX8_0
38
(S6E2D55GJA)
MAD00_0
MAD12_0
External
Function
LQFP120
Pin Name
Ex_LQFP120
Module
LQFP176
Pin No.
External bus interface data bus
MADATA11_0
111
77
77
F11
MADATA12_0
116
78
78
F12
MADATA13_0
117
79
79
F13
MADATA14_0
118
80
80
E10
MADATA15_0
119
81
81
E11
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
MDQM0_0
MDQM1_0
External
Bus
MALE_0
External bus interface byte mask signal output pin
External bus interface Address Latch
enable output signal for multiplex
PFBGA161
LQFP120
(S6E2D55GJA)
115
115
B3
170
114
114
B4
172
116
116
B2
External bus interface external RDY input signal
64
42
42
N5
MCLKOUT_0
External bus interface external clock output pin
120
82
82
E12
120
82
82
E12
121
83
83
E13
123
85
85
D11
122
84
84
D10
12
8
8
E4
11
7
7
D4
MNCLE_0
MNREX_0
MNWEX_0
External
MOEX_0
MWEX_0
External bus interface ALE signal to
control NAND Flash output pin
External bus interface CLE signal to
control NAND Flash output pin
External bus interface read enable signal to control NAND
Flash output pin
External bus interface write enable signal to control NAND
Flash output pin
External bus interface read enable
signal for SRAM
External bus interface write enable
signal for SRAM
MSDCLK_0
SDRAM interface SDRAM clock output pin
160
108
108
C6
MSDCKE_0
SDRAM interface SDRAM clock enable pin
161
109
109
B6
MRASX_0
SDRAM interface SDRAM row active strobe pin
130
88
88
C12
MCASX_0
SDRAM interface SDRAM column active strobe pin
131
89
89
C13
SDRAM interface SDRAM write enable pin
157
105
105
C7
36
22
-
H2
19
9
9
E3
37
23
-
H3
22
12
12
F4
38
24
-
J2
25
15
15
F3
39
25
-
J3
26
16
16
F2
40
26
-
K2
MSDWEX_0
INT00_0
INT00_1
INT01_0
INT01_1
INT02_0
INT02_1
INT03_0
INT03_1
INT04_0
External
INT04_1
Interrupt
INT05_0
INT05_1
INT06_0
INT06_1
INT07_0
INT07_1
INT08_0
INT08_1
INT09_0
INT09_1
External interrupt request 00 input pin
External interrupt request 01 input pin
External interrupt request 02 input pin
External interrupt request 03 input pin
External interrupt request 04 input pin
External interrupt request 05 input pin
External interrupt request 06 input pin
External interrupt request 07 input pin
External interrupt request 08 input pin
External interrupt request 09 input pin
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
171
MRDY_0
MNALE_0
Bus
Function
LQFP120
Pin Name
Ex_LQFP120
Module
LQFP176
Pin No.
6
2
2
C3
41
27
27
K3
7
3
3
C2
42
28
28
L2
8
4
4
D3
43
29
29
L3
9
5
5
D2
52
34
34
L4
120
82
82
E12
100
66
66
K11
123
85
85
D11
39
D a t a S h e e t
INT10_0
INT10_1
INT11_0
INT11_1
INT12_0
INT12_1
External
Interrupt
INT13_0
INT13_1
INT14_0
INT14_1
INT15_0
INT15_1
NMIX
GPIO
GPIO
40
CONFIDENTIAL
External interrupt request 10 input pin
External interrupt request 11 input pin
External interrupt request 12 input pin
External interrupt request 13 input pin
External interrupt request 14 input pin
External interrupt request 15 input pin
PFBGA161
LQFP120
103
69
69
H11
149
97
97
C10
105
71
71
H13
151
99
99
C9
106
72
72
G10
154
102
102
C8
109
75
75
G13
162
110
110
A6
116
78
78
F12
170
114
114
B4
117
79
79
F13
172
116
116
B2
46
32
32
M2
P00
139
92
92
B12
P01
140
93
93
A11
P02
141
94
94
C11
P03
142
95
95
B11
P04
143
96
96
B10
P05
149
97
97
C10
P06
150
98
98
D9
P07
Non-Maskable Interrupt input pin
(S6E2D55GJA)
Function
LQFP120
Pin Name
Ex_LQFP120
Module
LQFP176
Pin No.
151
99
99
C9
P08
General-purpose I/O port 0
152
100
100
B9
P09
153
101
101
A9
P0A
154
102
102
C8
P0B
155
103
103
B8
P0C
156
104
104
A8
P0D
157
105
105
C7
P0E
158
106
106
B7
P10
100
66
66
K11
P11
101
67
67
J11
P12
102
68
68
H10
P13
103
69
69
H11
P14
104
70
70
H12
P15
105
71
71
H13
P16
106
72
72
G10
P17
107
73
73
G11
P18
General-purpose I/O port 1
108
74
74
G12
P19
109
75
75
G13
P1A
110
76
76
F10
P1B
111
77
77
F11
P1C
116
78
78
F12
P1D
117
79
79
F13
P1E
118
80
80
E10
P1F
119
81
81
E11
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
GPIO
GPIO
GPIO
GPIO
GPIO
PFBGA161
LQFP120
P20
46
32
32
M2
P21
51
33
33
M3
P22
52
34
34
L4
P23
53
35
35
M4
P24
General-purpose I/O port 2
54
36
36
K5
P25
55
37
37
L5
P26
63
41
41
M5
P27
64
42
42
N5
P33
19
9
9
E3
P34
20
10
10
E2
P35
21
11
11
E1
P36
22
12
12
F4
P37
25
15
15
F3
P38
26
16
16
F2
27
17
17
F1
P3A
P39
General-purpose I/O port 3
28
18
18
G3
P3B
6
2
2
C3
P3C
7
3
3
C2
P3D
8
4
4
D3
P3E
9
5
5
D2
P3F
10
6
6
D1
P46
79
51
51
N7
80
52
52
N9
82
54
54
L11
P49
83
55
55
L12
P50
65
43
43
K7
P51
66
44
44
L7
P52
67
45
45
K8
P47
P48
P53
General-purpose I/O port 4
68
46
46
L8
P54
69
47
47
K9
P55
70
48
48
L9
P56
71
49
49
L10
P60
172
116
116
B2
P61
171
115
115
B3
P62
170
114
114
B4
P63
165
113
113
C4
P64
General-purpose I/O port 5
164
112
112
B5
P65
General-purpose I/O port 6
163
111
111
C5
P66
162
110
110
A6
P67
161
109
109
B6
P68
160
108
108
C6
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
(S6E2D55GJA)
Function
LQFP120
Pin Name
Ex_LQFP120
Module
LQFP176
Pin No.
41
D a t a S h e e t
GPIO
GPIO
GPIO
GPIO
42
CONFIDENTIAL
PFBGA161
LQFP120
(S6E2D55GJA)
Function
LQFP120
Pin Name
Ex_LQFP120
Module
LQFP176
Pin No.
P70
34
20
-
J1
P71
35
21
-
K1
P72
36
22
-
H2
P73
37
23
-
H3
P74
38
24
-
J2
P75
39
25
-
J3
40
26
-
K2
P77
41
27
27
K3
P78
42
28
28
L2
P79
43
29
29
L3
P7A
33
19
-
G2
P7B
12
8
8
E4
P76
General-purpose I/O port 7
P7C
11
7
7
D4
P80
174
118
118
A3
P81
General-purpose I/O port 8
175
119
119
A2
P90
120
82
82
E12
P91
121
83
83
E13
P92
122
84
84
D10
123
85
85
D11
124
86
86
D12
P95
125
87
87
D13
P96
130
88
88
C12
P93
P94
General-purpose I/O port 9
P97
131
89
89
C13
PA0
2
-
-
-
PA1
3
-
-
-
PA2
4
-
-
-
PA3
5
-
-
-
PA4
29
-
-
-
PA5
30
-
-
-
PA6
31
-
-
-
General-purpose I/O port A
32
-
-
-
PA8
13
-
-
-
PA7
PA9
14
-
-
-
PAA
15
-
-
-
PAB
16
-
-
-
PAC
17
-
-
-
PAD
18
-
-
-
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
GPIO
GPIO
GPIO
PFBGA161
LQFP120
PB0
47
-
-
-
PB1
48
-
-
-
PB2
49
-
-
-
PB3
50
-
-
-
PB4
56
-
-
-
PB5
57
-
-
-
58
-
-
-
59
-
-
-
PB8
72
-
-
-
PB9
73
-
-
-
PBA
74
-
-
-
PBB
75
-
-
-
PBC
76
-
-
-
PBD
77
-
-
-
PC0
94
-
-
-
PC1
95
-
-
-
PC2
96
-
-
-
PC3
97
-
-
-
PC4
98
-
-
-
PC5
99
-
-
-
112
-
-
-
113
-
-
-
PC8
114
-
-
-
PC9
115
-
-
-
PCA
126
-
-
-
PCB
127
-
-
-
PCC
128
-
-
-
PCD
129
-
-
-
PD0
134
-
-
-
PD1
135
-
-
-
PD2
136
-
-
-
PD3
137
-
-
-
PD4
138
-
-
-
PD5
144
-
-
-
145
-
-
-
146
-
-
-
PD8
147
-
-
-
PD9
148
-
-
-
PDA
166
-
-
-
PDB
167
-
-
-
PDC
168
-
-
-
PDD
169
-
-
-
PB6
PB7
PC6
PC7
PD6
PD7
General-purpose I/O port B
General-purpose I/O port C
General-purpose I/O port D
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
(S6E2D55GJA)
Function
LQFP120
Pin Name
Ex_LQFP120
Module
LQFP176
Pin No.
43
D a t a S h e e t
PE0
GPIO
0
56
M12
58
58
N11
PE3
87
59
59
N12
SIN0_0
52
34
34
L4
120
82
82
E12
53
35
35
M4
121
83
83
E13
54
36
36
K5
122
84
84
D10
100
66
66
K11
123
85
85
D11
101
67
67
J11
124
86
86
D12
102
68
68
H10
125
87
87
D13
103
69
69
H11
151
99
99
C9
104
70
70
H12
152
100
100
B9
105
71
71
H13
153
101
101
A9
106
72
72
G10
162
110
110
A6
107
73
73
G11
161
109
109
B6
108
74
74
G12
160
108
108
C6
(SDA0_0)
SOT0_1
(SDA0_1)
(SCL0_1)
(operation mode 4)
(SDA1_0)
SOT1_1
(SDA1_1)
44
CONFIDENTIAL
This pin operates as SOT1 when it is used in a
UART/CSIO/LIN(operation modes 0 to 3) and as SDA1
when it is used in an I2C (operation mode 4).
Multi-function serial interface ch.1 clock I/O pin.
This pin operates as SCK1 when it is used in a CSIO
SCK1_1
(operation mode 2) and as SCL1 when it is used in an I2C
(SCL1_1)
(operation mode 4).
(SDA2_0)
SOT2_1
(SDA2_1)
Multi-function serial interface ch.2 input pin
Multi-function serial interface ch.2 output pin
This pin operates as SOT2 when it is used in a
UART/CSIO/LIN (operation mode 0 to 3) and as SDA2
when it is used in an I2C (operation mode 4).
SCK2_0
Multi-function serial interface ch.2 clock I/O Pin.
(SCL2_0)
This pin operates as SCK2 when it is used in a CSIO
SCK2_1
(operation mode 2) and as SCL2 when it is used in an I2C
(SCL2_1)
(operation mode 4).
SIN3_1
3
Multi-function serial interface ch.1 output pin
SCK1_0
SOT3_0
function serial
Multi-function serial interface ch.1 input pin
(SCL1_0)
SIN3_0
Multi-
when it is used in an I2C (operation mode 4).
(operation mode 2) and as SCL0 when it is used in an I2C
SIN2_1
2
UART/CSIO/LIN (operation modes 0 to 3) and as SDA0
SCK0_1
SOT2_0
function serial
This pin operates as SOT0 when it is used in a
This pin operates as SCK0 when it is used in a CSIO
SIN2_0
Multi-
Multi-function serial interface ch.0 output pin
Multi-function serial interface ch.0 clock I/O pin.
SIN1_1
1
Multi-function serial interface ch.0 input pin
SCK0_0
SOT1_0
function serial
General-purpose I/O port E
(SCL0_0)
SIN1_0
Multi-
PFBGA161
56
86
SIN0_1
function serial
LQFP120
84
PE2
SOT0_0
Multi-
(S6E2D55GJA)
Function
LQFP120
Pin Name
Ex_LQFP120
Module
LQFP176
Pin No.
(SDA3_0)
SOT3_1
(SDA3_1)
Multi-function serial interface ch.3 input pin
Multi-function serial interface ch.3 output pin.
This pin operates as SOT3 when it is used in a
UART/CSIO/LIN (operation modes 0 to 3) and as SDA3
when it is used in an I2C (operation mode 4).
SCK3_0
Multi-function serial interface ch.3 clock I/O pin.
(SCL3_0)
This pin operates as SCK3 when it is used in a CSIO
SCK3_1
(operation mode 2) and as SCL3 when it is used in an I2C
(SCL3_1)
(operation mode 4).
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
SIN4_0
Multi-function serial interface ch.4 input pin
Multi-function serial interface ch.4 output
SOT4_0
(SDA4_0)
PFBGA161
LQFP120
172
116
116
B2
171
115
115
B3
170
114
114
B4
pin.
This pin operates as SOT4 when it is used in a
UART/CSIO/LIN (operation modes 0 to 3) and as SDA4
when it is used in an I2C (operation mode 4).
Multifunction serial
4
(S6E2D55GJA)
Function
LQFP120
Pin Name
Ex_LQFP120
Module
LQFP176
Pin No.
Multi-function serial interface ch.4 clock I/O pin.
SCK4_0
This pin operates as SCK4 when it is used in a CSIO
(SCL4_0)
(operation mode 2) and as SCL4 when it is used in an I2C
(operation mode 4).
CTS4_0
Multi-function serial interface ch.4 CTS input pin
164
112
112
B5
RTS4_0
Multi-function serial interface ch.4 RTS output pin
165
113
113
C4
SIN5_0
SIN5_1
SOT5_0
Multifunction serial
5
(SDA5_0)
SOT5_1
(SDA5_1)
UART/CSIO/LIN (operation modes 0 to 3) and as SDA5
when it is used in an I2C (operation mode 4).
Multi-function serial interface ch.5 clock I/O pin.
This pin operates as SCK5 when it is used in a CSIO
SCK5_1
(operation mode 2) and as SCL5 when it is used in an I2C
(SCL5_1)
(operation mode 4).
SOT6_0
(SDA6_0)
6
This pin operates as SOT5 when it is used in a
SCK5_0
SIN6_1
function serial
Multi-function serial interface ch.5 output pin.
(SCL5_0)
SIN6_0
Multi-
Multi-function serial interface ch.5 input pin
SOT6_1
(SDA6_1)
Multi-function serial interface ch.6 input pin
Multi-function serial interface ch.6 output pin.
This pin operates as SOT6 when it is used in a
UART/CSIO/LIN (operation modes 0 to 3) and as SDA6
when it is used in an I2C (operation mode 4).
75
75
G13
154
102
102
C8
110
76
76
F10
155
103
103
B8
111
77
77
F11
156
104
104
A8
19
9
9
E3
117
79
79
F13
20
10
10
E2
118
80
80
E10
21
11
11
E1
119
81
81
E11
SCK6_0
Multi-function serial interface ch.6 clock I/O pin.
(SCL6_0)
This pin operates as SCK6 when it is used in a CSIO
SCK6_1
(operation mode 2) and as SCL6 when it is used in an I2C
(SCL6_1)
(operation mode 4).
SCS60_0
Multi-function serial interface ch.6 chip select 0
22
12
12
F4
SCS60_1
input/output pin
116
78
78
F12
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
109
45
D a t a S h e e t
SIN7_0
Multi-function serial interface ch.7 input pin
PFBGA161
LQFP120
(S6E2D55GJA)
Function
LQFP120
Pin Name
Ex_LQFP120
Module
LQFP176
Pin No.
8
4
4
D3
9
5
5
D2
10
6
6
D1
7
3
3
C2
Multi-function serial interface ch.7 output pin.
SOT7_0
(SDA7_0)
UART/CSIO/LIN (operation modes 0 to 3) and as SDA7
when it is used in an I2C (operation mode 4).
Multi-
Multi-function serial interface ch.7
function serial
7
This pin operates as SOT7 when it is used in a
SCK7_0
(SCL7_0)
clock I/O pin.
This pin operates as SCK7 when it is used in a CSIO
(operation mode 2) and as SCL7 when it is used in an I2C
(operation mode 4).
SCS70_0
Multi-function serial interface ch.7 chip select 0 input/output
pin
DTTI0X_0
Input signal controlling wave form generator outputs RTO00
27
17
17
F1
DTTI0X_1
to RTO05 of Multi-function timer 0.
104
70
70
H12
FRCK0_0
20
10
10
E2
103
69
69
H11
IC00_0
26
16
16
F2
IC00_1
105
71
71
H13
FRCK0_1
16-bit free-run timer ch.0 external clock input pin
IC01_0
IC01_1
IC02_0
16-bit input capture input pin of
Multi-function timer 0.
ICxx describes channel number.
IC02_1
15
F3
72
72
G10
22
12
12
F4
107
73
73
G11
21
11
11
E1
IC03_1
108
74
74
G12
6
2
2
C3
109
75
75
G13
7
3
3
C2
110
76
76
F10
8
4
4
D3
111
77
77
F11
9
5
5
D2
116
78
78
F12
RTO00_0
(PPG00_0)
Timer 0
RTO00_1
(PPG00_1)
RTO01_0
(PPG00_0)
RTO01_1
(PPG00_1)
RTO02_0
(PPG02_0)
RTO02_1
(PPG02_1)
RTO03_0
(PPG02_0)
RTO03_1
(PPG02_1)
CONFIDENTIAL
15
IC03_0
Multi-function
46
25
106
Wave form generator output pin of Multi-function timer 0.
This pin operates as PPG00 when it is used in PPG0 output
modes.
Wave form generator output pin of Multi-function timer 0.
This pin operates as PPG00 when it is used in PPG0 output
modes.
Wave form generator output pin of Multi-function timer 0.
This pin operates as PPG02 when it is used in PPG0 output
modes.
Wave form generator output pin of Multi-function timer 0.
This pin operates as PPG02 when it is used in PPG0 output
modes.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
RTO04_0
(PPG04_0)
RTO04_1
Multi-function
Timer 0
(PPG04_1)
RTO05_0
(PPG04_0)
RTO05_1
(PPG04_1)
PFBGA161
LQFP120
10
6
6
D1
modes.
117
79
79
F13
Wave form generator output pin of Multi-function timer 0.
11
7
7
D4
118
80
80
E10
100
66
66
K11
6
2
2
C3
Wave form generator output pin of Multi-function timer 0.
This pin operates as PPG04 when it is used in PPG0 output
This pin operates as PPG04 when it is used in PPG0 output
modes.
AIN0_0
AIN0_1
(S6E2D55GJA)
Function
LQFP120
Pin Name
Ex_LQFP120
Module
LQFP176
Pin No.
QPRC ch.0 AIN input pin
Quadrature
AIN0_2
109
75
75
G13
Position/
BIN0_0
101
67
67
J11
Revolution
BIN0_1
Counter
BIN0_2
0
ZIN0_0
ZIN0_1
QPRC ch.0 BIN input pin
QPRC ch.0 ZIN input pin
68
H10
4
4
D3
77
77
F11
115
B3
63
41
41
M5
171
115
115
B3
63
41
41
M5
0.5 seconds pulse output pin of Real-time clock
Sub clock output pin
UDM0
USB ch.0 function/host D – pin
174
118
118
A3
UDP0
USB ch.0 function/host D + pin
175
119
119
A2
UHCONX0
USB ch.0 external pull-up control pin
171
115
115
B3
WKUP0
Deep standby mode return signal input pin 0
46
32
32
M2
WKUP1
Deep standby mode return signal input pin 1
65
43
43
K7
WKUP2
Deep standby mode return signal input pin 2
158
106
106
B7
WKUP3
Deep standby mode return signal input pin 3
172
116
116
B2
VREGCTL
On-board regulator control pin
82
54
54
L11
VWAKEUP
The return signal input pin from a hibernation state
83
55
55
L12
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
68
8
115
SUBOUT_1
VBAT
102
111
SUBOUT_0
Mode
C2
F10
171
RTCCO_1
Consumption
3
76
ZIN0_2
clock
Low-Power
3
76
RTCCO_0
Real-time
USB0
7
110
47
D a t a S h e e t
I2SMCLK0_0
I2SDO0_0
2
IS0
GDC
Quad SPI
C3
3
C2
2
8
4
4
D3
I2S ch.0 serial received data input pin
9
5
5
D2
2
I S ch.0 bit clock pin
10
6
6
D1
I2S ch.1 external clock pin
51
33
33
M3
I2SDO1_0
I2S ch.1 serial transition data output pin
52
34
34
L4
I2SWS1_0
I2S ch.1 frame synchronization signal pin
53
35
35
M4
I2SDI1_0
I2S ch.1 serial received data input pin
54
36
36
K5
I2SCK1_0
I2S ch.1 bit clock pin
55
37
37
L5
GE_SPCK
SPI clock output pin
34
20
-
J1
35
21
-
K1
38
24
-
J2
39
25
-
J3
GE_SPDQ1
GE_SPDQ2
SPI data input / output pin
GE_SPDQ3
GE_HBCK
-
H2
23
-
H3
HBI clock output pin
20
-
J1
36
22
-
H2
GE_HBDQ1
37
23
-
H3
GE_HBDQ2
38
24
-
J2
39
25
-
J3
40
26
-
K2
GE_HBDQ5
41
27
-
K3
GE_HBDQ6
42
28
-
L2
GE_HBDQ7
43
29
-
L3
GE_HBCSX_0
35
21
-
K1
GE_HBCSX_1
GE_HBRWDS
GE_HBRESETX
GE_HBINTX
GE_HBRSTOX
GE_HBWPX
CONFIDENTIAL
22
37
34
GE_HBDQ4
48
36
SPI chip select output pin
GE_HBDQ0
GE_HBDQ3
HyperBus I/F
PFBGA161
2
3
I S ch.0 frame synchronization signal pin
GE_SPCSX_0
GDC
LQFP120
2
7
GE_SPDQ0
High-Speed
(S6E2D55GJA)
6
I2S ch.0 serial transition data output pin
I2SDI0_0
I2SCK0_0
IS1
I2S ch.0 external clock pin
I2SWS0_0
I2SMCLK1_0
2
Function
LQFP120
Pin Name
Ex_LQFP120
Module
LQFP176
Pin No.
HBI data input / output pin
HBI chip select output pin
12
8
-
E4
HBI RWDS input / output pin
33
19
-
G2
HBI hardware reset output pin
25
15
-
F3
HBI interrupt input pin
26
16
-
F2
HBI reset input pin
27
17
-
F1
HBI write protect output pin
28
18
-
G3
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
PFBGA161
LQFP120
(S6E2D55GJA)
Function
LQFP120
Pin Name
Ex_LQFP120
Module
LQFP176
Pin No.
PNL_DCLK
GDC clock output pin
67
45
45
K8
PNL_DEN
GDC data enable output pin (blanking signal)
68
46
46
L8
PNL_PWE
GDC power enable control output pin
66
44
44
L7
GDC line end output pin
69
47
47
K9
PNL_LH_SYNC
GDC horizontal synchronization output pin
70
48
48
L9
PNL_FV_SYNC
GDC vertical synchronization output pin
71
49
49
L10
PNL_PD0
165
113
113
C4
PNL_PD1
164
112
112
B5
PNL_PD2
163
111
111
C5
PNL_PD3
162
110
110
A6
PNL_PD4
161
109
109
B6
PNL_PD5
160
108
108
C6
PNL_PD6
158
106
106
B7
PNL_PD7
157
105
105
C7
PNL_PD8
156
104
104
A8
PNL_PD9
155
103
103
B8
PNL_PD10
154
102
102
C8
PNL_PD11
153
101
101
A9
PNL_LE
PNL_PD12
GDC panel data output pin
152
100
100
B9
PNL_PD13
151
99
99
C9
GDC
PNL_PD14
150
98
98
D9
Panel
PNL_PD15
149
97
97
C10
PNL_PD16
131
89
89
C13
PNL_PD17
130
88
88
C12
PNL_PD18
125
87
87
D13
PNL_PD19
124
86
86
D12
PNL_PD20
123
85
85
D11
PNL_PD21
122
84
84
D10
PNL_PD22
121
83
83
E13
PNL_PD23
120
82
82
E12
PNL_TSIG0
70
48
48
L9
PNL_TSIG1
71
49
49
L10
PNL_TSIG2
68
46
46
L8
PNL_TSIG3
69
47
47
K9
PNL_TSIG4
66
44
44
L7
PNL_TSIG5
130
88
88
C12
PNL_TSIG6
GDC timing generator for panel control
125
87
87
D13
PNL_TSIG7
124
86
86
D12
PNL_TSIG8
123
85
85
D11
PNL_TSIG9
122
84
84
D10
PNL_TSIG10
121
83
83
E13
PNL_TSIG11
120
82
82
E12
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
49
D a t a S h e e t
-
-
-
-
-
GE_SDA2
137
-
-
-
GE_SDA3
136
-
-
-
GE_SDA4
135
-
-
-
GE_SDA5
134
-
-
-
CONFIDENTIAL
SDRAM-IF
address output pin
129
-
-
-
GE_SDA7
128
-
-
-
GE_SDA8
127
-
-
-
GE_SDA9
126
-
-
-
GE_SDA10
115
-
-
-
GE_SDA11
114
-
-
-
113
-
-
-
112
-
-
-
SDRAM-IF bank address output pin
GE_SDCASX
SDRAM-IF column active output pin
168
-
-
-
GE_SDRASX
SDRAM-IF row active output pin
167
-
-
-
GE_SDWEX
SDRAM-IF write enable output pin
166
-
-
-
GE_SDCKE
SDRAM-IF clock enable output pin
2
-
-
-
GE_SDCLK
SDRAM-IF clock output pin
GE_SDCSX
SDRAM-IF chip select output pin
3
-
-
-
169
-
-
-
GE_SDDQ0
99
-
-
-
GE_SDDQ1
98
-
-
-
GE_SDDQ2
97
-
-
-
GE_SDDQ3
96
-
-
-
GE_SDDQ4
95
-
-
-
GE_SDDQ5
94
-
-
-
GE_SDDQ6
77
-
-
-
GE_SDDQ7
76
-
-
-
GE_SDDQ8
75
-
-
-
GE_SDDQ9
74
-
-
-
GE_SDDQ10
73
-
-
-
GE_SDDQ11
72
-
-
-
GE_SDDQ12
50
PFBGA161
-
138
GE_SDBA1
(176 pin only)
LQFP120
144
GE_SDA1
GE_SDBA0
SDRAM-IF
(S6E2D55GJA)
GE_SDA0
GE_SDA6
GDC
Function
LQFP120
Pin Name
Ex_LQFP120
Module
LQFP176
Pin No.
SDRAM-IF data input / output pin
59
-
-
-
GE_SDDQ13
58
-
-
-
GE_SDDQ14
57
-
-
-
GE_SDDQ15
56
-
-
-
GE_SDDQ16
50
-
-
-
GE_SDDQ17
49
-
-
-
GE_SDDQ18
48
-
-
-
GE_SDDQ19
47
-
-
-
GE_SDDQ20
32
-
-
-
GE_SDDQ21
31
-
-
-
GE_SDDQ22
30
-
-
-
GE_SDDQ23
29
-
-
-
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
SDRAM-IF
(176 pin only)
PFBGA161
LQFP120
18
-
-
-
GE_SDDQ25
17
-
-
-
GE_SDDQ26
16
-
-
-
GE_SDDQ27
15
-
-
-
SDRAM-IF data input / output pin
14
-
-
-
GE_SDDQ29
13
-
-
-
GE_SDDQ30
5
-
-
-
GE_SDDQ31
4
-
-
-
GE_SDDQM0
148
-
-
-
GE_SDDQM1
147
-
-
-
146
-
-
-
145
-
-
-
78
50
50
M8
84
56
56
M12
85
57
57
M11
GE_SDDQM2
SDRAM-IF input / output mask pin
GE_SDDQM3
Reset
(S6E2D55GJA)
GE_SDDQ24
GE_SDDQ28
GDC
Function
LQFP120
Pin Name
Ex_LQFP120
Module
LQFP176
Pin No.
INITX
External Reset Input pin.
A reset is valid when INITX = L.
Mode 1 pin.
MD1
During serial programming to Flash memory, MD1 = L must
be input.
Mode
Mode 0 pin.
MD0
During normal operation, MD0 = L must be input. During
serial programming to Flash memory, MD0 = H must be
input.
Power
GND
Clock
VCC
VSS
C1
G1
44
30
30
L1
62
40
40
N4
89
61
61
L13
133
91
91
A12
173
117
117
A4
24
14
14
H1
45
31
31
M1
61
39
39
N3
88
60
60
M13
132
90
90
B13
159
107
107
A7
176
120
120
B1
Main clock (oscillation) input pin
86
58
58
N11
Sub clock (oscillation) input pin
79
51
51
N7
X1
Main clock (oscillation) I/O pin
87
59
59
N12
X1A
Sub clock (oscillation) I/O pin
80
52
52
N9
52
34
34
L4
64
42
42
N5
Built-in High-speed CR-osc clock output port
AVCC
A/D converter analog power supply pin
90
62
62
K13
AVRL
A/D converter analog reference voltage input pin
92
64
64
J13
AVRH
A/D converter analog reference voltage input pin
93
65
65
J12
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
1
13
X0
CROUT_1
Power
GND Pin
1
13
X0A
CROUT_0
Analog
Power supply Pin
1
23
51
D a t a S h e e t
VBAT
Power
Analog
GND
C Pin
52
CONFIDENTIAL
PFBGA161
LQFP120
(S6E2D55GJA)
Function
LQFP120
Pin Name
Ex_LQFP120
Module
LQFP176
Pin No.
VBAT power supply pin.
VBAT
Backup power supply (battery etc.) and system power
81
53
53
M9
A/D converter GND pin
91
63
63
K12
Power supply stabilization capacity pin
60
38
38
N2
supply.
AVSS
C
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
7.
I/O Circuit Type
Type
Circuit
Remarks
Pull-up
resistor
P-ch
P-ch
Digital output
X1
N-ch
Digital output
R
It is possible to select the main
oscillation / GPIO function
Pull-up resistor control
Standby mode control
When the main oscillation
is selected.
・Oscillation feedback resistor
Clock input
: Approximately 1 MΩ
・With Standby mode control
Digital input
Feedback
A
resistor
Standby mode control
Digital input
Standby mode control
Pull-up
resistor
When the GPIO is selected.
・ CMOS level output.
・ CMOS level hysteresis input
・ With pull-up resistor control
・ With standby mode control
・ Pull-up resistor
: Approximately 80 kΩ
・ IOH = -2 mA, IOL = 2 mA
R
P-ch
P-ch
Digital output
N-ch
Digital output
X0
Pull-up resistor control
・CMOS level hysteresis input
・Pull-up resistor
B
Pull-up resistor
: Approximately 80 kΩ
Digital input
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
53
D a t a S h e e t
Type
Circuit
Remarks
Digital input
・Open drain output
C
Digital output
N-ch
P-ch
P-ch
Digital output
・CMOS level hysteresis input
・CMOS level output
・CMOS level hysteresis input
・With pull-up resistor control
・With standby mode control
D
N-ch
Digital output
・Pull-up resistor
: Approximately 80 kΩ
R
・IOH = -4 mA, IOL = 4 mA
・When this pin is used as an I2C pin,
Pull-up resistor control
the digital output P-ch transistor is always off.
Digital input
Standby mode control
P-ch
P-ch
Digital output
・CMOS level output
・CMOS level hysteresis input
・With pull-up resistor control
・With standby mode control
・Pull-up resistor
E
N-ch
Digital output
R
: Approximately 80 kΩ
・IOH = -2 mA, IOL = 2 mA
・When this pin is used as an I2C pin,
the digital output P-ch transistor is always off.
Pull-up resistor control
Digital input
Standby mode control
54
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Type
Circuit
P-ch
Remarks
P-ch
Digital output
・CMOS level output
・CMOS level hysteresis input
・With input control
N-ch
Digital output
・Analog input
・With pull-up resistor control
・With standby mode control
F
・Pull-up resistor
Pull-up resistor control
R
Digital input
Standby mode control
: Approximately 80 kΩ
・IOH = -2 mA, IOL = 2 mA
・When this pin is used as an I2C pin,
the digital output P-ch transistor is always off.
Analog input
Input control
P-ch
P-ch
Digital output
・CMOS level output
・CMOS level hysteresis input
・With pull-up resistor control
・With standby mode control
・Pull-up resistor
G
N-ch
Digital output
R
: Approximately 80 kΩ
・IOH = -8 mA, IOL = 8 mA
・When this pin is used as an I2C pin,
the digital output P-ch transistor is always off.
Pull-up resistor control
Digital input
Standby mode control
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
55
D a t a S h e e t
Type
Circuit
Remarks
GPIO Digital output
GPIO Digital input/output direction
GPIO Digital input
GPIO Digital input circuit control
It is possible to select the USB I/O / GPIO
function.
UDP output
UDP/Pxx
USB Full-speed/Low-speed control
UDP input
H
When the USB I/O is selected.
・Full-speed, Low-speed control
Differential
Differential input
USB/GPIO select
UDM/Pxx
UDM input
When the GPIO is selected.
・CMOS level output
・CMOS level hysteresis input
UDM output
・With standby mode control
USB Digital input/output direction
・IOH = -20.5 mA, IOL = 18.5 mA
GPIO Digital output
GPIO Digital input/output direction
GPIO Digital input
GPIO Digital input circuit control
P-ch
P-ch
Digital output
・CMOS level output
・CMOS level hysteresis input
・5 V tolerant
・With pull-up resistor control
・With standby mode control
I
N-ch
Digital output
R
・Pull-up resistor
: Approximately 80 kΩ
・IOH = -2 mA, IOL = 2 mA
・Available to control of PZR registers.
Pull-up resistor control
Digital input
Standby mode control
J
56
CONFIDENTIAL
Mode input
・CMOS level hysteresis input
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Type
Circuit
P-ch
Remarks
P-ch
Digital output
・CMOS level output
・CMOS level hysteresis input
・With pull-up resistor control
・With standby mode control
K
N-ch
Digital output
R
・Pull-up resistor
: Approximately 33 kΩ
・IOH = -11 mA, IOL = 11 mA
Pull-up resistor control
Digital input
Standby mode control
P-ch
P-ch
Digital output
・CMOS level output
・CMOS level hysteresis input
・TTL level hysteresis input
N-ch
L
Digital output
R
:SDRAM-IF Data Input only
・With pull-up resistor control
・With standby mode control
・Pull-up resistor
Pull-up resistor
control
: Approximately 33 kΩ
・IOH = -11 mA, IOL = 11 mA
Digital input
(TTL)
Digital input
(CMOS)
Standby mode
control
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
57
D a t a S h e e t
Type
Circuit
Remarks
P-ch
P-ch
Pull-up resistor
control
Digital output
・CMOS level output
・CMOS level hysteresis input
・5 V tolerant
・With pull-up resistor control
・With standby mode control
・Pull-up resistor
N
N-ch
N-ch
Digital output
: Approximately 80 kΩ
・IOH = -3 mA, IOL = 3 mA (GPIO)
・IOL = 20 mA (Fast Mode Plus)
・Available to control of PZR registers.
Fast mode
control
R
・When this pin is used as an I2C pin,
the digital output P-ch transistor is always off
Digital input
Standby mode
control
・CMOS level output
P-ch
P-ch
Pull-up resistor
control
Digital output
・CMOS level hysteresis input
・5 V tolerant
・With pull-up resistor control
・Pull-up resistor
: Approximately 80 kΩ
O
・IOH = -2 mA, IOL = 2 mA
N-ch
Digital output
・Available to control of PZR registers.
・Please refer to the "VBAT domain" setting of
the IO in the “Peripheral Manual main
part (MN709-00001)".
R
Digital input
X0A
R
Digital input
P
・CMOS level hysteresis input
・Please refer to the "VBAT domain" setting of
Sub OSC/GPIO
select
the IO in the “Peripheral Manual main
part (MN709-00001)".
OSC
58
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Type
Circuit
Remarks
X1A
R
Digital input
Sub OSC/ GPIO
select
OSC
Q
It is possible to select the sub
oscillation / GPIO function
When the sub oscillation is selected.
・Oscillation feedback resistor
: Approximately 12 MΩ
RX
When the GPIO is selected.
・CMOS level hysteresis input
Sub OSC enable
・Please refer to the "VBAT domain" setting of
the IO in the “Peripheral Manual main
Clock input
P-ch
P-ch
part (MN709-00001)".
Digital output
・CMOS level output
・CMOS level hysteresis input
N-ch
Digital output
・With input control
・Analog input
・With pull-up resistor control
R
・With standby mode control
R
Pull-up resistor control
Digital input
・Pull-up resistor
: Approximately 80 kΩ
・IOH = -4 mA, IOL = 4 mA
Standby mode control
Analog input
Input control
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
59
D a t a S h e e t
8.
Handling Precautions
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly
affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This
page describes precautions that must be observed to minimize the chance of failure and to obtain higher
reliability from your Spansion semiconductor devices.
8.1
Precautions for Product Design
This section describes precautions when designing electronic equipment using semiconductor devices.
Absolute Maximum Ratings
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature,
etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.
Recommended Operating Conditions
Recommended operating conditions are normal operating ranges for the semiconductor device. All the
device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these
ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data
sheet. Users considering application outside the listed conditions are advised to contact their sales
representative beforehand.
Processing and Protection of Pins
These precautions must be followed when handling the pins which connect semiconductor devices to power
supply and input/output functions.
1.
2.
3.
Preventing Over-Voltage and Over-Current Conditions
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause
deterioration within the device, and in extreme cases leads to permanent damage of the
device. Try to prevent such overvoltage or over-current conditions at the design stage.
Protection of Output Pins
Shorting of output pins to supply pins or other output pins, or connection to large capacitance
can cause large current flows. Such conditions if present for extended periods of time can
damage the device.
Therefore, avoid this type of connection.
Handling of Unused Input Pins
Unconnected input pins with very high impedance levels can adversely affect stability of
operation. Such pins should be connected through an appropriate resistance to a power
supply pin or ground pin.
Code: DS00-00004-3E
60
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Latch-up
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When
subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be
formed, causing large current levels in excess of several hundred mA to flow continuously at the power
supply pin. This condition is called latch-up.
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but
can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the
following:
1.
2.
Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should
include attention to abnormal noise, surge levels, etc.
Be sure that abnormal current flows do not occur during the power-on sequence.
Observance of Safety Regulations and Standards
Most countries in the world have established standards and regulations regarding safety, protection from
electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards
in the design of products.
Fail-Safe Design
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage
or loss from such failures by incorporating safety design measures into your facility and equipment such as
redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
Precautions Related to Usage of Devices
Spansion semiconductor devices are intended for use in standard applications (computers, office
automation and other office equipment, industrial, communications, and measurement equipment, personal
or household devices, etc.).
CAUTION: Customers considering the use of our products in special applications where failure or abnormal
operation may directly affect human lives or cause physical injury or property damage, or where extremely
high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor
repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with
sales representatives before such use. The company will not be responsible for damages arising from such
use without prior approval.
8.2
Precautions for Package Mounting
Package mounting may be either lead insertion type or surface mount type. In either case, for heat
resistance during soldering, you should only mount under Spansion's recommended conditions. For detailed
information about mount conditions, contact your sales representative.
Lead Insertion Type
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct
soldering on the board, or mounting by using a socket.
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board
and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering
process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage
temperature. Mounting processes should conform to Spansion recommended mounting conditions.
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can
lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment
of socket contacts and IC leads be verified before mounting.
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
61
D a t a S h e e t
Surface Mount Type
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads
are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results
in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.
You must use appropriate mounting techniques. Spansion recommends the solder reflow method, and has
established a ranking of mounting conditions for each product. Users are advised to mount packages in
accordance with Spansion ranking of recommended conditions.
Lead-Free Packaging
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic
soldering, junction strength may be reduced under some conditions of use.
Storage of Semiconductor Devices
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions
will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed
moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To
prevent, do the following:
1.
2.
3.
4.
Avoid exposure to rapid temperature changes, which cause moisture to condense inside the
product. Store products in locations where temperature changes are slight.
Use dry boxes for product storage. Products should be stored below 70% relative humidity, and
at temperatures between 5°C and 30°C.
When you open Dry Package that recommends humidity 40% to 70% relative humidity.
When necessary, Spansion packages semiconductor devices in highly moisture-resistant
aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their
aluminum laminate bags for storage.
Avoid storing packages where they are exposed to corrosive gases or high levels of dust.
Baking
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion
recommended conditions for baking.
Condition: 125°C/24 h
Static Electricity
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take
the following precautions:
1.
2.
3.
4.
5.
62
CONFIDENTIAL
Maintain relative humidity in the working environment between 40% and 70%. Use of an
apparatus for ion generation may be needed to remove electricity.
Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
Eliminate static body electricity by the use of rings or bracelets connected to ground through
high resistance (on the level of 1 MΩ).
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to
minimize shock loads is recommended.
Ground all fixtures and instruments, or protect with anti-static measures.
Avoid the use of styrofoam or other highly static-prone materials for storage of completed
board assemblies.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
8.3
Precautions for Use Environment
Reliability of semiconductor devices depends on ambient temperature and other conditions as described
above.
For reliable performance, do the following:
1.
Humidity
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If
high humidity levels are anticipated, consider anti-humidity processing.
2.
Discharge of Static Electricity
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal
operation. In such cases, use anti-static measures or processing to prevent discharges.
3.
Corrosive Gases, Dust, or Oil
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will
adversely affect the device. If you use devices in such conditions, consider ways to prevent such
exposure or to protect the devices.
4.
Radiation, Including Cosmic Radiation
Most devices are not designed for environments involving exposure to radiation or cosmic radiation.
Users should provide shielding as appropriate.
5.
Smoke, Flame
CAUTION: Plastic molded devices are flammable, and therefore should not be used near
combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic
gases.
Customers considering the use of Spansion products in other special environmental conditions should
consult with sales representatives.
Please check the latest handling precautions at the following URL.
http://www.spansion.com/fjdocuments/fj/datasheet/e-ds/DS00-00004.pdf
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
63
D a t a S h e e t
9.
Handling Devices
Power Supply Pins
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within
the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected
externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent
abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total
output current rating.
Moreover, connect the current supply source with each POWER pins and GND pins of this device at low
impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass
capacitor between VCC and VSS, between AVCC and AVSS and between AVRH and AVRL near this
device.
A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is
within the guaranteed operating range of the VCC power supply voltage. As a rule of voltage stabilization,
suppress voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial
frequency (50 Hz/60 Hz) does not exceed 10% of the standard VCC value, and the transient fluctuation rate
does not exceed 0.1 V/μs at a momentary fluctuation such as switching the power supply.
Crystal Oscillator Circuit
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit
board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to
ground are located as close to the device as possible.
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins
are surrounded by ground plane as this is expected to produce stable operation.
Evaluate oscillation of your using crystal oscillator by your mount board.
Sub Crystal Oscillator
This series sub oscillator circuit is low gain to keep the low current consumption.
The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize the
oscillation.
 Surface mount type
Size:
Load capacitance:
 Lead type
Load capacitance:
64
CONFIDENTIAL
More than 3.2 mm × 1.5 mm
Approximately 6 pF to 7 pF
Approximately 6 pF to 7 pF
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Using an External Clock
When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input
the clock to X0. X1(PE3) can be used as a general-purpose I/O port.
Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input,
and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port.
 Example of Using an External Clock
Device
X0(X0A)
Set as External clock
input
Can be used as
general-purpose
I/O ports.
X1(PE3), X1A (P47)
2
Handling when Using Multi-Function Serial Pin as I C Pin
2
If it is using the multi-function serial pin as I C pins, P-ch transistor of digital output is always disabled.
2
However, I C pins need to keep the electrical characteristic like other pins and not to connect to the external
2
I C bus system with power OFF.
C Pin
This series contains the regulator. Be sure to connect a smoothing capacitor (C S) for the regulator between
the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency
characteristics as a smoothing capacitor.
However, some laminated ceramic capacitors have the characteristics of capacitance variation due to
thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the
specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor.
A smoothing capacitor of about 4.7 μF would be recommended for this series.
C
Device
CS
VSS
GND
Mode Pins (MD0)
Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the
pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS
pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as
for switching the pin level and rewriting the Flash memory data. It is because of preventing the device
erroneously switching to test mode due to noise.
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
65
D a t a S h e e t
Notes on Power-on
Turn power on/off in the following order or at the same time.
Turning on : VBAT → VCC
VCC → AVCC → AVRH
Turning off : VCC → VBAT
AVRH → AVCC → VCC
Serial Communication
There is a possibility to receive wrong data due to the noise or other causes on the serial communication.
Therefore, design a printed circuit board so as to avoid noise.
Consider the case of receiving wrong data due to noise, perform error detection such as by applying a
checksum of data at the end. If an error is detected, retransmit the data.
Differences in Features among the Products with Different Memory Sizes and between
Flash Products and MASK Products
The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and
oscillation characteristics among the products with different memory sizes and between Flash products and
MASK products are different because chip layout and memory structures are different.
If you are switching to use a different product of the same series, please make sure to evaluate the electric
characteristics.
Pull-Up Function of 5V Tolerant I/O
Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5V tolerant I/O.
Pin Doubled as Debug Function
Please use as output only regarding the pin doubled as TDO/TMS/TDI/TCK/TRSTX, SWO/SWDIO/SWCLK.
Don't use as input.
S6E2D55GJA
The following must correspond to S6E2D55GJA.
1. Terminal DNU0 / 1 is short-circuited, and the pull-up of about 10kΩ is done.
Device
R
DNU0
DNU1
2. Please do not connect the open end NC terminal.
3. Please have the following port settings.
PFR7:
PDOR7:
DDR7:
bit6=0, bit10=0
bit6=0, bit10=0
bit6=1, bit10=1
See Chapter 12: I/O Port in FM4 Family Peripheral Manual Main Part (MN709-00001) for the details.
4. Please connect a bypass capacitor as close as possible to GND on the board and VCC in pin number 22.
66
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
10. Block Diagram
S6E2D55J0A / S6E2D55G0A / S6E2D55GJA
SWJ-DP
ETM*
TRACEDx,
TRACECLK
TPIU*
ROM
Table
Cortex-M4 Core
@160MHz(Max)
SRAM0
32Kbytes
SRAM2
4Kbytes
I
D
FPU
MPU
NVIC
Sys
Dual-Timer
AHB-APB
Watchdog Timer
(Software)
Clock Reset
Generator
INITX
MainFlash I/F
Multi-layer AHB (Max:160MHz)
TRSTX,TCK,
TDI,TMS
TDO
Trace Buffer
(16Kbytes)
MainFlash
384Kbytes
Security
USB2.0
PHY
UDP0,UDM0
(Host/Func)
UHCONX0
Watchdog
Timer
DMAC
8ch.
CSV
DSTC
1unit(128ch.)
CLK
Source Clock
Sub
OSC
CROUT
TIOBx
AIN
BIN
ZIN
Unit 0
Unit 1
Base Timer
16bit 16ch./
32bit 8ch
QPRC
1ch.
A/D Activation
Compare
IC0
FRCK0
16bit Input Capture
4ch.
16bit Free-run Timer
3ch.
16bit Output Compare
6ch.
DTTI0x
RTO0x
Waveform Generator
3ch.
16bit PPG
3ch.
Multi-function Timer 1unit
VBAT
VMAKEUP
VREGCTL
RTCCO,SUBOUT
VBAT Domain
Real-Time Clock
Port Cntl.
I2S
2units
GPIO
PIN-Function-Ctrl
MODE-Cntl.
VRAM
512Kbytes
SDRAM I/F
HyperBus I/F
HighSpeed
Quad SPI
PLL
USB Clock Cntl.
PLL
I2S Clock Cntl.
PLL
MADx
MADATAx
MCSXx,MDQMx,
MOEX,MWEX,
MALE,MRDY,
MNALE,MNCLE,
MNWEX,MNREX,
MCLKOUT,MSDWEX,
MSDCLK,MSDCKE,
MRASX,MCASX
■SDRAM I/F
GE_SDCLK,GE_SDCKE,GE_SDCSX,
GE_SDCASX,GE_SDRASX,GE_SDWEX,
GE_SDDQM[3:0],GE_SDBA[1:0],
GE_SDA[11:0],GE_SDDQ[31:0]
■HyperBus I/F
GE_HBCK, GE_HBDQ[7:0], GE_HBCSX_0/1,
GE_HBRWDS, GE_HBRESETX,
GE_HBINTX, GE_HBRSTOX, GE_HBWPX
■HighSpeed Quad SPI
GE_SPCK, GE_SPDQ[3:0], GE_SPCSX_0
VFLASH
2Mbytes
Power-On
Reset
LVD
Regulator
IRQ-Monitor
MD0,MD1
*S6E2D55GJA Only
LVD Cntl.
Peripheral Clock Gating
Low-speed CR
P0x,
P1x,
:
PFx
*S6E2D55GJA Unavailable
CAN Prescaler
GDC Clock Cntl.
I2SMCLKx,
I2SWSx,I2SCKx
I2SDIx
I2SDOx
■Panel I/F
PNL_DCLK, PNL_DEN, PNL_PWE,
PNL_LE, PNL_LH_SYNC, PNL_FV_SYNC,
PNL_PD[23:0], PNL_TSIG[11:0]
GDC unit
Graphic
Engine core
TX,RX
PRG-CRC
Accelerator
External Bus I/F
AHB-APB Bridge:APB2(Max:80MHz)
TIOAx
12bit A/D Converter 24ch.
AHB-APB Bridge:APB1(Max:160MHz)
AVCC,AVSS,
AVRH,AVRL
ANxx
ADTGx
AHB-AHB Bridge (Slave)
CR
4MHz
VBAT Domain
X0A
X1A
CAN
CR
100kHz
PLL
AHB-AHB Bridge (Master)
Main
OSC
AHB-AHB Bridge (Slave)
X0
X1
Deep Standby Cntl.
External Interrupt
Controller
16ch + NMI
C
WKUPx
INTx
NMIX
CRC Accelerator
Watch Counter
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
Multi-function Serial I/F
8ch.
(with FIFO ch.0 to ch.7)
HW flow control(ch.4,5)
SCKx
SINx
SOTx
CTSx
RTSx
SCSx
67
D a t a S h e e t
11. Memory Size
See Memory size in 3. Product Lineup to confirm the memory size.
12. Memory Map
Memory Map
GDC Area
0xFFFF_FFFF
Reserved
0xE010_0000
0xE000_0000
Cortex-M4 Private
Peripherals
0xDFFF_FFFF
0xD0A0_6000
0xD0A0_5000
0xD0A0_4000
0xD0A0_3000
0xD0A0_1000
0xD0A0_0000
0xD008_0000
0xD000_0000
Reserved
GDC_HBIF
GDC_HSQSPI
GDC_SDRAMIF
Reserved
GDC
Reserved
VRAM
Memory Area for
0xC000_0000 GDC_HSQSPI or GDC_HBIF
0xB000_0000
External SDRAM
GDC
0xB000_0000
0x8000_0000
External Device Area
Peripherals Area
Reserved
SDRAM
256Mbytes
0x7000_0000
SRAM
/NOR Flash Memory
/NAND Flash Memory
0x6000_0000
256Mbytes
Reserved
0x4400_0000
0x4200_0000
0x4000_0000
0x2400_0000
0x2200_0000
0x2004_1000
0x2004_0000
0x2000_0000
0x1FFF_8000
32Mbytes
Bit band alias
Peripherals
Reserved
32Mbytes
Bit band alias
Reserved
SRAM2
4Kbytes
Reserved
SRAM0
32Kbytes
Reserved
0x0040_4000
0x0040_2000
0x0040_0000
CR trimming
Security
Reserved
0x0006_0000
Flash
384Kbytes
0x0000_0000
68
CONFIDENTIAL
0x41FF_FFFF
0x4008_1000
0x4008_0000
0x4007_0000
0x4006_F000
0x4006_E000
0x4006_D000
Programable-CRC
CAN-FD
GPIO
Reserved
Reserved
0x4006_C000
0x4006_2000
0x4006_1000
0x4006_0000
0x4005_0000
0x4004_0000
0x4003_F000
0x4003_E000
0x4003_D100
0x4003_D000
0x4003_C800
0x4003_C100
0x4003_C000
0x4003_B000
0x4003_A000
0x4003_9000
0x4003_8000
0x4003_7000
0x4003_6000
0x4003_5000
0x4003_2000
0x4003_1000
0x4003_0000
0x4002_F000
0x4002_E000
0x4002_8000
0x4002_7000
0x4002_6000
0x4002_5000
0x4002_4000
0x4002_1000
0x4002_0000
0x4001_6000
0x4001_5000
0x4001_3000
0x4001_2000
0x4001_1000
0x4001_0000
0x4000_1000
0x4000_0000
I2S
Reserved
DSTC
DMAC
Reserved
USB ch.0
EXT-bus I/F
Reserved
GDC Prescaler
I2S Prescaler
Reserved
Peripheral Clock Gating
LowSpeed CR Prescaler
RTC/Port Ctrl
Watch Counter
CRC
MFS
CAN Prescaler
USB Clock Ctrl
LVD/DS mode
Reserved
Int-Req.Read
EXTI
Reserved
CR Trim
Reserved
A/DC
QPRC
Base Timer
PPG
Reserved
MFT Unit0
Reserved
Dual Timer
Reserved
SW WDT
HW WDT
Clock/Reset
Reserved
Flash I/F
Reserved
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Peripheral Address Map
Start address
0x4000_0000
0x4000_1000
0x4001_0000
0x4001_1000
0x4001_2000
0x4001_3000
0x4001_5000
0x4001_6000
0x4002_0000
0x4002_1000
0x4002_4000
0x4002_5000
0x4002_6000
0x4002_7000
0x4002_8000
0x4002_E000
0x4002_F000
0x4003_0000
0x4003_1000
0x4003_2000
0x4003_5000
0x4003_5800
0x4003_6000
0x4003_7000
0x4003_8000
0x4003_9000
0x4003_A000
0x4003_B000
0x4003_C000
0x4003_C100
0x4003_C800
0x4003_D000
0x4003_D100
0x4003_E000
0x4003_F000
0x4004_0000
0x4005_0000
0x4006_0000
0x4006_1000
0x4006_2000
0x4006_C000
0x4006_D000
0x4006_E000
0x4006_F000
0x4007_0000
0x4008_0000
0x4008_1000
0xB000_0000
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
End address
0x4000_0FFF
0x4000_FFFF
0x4001_0FFF
0x4001_1FFF
0x4001_2FFF
0x4001_4FFF
0x4001_5FFF
0x4001_FFFF
0x4002_0FFF
0x4002_3FFF
0x4002_4FFF
0x4002_5FFF
0x4002_6FFF
0x4002_7FFF
0x4002_DFFF
0x4002_EFFF
0x4002_FFFF
0x4003_0FFF
0x4003_1FFF
0x4003_4FFF
0x4003_57FF
0x4003_5FFF
0x4003_6FFF
0x4003_7FFF
0x4003_8FFF
0x4003_9FFF
0x4003_AFFF
0x4003_BFFF
0x4003_C0FF
0x4003_C7FF
0x4003_CFFF
0x4003_D0FF
0x4003_DFFF
0x4003_EFFF
0x4003_FFFF
0x4004_FFFF
0x4005_FFFF
0x4006_0FFF
0x4006_1FFF
0x4006_BFFF
0x4006_CFFF
0x4006_DFFF
0x4006_EFFF
0x4006_FFFF
0x4007_FFFF
0x4008_0FFF
0x41FF_FFFF
0xDFFF_FFFF
Bus
AHB
APB0
APB1
APB2
Peripherals
MainFlash I/F register
Reserved
Clock/Reset Control
Hardware Watchdog timer
Software Watchdog timer
Reserved
Dual-Timer
Reserved
Multi-function timer unit0
Reserved
PPG
Base Timer
Quadrature Position/Revolution Counter
A/D Converter
Reserved
Internal CR trimming
Reserved
External Interrupt Controller
Interrupt Request Batch-Read Function
Reserved
Low Voltage Detector
Deep standby mode Controller
USB clock generator
CAN prescaler
Multi-function serial Interface
CRC
Watch Counter
RTC/PortCtrl
Low-speed CR Prescaler
Peripheral Clock Gating
Reserved
I2S Prescaler
GDC Prescaler
Reserved
External Memory interface
USB ch.0
Reserved
DMAC register
DSTC register
Reserved
I2S
Reserved
Reserved
GPIO
CAN-FD
Programmable-CRC
Reserved
AHB GDC unit
AHB
69
D a t a S h e e t
13. Pin Status in Each CPU State
The terms used for pin status have the following meanings.
 INITX=0
This is the period when the INITX pin is the L level.
 INITX=1
This is the period when the INITX pin is the H level.
 SPL=0
This is the status that the standby pin level setting bit (SPL) in the standby mode control register
(STB_CTL) is set to 0.
 SPL=1
This is the status that the standby pin level setting bit (SPL) in the standby mode control register
(STB_CTL) is set to 1.
 Input enabled
Indicates that the input function can be used.
 Internal input fixed at 0
This is the status that the input function cannot be used. Internal input is fixed at L.
 Hi-Z
Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.
 Setting disabled
Indicates that the setting is disabled.
 Maintain previous state
Maintains the state that was immediately prior to entering the current mode.
If a built-in peripheral function is operating, the output follows the peripheral function.
If the pin is being used as a port, that output is maintained.
 Analog input is enabled
Indicates that the analog input is enabled.
 Trace output
Indicates that the trace function can be used.
 GPIO selected
In Deep standby mode, pins switch to the general-purpose I/O port.
 Setting prohibition
Prohibition of a setting by specification limitation.
70
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
List of Pin Status
Pin status Type
Power-on
Function
Group
Reset or
INITX
Low-Voltage
Input
Detection
State
State
Device
Run Mode
Internal
or SLEEP
Reset
Mode
State
State
Return
Timer Mode
Deep Standby RTC
from Deep
RTC Mode or
Mode or Deep Standby
Standby
STOP Mode State
STOP Mode State
Mode
State
Power
Power
Power
Power
Power
Power
Supply
Supply
Supply
Supply
Supply
Supply
Unstable
Stable
Stable
Stable
Stable
Stable
INITX=1
INITX=1
INITX=1
‐
INITX=0
INITX=1
INITX=1
‐
‐
‐
‐
GPIO
Setting
Setting
Setting
selected
disabled
disabled
disabled
SPL=0
Maintain
Maintain
previous
previous
state
state
SPL=1
Hi-Z /
Internal
input fixed
at 0
SPL=0
GPIO
selected
Internal
input fixed
at 0
SPL=1
-
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
Main
A
crystal
oscillator
input pin/
External
main
Input
Input
Input
Input
Input
Input
Input
Input
Input
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
clock
input
selected
GPIO
Setting
Setting
Setting
selected
disabled
disabled
disabled
Maintain
Maintain
previous
previous
state
state
External
main
clock
B
input
Setting
Setting
Setting
disabled
disabled
disabled
Maintain
Maintain
previous
previous
state
state
selected
Hi-Z /
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Internal
input fixed
at 0
Maintain
previous
state
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state
Hi-Z /
Main
Internal
Hi-Z /
Hi-Z /
crystal
input
Internal
Internal
Maintain previous state/
oscillator
fixed
input
input
When oscillation stops*1,Hi-Z /
output
at 0/
fixed
fixed
Internal input fixed at 0
pin
or Input
at 0
at 0
Pull-up /
Pull-up /
Pull-up /
Pull-up /
Pull-up /
Pull-up /
Pull-up /
Pull-up /
Pull-up /
input
input
input
input
input
input
input
input
input
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enable
C
D
INITX
input pin
Mode
Input
Input
Input
Input
Input
Input
Input
Input
Input
input pin
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
71
D a t a S h e e t
Pin status Type
Power-on
E
Function
Group
Reset or
INITX
Low-Voltage
Input
Detection
State
State
Device
Run Mode
Internal
or SLEEP
Reset
Mode
State
State
Deep Standby RTC
from Deep
RTC Mode or
Mode or Deep Standby
Standby
STOP Mode State
STOP Mode State
Mode
State
Power
Power
Power
Power
Power
Power
Supply
Supply
Supply
Supply
Supply
Supply
Unstable
Stable
Stable
Stable
Stable
Stable
‐
INITX=0
INITX=1
INITX=1
‐
‐
‐
‐
INITX=1
SPL=0
INITX=1
SPL=1
SPL=0
INITX=1
SPL=1
-
Mode
Input
Input
Input
Input
Input
Input
Input
Input
Input
input pin
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
GPIO
Setting
Setting
Setting
Maintain
Maintain
Hi-Z /
selected
disabled
disabled
disabled
previous
previous
input
state
state
enabled
NMIX
Setting
Setting
Setting
selected
disabled
disabled
disabled
Resource
F
Return
Timer Mode
other
than
above
Hi-Z
selected
GPIO
selected
Hi-Z /
input
enabled
GPIO
selected
Maintain
Maintain
previous
previous
state
state
Maintain
Maintain
WKUP
previous
previous
Hi-Z /
input
state
state
Internal
enabled
Hi-Z /
WKUP
input
Hi-Z /
Hi-Z /
input
input
enabled
enabled
Pull-up /
Pull-up /
Maintain
Maintain
Maintain
Maintain
Input
Input
previous
previous
previous
previous
enabled
enabled
state
state
state
input fixed
enabled
GPIO
selected
at 0
GPIO
selected
JTAG
selected
Hi-Z
G
GPIO
Setting
Setting
Setting
selected
disabled
disabled
disabled
state
Maintain
Maintain
previous
previous
Hi-Z /
state
state
Internal
input fixed
at 0
JTAG
selected
Hi-Z
above
selected
Internal
input fixed
at 0
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
Pull-up /
Maintain
Maintain
Maintain
Maintain
Input
Input
previous
previous
previous
previous
enabled
enabled
state
state
state
state
other
than
selected
Pull-up /
Resource
H
GPIO
Setting
Setting
Setting
disabled
disabled
disabled
Maintain
Maintain
previous
previous
Hi-Z /
state
state
Internal
input fixed
at 0
GPIO
GPIO
selected
Internal
input fixed
at 0
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
selected
Resource
selected
I
Hi-Z
GPIO
selected
72
CONFIDENTIAL
Hi-Z /
Hi-Z /
Maintain
Maintain
input
input
previous
previous
enabled
enabled
state
state
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Internal
input fixed
at 0
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Pin status Type
Power-on
Function
Group
Reset or
INITX
Low-Voltage
Input
Detection
State
State
Device
Run Mode
Internal
or SLEEP
Reset
Mode
State
State
Return
Timer Mode
Deep Standby RTC
from Deep
RTC Mode or
Mode or Deep Standby
Standby
STOP Mode State
STOP Mode State
Mode
State
Power
Power
Power
Power
Power
Power
Supply
Supply
Supply
Supply
Supply
Supply
Unstable
Stable
Stable
Stable
Stable
Stable
‐
INITX=0
INITX=1
INITX=1
‐
‐
‐
‐
interrupt
Setting
Setting
Setting
enabled
disabled
disabled
disabled
INITX=1
SPL=0
External
GPIO
Maintain
other
previous
previous
state
state
Hi-Z
selected
Hi-Z /
Hi-Z /
input
input
enabled
enabled
-
state
Maintain
than
INITX=1
SPL=1
previous
Resource
above
SPL=0
Maintain
selected
K
INITX=1
SPL=1
selected
Hi-Z /
Internal
input fixed
Internal
input fixed
at 0
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
at 0
GPIO
selected
Analog
input
Hi-Z
selected
L
Hi-Z /
Hi-Z /
Internal
Internal
input
input
fixed
fixed
at 0 /
at 0 /
Analog
Analog
input
input
enabled
enabled
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
Internal
Internal
Internal
input fixed
input fixed
input fixed
input fixed
input fixed
input fixed
at 0 /
at 0 /
at 0 /
at 0 /
at 0 /
at 0 /
Analog
Analog
Analog
Analog
Analog
Analog
input
input
input
input
input
input
enabled
enabled
enabled
enabled
enabled
enabled
Resource
other
than
above
selected
Setting
Setting
Setting
disabled
disabled
disabled
GPIO
Maintain
Maintain
previous
previous
state
state
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Internal
input fixed
at 0
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
selected
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
73
D a t a S h e e t
Pin status Type
Power-on
Function
Group
Reset or
INITX
Low-Voltage
Input
Detection
State
State
Run Mode
Internal
or SLEEP
Reset
Mode
State
State
Return
Timer Mode
Deep Standby RTC
from Deep
RTC Mode or
Mode or Deep Standby
Standby
STOP Mode State
STOP Mode State
Mode
State
Power
Power
Power
Power
Power
Power
Supply
Supply
Supply
Supply
Supply
Supply
Unstable
Stable
Stable
Stable
Stable
Stable
‐
INITX=0
INITX=1
INITX=1
‐
‐
‐
‐
Analog
input
Device
Hi-Z
selected
Hi-Z /
Hi-Z /
Internal
Internal
input
input
fixed
fixed
at 0 /
at 0 /
Analog
Analog
input
input
enabled
enabled
INITX=1
SPL=0
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
Internal
input fixed
input fixed
input fixed
input fixed
input fixed
input fixed
at 0 /
at 0 /
at 0 /
at 0 /
at 0 /
at 0 /
Analog
Analog
Analog
Analog
Analog
Analog
input
input
input
input
input
input
enabled
enabled
enabled
enabled
enabled
enabled
Maintain
previous
state
selected
than
-
Internal
enabled
other
INITX=1
SPL=1
Hi-Z /
interrupt
Resource
SPL=0
Internal
External
M
INITX=1
SPL=1
GPIO
Setting
Setting
Setting
disabled
disabled
disabled
Maintain
Maintain
selected
previous
previous
Internal
state
state
above
Hi-Z /
Internal
input fixed
selected
input fixed
at 0
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
at 0
GPIO
selected
Analog
input
Hi-Z
selected
N
Hi-Z /
Hi-Z /
Internal
Internal
input
input
fixed
fixed
at 0 /
at 0 /
Analog
Analog
input
input
enabled
enabled
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
Internal
Internal
Internal
input fixed
input fixed
input fixed
input fixed
input fixed
input fixed
at 0 /
at 0 /
at 0 /
at 0 /
at 0 /
at 0 /
Analog
Analog
Analog
Analog
Analog
Analog
input
input
input
input
input
input
enabled
enabled
enabled
enabled
enabled
enabled
Trace
Trace
selected
output
Resource
other
than
above
selected
GPIO
GPIO
Setting
Setting
Setting
disabled
disabled
disabled
Maintain
Maintain
previous
previous
state
state
Hi-Z /
Internal
input fixed
at 0
selected
Internal
input fixed
at 0
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
selected
74
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Pin status Type
Power-on
Function
Group
Reset or
INITX
Low-Voltage
Input
Detection
State
State
Internal
or SLEEP
Reset
Mode
State
State
Return
Timer Mode
Deep Standby RTC
from Deep
RTC Mode or
Mode or Deep Standby
Standby
STOP Mode State
STOP Mode State
Mode
State
Power
Power
Power
Power
Power
Power
Supply
Supply
Supply
Supply
Supply
Unstable
Stable
Stable
Stable
Stable
Stable
‐
INITX=0
INITX=1
INITX=1
‐
‐
‐
‐
Hi-Z
selected
O
Run Mode
Supply
Analog
input
Device
Hi-Z /
Hi-Z /
Internal
Internal
input
input
fixed
fixed
at 0 /
at 0 /
Analog
Analog
input
input
enabled
enabled
INITX=1
SPL=0
INITX=1
SPL=1
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
Internal
Internal
input fixed
input fixed
input fixed
input fixed
input fixed
input fixed
at 0 /
at 0 /
at 0 /
at 0 /
at 0 /
at 0 /
Analog
Analog
Analog
Analog
Analog
Analog
input
input
input
input
input
input
enabled
enabled
enabled
enabled
enabled
enabled
selected
output
External
Maintain
interrupt
previous
enabled
other
-
Hi-Z /
Trace
Resource
INITX=1
SPL=1
Internal
Trace
selected
SPL=0
Setting
Setting
Setting
disabled
disabled
disabled
Maintain
Maintain
previous
previous
state
state
state
Internal
input fixed
Hi-Z /
than
GPIO
selected
at 0
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
Internal
above
input fixed
selected
at 0
GPIO
selected
Maintain
WKUP
enabled
Resource
P
other
than
Setting
Setting
Setting
disabled
disabled
disabled
above
selected
GPIO
Maintain
Maintain
previous
previous
state
state
WKUP
previous
input
state
enabled
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Internal
input fixed
at 0
Hi-Z /
WKUP
input
enabled
GPIO
Hi-Z /
selected
Internal
input fixed
at 0
selected
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
75
D a t a S h e e t
Pin status Type
Power-on
Function
Group
Reset or
INITX
Low-Voltage
Input
Detection
State
State
Device
Run Mode
Internal
or SLEEP
Reset
Mode
State
State
Return
Timer Mode
Deep Standby RTC
from Deep
RTC Mode or
Mode or Deep Standby
Standby
STOP Mode State
STOP Mode State
Mode
State
Power
Power
Power
Power
Power
Power
Supply
Supply
Supply
Supply
Supply
Supply
Unstable
Stable
Stable
Stable
Stable
Stable
‐
INITX=0
INITX=1
INITX=1
‐
‐
‐
‐
INITX=1
SPL=0
INITX=1
SPL=1
WKUP
WKUP
input
enabled
External
Setting
Setting
Setting
disabled
disabled
disabled
Maintain
enabled
previous
enabled
Maintain
Maintain
selected
previous
previous
GPIO
Resource
state
state
selected
other
than
above
Hi-Z
selected
INITX=1
SPL=1
Hi-Z /
WKUP
input
enabled
WKUP
input
enabled
state
interrupt
Q
SPL=0
Hi-Z /
Hi-Z /
Hi-Z /
input
input
enabled
enabled
Hi-Z /
Hi-Z /
Maintain
Maintain
input
input
previous
previous
enabled
enabled
state
state
Internal
input fixed
Internal
input fixed
at 0
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
at 0
GPIO
selected
GPIO
selected
Hi-Z
Hi-Z at
R
USB I/O
Setting
Setting
Setting
pin
disabled
disabled
disabled
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Internal
input fixed
at 0
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
Hi-Z at
trans-
trans-
mission/
mission/
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
input
input
input
input
input fixed
input fixed
enabled
enabled
enabled
enabled
at 0 at
at 0 at
reception
reception
Hi-Z /
*1: Oscillation is stopped at Sub timer mode, low-speed CR timer mode, RTC mode, Stop mode, Deep standby RTC
mode, and Deep standby Stop mode.
76
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
List of VBAT Domain Pin Status
VBAT Pin Status Type
Run
VBAT
INITX
Power-on
Input
Reset
State
Device
Mode
Internal
or
Reset
SLEEP
State
Mode
Function
Group
Deep Standby
Timer Mode
RTC Mode or
RTC Mode or
Deep Standby
STOP Mode State
STOP
Mode State
State
Power
Supply
Power Supply
Stable
Unstable
‐
‐
INITX=0
Power
Supply
Power Supply
Power Supply
Stable
Stable
INITX=1
INITX=1
Stable
INITX=1
INITX=1
‐
SPL=0
SPL=1
SPL=0
‐
‐
Internal
Internal
Return
Return
from
VBAT
from
Deep
RTC
VBAT
Standby
Mode
RTC
Mode
State
Mode
Power
Power
Power
Supply
Supply
Supply
State
State
Stable
Stable
Sable
INITX=1
-
-
SPL=1
-
-
-
GPIO
Setting
input
input
Input
Input
Input
Input
Input
Input
selected
disabled
fixed
fixed
enabled
enabled
enabled
enabled
enabled
enabled
at 0
at 0
Input
Input
Input
Input
Input
Input
Input
Input
Input
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
Internal
Internal
Setting
prohibitio
-
n
Sub crystal
S
oscillator
input pin /
External
sub clock
Maintain
Maintain
previous
previous
state
state
input
selected
Setting
input
input
Input
Input
Input
Input
Input
Input
selected
disabled
fixed
fixed
enabled
enabled
enabled
enabled
enabled
enabled
at 0
at 0
Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
previous
previous
previous
previous
previous
previous
previous
previous
previous
previous
state
state
state
state
state
state
state
state
state
state
Maintain
Maintain
Maintain
previous
previous
previous
state
state
state
External
T
sub clock
Setting
input
disabled
selected
Sub crystal
oscillator
output pin
Maintain
Maintain
Maintain
Maintain
Hi-Z/
previous
previous
previous
previous
Internal
state /
state /
state /
state /
When
When
When
When
oscillatio
oscillatio
oscillatio
oscillatio
n
n
n
n
stops,
stops,
stops,
stops,
Hi-Z*
Hi-Z*
Hi-Z*
Hi-Z*
input fixed
at 0 or
input
Maintain
Maintain
Maintain
previous
previous
previous
state
state
state
enabled
Resource
U
Setting
GPIO
selected
GPIO
selected
Hi-Z
prohibitio
-
n
Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
previous
previous
previous
previous
previous
previous
previous
previous
previous
previous
state
state
state
state
state
state
state
state
state
state
*: When the SOSCNTL bit in the WTOSCCNT register is 0, Sub crystal oscillator output pin is maintain previous state.
When the SOSCNTL bit in the WTOSCCNT register is 1, Oscillation is stopped at Stop mode and Deep standby
Stop mode
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
77
D a t a S h e e t
14. Electrical Characteristics
14.1 Absolute Maximum Ratings
Parameter
Symbol
1, 2
Power supply voltage *
*
1 , 3
Power supply voltage (VBAT) *
*
1 , 4
Analog power supply voltage * *
1 , 4
Analog reference voltage * *
1
Input voltage *
Rating
Min
Max
VCC
VSS - 0.5
VSS + 4.6
V
VBAT
VSS - 0.5
VSS + 4.6
V
AVCC
VSS - 0.5
VSS + 4.6
V
AVRH
VSS - 0.5
VSS + 4.6
V
VI
VSS - 0.5
VSS - 0.5
1
Analog pin input voltage *
1
Output voltage *
5
L level maximum output current *
L level average output current
*
VSS - 0.5
VO
VSS - 0.5
IOLAV
L level total maximum output current
7
L level total average output current *
5
*
H level maximum output current
VIA
IOL
6
6
-
-
VCC + 0.5
(≤ 4.6 V)
VSS + 6.5
AVCC + 0.5
(≤ 4.6 V)
VCC + 0.5
(≤ 4.6 V)
V
V
V
V
10
mA
2 mA type
20
mA
4 mA type
20
mA
8 mA type
20
mA
11 mA type
22.4
mA
I2C Fm+
2
mA
2 mA type
4
mA
4 mA type
8
mA
8 mA type
11
mA
11 mA type
20
mA
I2C Fm+
-
100
mA
-
50
mA
- 10
mA
2 mA type
-
-
-20
mA
4 mA type
- 20
mA
8 mA type
- 20
mA
11 mA type
-2
mA
2 mA type
-4
mA
4 mA type
-8
mA
8 mA type
- 11
mA
11 mA type
mA
∑IOH
-
- 100
∑IOHAV
-
- 50
mA
Power consumption
PD
-
200
mW
Storage temperature
TSTG
- 55
+ 150
°C
H level total average output current
7
*
5 V tolerant
∑IOL
IOHAV
H level total maximum output current
Remarks
∑IOLAV
IOH
H level average output current *
Unit
*1: These parameters are based on the condition that VSS = AVSS = 0.0 V.
*2: VCC must not drop below VSS - 0.5 V.
*3: VBAT must not drop below VSS - 0.5 V.
*4: Ensure that the voltage does not exceed VCC + 0.5 V, for example, when the power is turned on.
*5: The maximum output current is defined as the value of the peak current flowing through any one of the
corresponding pins.
*6: The average output current is defined as the average current value flowing through any one of the corresponding
pins for a 100 ms period.
*7: The total average output current is defined as the average current value flowing through all of corresponding pins for
a 100 ms.
78
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
WARNING:
−
Semiconductor devices may be permanently damaged by application of stress (including, without
limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed
any of these ratings.
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
79
D a t a S h e e t
14.2 Recommended Operating Conditions
Parameter
Symbol
Conditions
Power supply voltage
VCC
-
Power supply voltage (VBAT)
VBAT
-
Analog power supply voltage
AVCC
Analog reference voltage
Value
Unit
Min
Max
3.0
3.6
2.7 *5
3.6
1.65
3.6
V
-
2.7
3.6
V
AVRH
-
*4
AVCC
V
V
AVRL
-
AVss
AVss
V
Operating
Junction temperature
TJ
-
-40
+ 125
°C
temperature
Ambient temperature
TA
-
-40
*3
°C
Remarks
*1
*2
AVCC = VCC
*1: When using the GDC part .
When P81/UDP0 and P80/UDM0 pins are used as USB (UDP0, UDM0).
*2: When P81/UDP0 and P80/UDM0 pins are used as GPIO (P81, P80).
*3: The maximum temperature of the ambient temperature (TA) can guarantee a range that does not exceed the
junction temperature (TJ).
The calculation formula of the ambient temperature (TA) is shown below.
TA(Max) = TJ(Max) - Pd(Max) × θJA
Pd:
Power dissipation (W)
θJA:
Package thermal resistance (°C/W)
Pd (Max) = VCC × ICC (Max) + Σ (IOL×VOL) + Σ ((VCC-VOH) × (- IOH))
IOL:
L level output current
IOH:
H level output current
VOL:
L level output voltage
VOH:
H level output voltage
*4: The minimum value of Analog reference voltage depends on the value of compare clock cycle
(tCCK). See 14.5 12-bit A/D Converter for the details.
*5: In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more,
instruction execution and low voltage detection function by built-in High-speed CR(including Main PLL is used) or
built-in Low-speed CR is possible to operate only.
80
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Package thermal resistance and maximum permissible power for each package are shown below.
The operation is guaranteed maximum permissible power or less for semiconductor devices.
Table14-1 Table for Package Thermal Resistance and Maximum Permissible Power
Printed
Package
Circuit Board
LQFP:FPT-120P-M21
(0.5 mm pitch)
Thermal
Maximum Permissible Power
Resistance θJA
(mW)
(°C/W)
TA= +85°C
TA= +105°C
4 layers
38
1053
526
4 layers
39
1026
513
4 layers
35
1143
571
4 layers
35
1143
571
4 layers
18*
2222
1111
1
LQFP:FPT-120P-M21 *
(0.5 mm pitch)
LQFP:FPT-176P-M07
(0.5 mm pitch)
PFBGA:FDJ161
(0.5 mm pitch)
Ex_LQFP:LEM120
(0.5 mm pitch)
2
*1: When S6E2D55GJA product.
*2: This is a case where the connection process was carried out back exposed die pad foundation.
Please connect directly to GND back exposed die pad.
Notes:
1. The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device's electrical characteristics are warranted when the device is
operated within these ranges.
2. Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
3. No warranty is made with respect to uses, operating conditions, or combinations not represented on the
data sheet.
4. Users considering application outside the listed conditions are advised to contact their representatives
beforehand.
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
81
D a t a S h e e t
Calculation Method of Power Dissipation (Pd)
The power dissipation is shown in the following formula.
Pd = VCC × ICC + Σ (IOL × VOL) + Σ ((VCC-VOH) × (-IOH))
IOL:
IOH:
VOL:
VOH:
L level output current
H level output current
L level output voltage
H level output voltage
ICC is a current consumed in device.
It can be analyzed as follows.
ICC = ICC(INT) + ΣICC(IO)
ICC(INT): Current consumed in internal logic and memory, etc. through regulator
ΣICC(IO): Sum of current (I/O switching current) consumed in output pin
For ICC (INT), it can be anticipated by "(1) Current Rating" in "3. DC Characteristics" (This rating value does
not include ICC (IO) for a value at pin fixed).
For Icc (IO), it depends on system used by customers.
The calculation formula is shown below.
ICC(IO) = (CINT + CEXT) × VCC × fsw
CINT:
Pin internal load capacitance
CEXT:
External load capacitance of output pin
fSW:
Pin switching frequency
Parameter
Symbol
Pin internal load capacitance
Conditions
Capacitance Value
2 mA type
1.93 pF
4 mA type
3.45 pF
8 mA type
3.42 pF
CINT
Calculate ICC (Max) as follows when the power dissipation can be evaluated by yourself.
(1) Measure current value ICC (Typ) at normal temperature (+25°C).
(2) Add maximum leak current value ICC (leak_max) at operating on a value in (1).
ICC(Max) = ICC(Typ) + ICC(leak_max)
Parameter
Symbol
Maximum leak current at
operating
ICC(leak_max)
Conditions
Current Value
TJ = +125 °C
66.8 mA
TJ = +105 °C
33.7 mA
TJ = +85 °C
22.8 mA
Note:
−
82
CONFIDENTIAL
VFLASH of current is not included
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Current Explanation Diagram
Pd = VCC×ICC + Σ(IOL×VOL)+Σ((VCC-VOH)×(-IOH))
ICC = ICC(INT)+ΣICC(IO)
VCC
A
ICC
Chip
ICC(INT)
ΣICC(IO)
A
Regulator
VOL
V
A
・・・
V
IOL
Flash
VOH
・・・
Logic
IOH
RAM
ICC(IO)
CEXT
・・・
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
83
D a t a S h e e t
14.3 DC Characteristics
14.3.1 Current Rating
Table 14-2 Typical and Maximum Current Consumption in Normal Operation (PLL), Code Running from Flash Memory
(Flash Accelerator Mode and Trace Buffer Function Enabled)
Parameter
Symbol
Pin
Name
Frequency*
Conditions
2
Unit
Remarks
Typ*
Max*
160 MHz
182
279
mA
144 MHz
176
270
mA
120 MHz
167
256
mA
Normal
100 MHz
159
244
mA
*3
operation
80 MHz
151
233
mA
When all peripheral clocks
60 MHz
143
221
mA
are ON
40 MHz
136
210
mA
GDC clock 160 MHz
20 MHz
128
199
mA
8 MHz
123
191
mA
4 MHz
122
190
mA
160 MHz
43
117
mA
144 MHz
39
112
mA
120 MHz
34
106
mA
100 MHz
29
100
mA
80 MHz
24
95
mA
60 MHz
20
90
mA
40 MHz
15
84
mA
20 MHz
10
78
mA
8 MHz
7
74
mA
4 MHz
6
73
mA
*5
(PLL)
Power
ICC
Value
1
(MHz)
*6,*7
supply
4
VCC
current
Normal
operation ,
*6,*7
(PLL)
*5
*3
When all peripheral clocks
are OFF
*1: TA=+25°C, VCC=3.3 V
*2: TJ=+125°C, VCC=3.6 V
*3: When all ports are fixed.
*4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2
*5: When operating flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 1)
*6: Data access is nothing to main flash memory and VFLASH memory
*7: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)
84
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Table 14-3 Typical and Maximum Current Consumption in Normal Operation (PLL), Code with Data Accessing Running
from Flash Memory (Flash Accelerator Mode and Trace Buffer Function Disabled)
Parameter
Symbol
Pin
Name
Frequency*
Conditions
2
Unit
Typ*
Max*
160 MHz
185
285
mA
144 MHz
179
276
mA
Remarks
120 MHz
169
261
mA
100 MHz
161
250
mA
*3
operation
80 MHz
154
239
mA
When all peripheral clocks
60 MHz
146
227
mA
are ON
40 MHz
138
215
mA
GDC clock 160 MHz
20 MHz
130
204
mA
8 MHz
125
196
mA
4 MHz
124
195
mA
160 MHz
45
122
mA
144 MHz
41
117
mA
120 MHz
36
111
mA
Normal
100 MHz
31
105
mA
operation
80 MHz
26
99
mA
60 MHz
22
94
mA
40 MHz
17
89
mA
20 MHz
12
83
mA
8 MHz
10
80
mA
4 MHz
9
79
mA
*5
(PLL)
Power
ICC
Value
1
(MHz)
Normal
*6,*7,*8
supply
4
VCC
current
*6,*7,*8
(PLL)
*5
*3
When all peripheral clocks
are OFF
*1: TA=+25°C, VCC=3.3 V
*2: TJ=+125°C, VCC=3.6 V
*3: When all ports are fixed.
*4: Frequency is a value of HCLK. PCLK0=PCLK2=HCLK/2, PCLK1=HCLK
*5: When not operating flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 0)
*6: With data access to a main flash memory.
*7: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)
*8: Data access is nothing to VFLASH memory
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
85
D a t a S h e e t
Table 14-4 Typical and Maximum Current Consumption in Normal Operation (PLL), Code with Data Accessing Running
from Flash Memory (Flash 0 Wait-cycle Mode and Read Access 0 Wait)
Parameter
Symbol
Pin
Name
Frequency*
Conditions
*5
Power
supply
current
ICC
VCC
4
Value
1
2
Unit
Typ*
Max*
72 MHz
168
251
mA
60 MHz
161
242
mA
48 MHz
154
233
mA
*3
36 MHz
147
224
mA
When all peripheral clocks
24 MHz
140
214
mA
are ON
GDC clock 160 MHz
12 MHz
133
205
mA
Normal
8 MHz
131
202
mA
operation ,
4 MHz
128
199
mA
*6,*7,*8
72 MHz
41
114
mA
(PLL)
60 MHz
36
108
mA
48 MHz
32
104
mA
36 MHz
27
98
mA
24 MHz
23
94
mA
12 MHz
18
88
mA
8 MHz
17
87
mA
4 MHz
15
85
mA
*5
Remarks
(MHz)
*3
When all peripheral clocks
are OFF
*1: TA=+25°C, VCC=3.3 V
*2: TJ=+125°C, VCC=3.6 V
*3: When all ports are fixed.
*4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK
*5: When operating flash 0 wait-cycle mode and read access 0 wait (FRWTR.RWT = 00, FSYNDN.SD = 000)
*6: With data access to a main flash memory.
*7: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)
*8: Data access is nothing to VFLASH memory
86
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Table 14-5 Typical and Maximum Current Consumption in Normal Operation (other than PLL), Code with Data
Accessing Running from Flash Memory (Flash 0 Wait-cycle Mode and Read Access 0 Wait)
Parameter
Symbol
Pin
Name
Frequency*
Conditions
(MHz)
4
Value
1
Typ*
2
Max*
Unit
*3
Normal
operation,
*6,*8
(built-in
110
*5
current
VCC
74
mA
*5
76.65
mA
*3
0.69
71.65
mA
*3
Normal
CR)
When all peripheral clocks
are OFF
operation ,
Low-speed
When all peripheral clocks
are ON
32 kHz
oscillation)
(built-in
When all peripheral clocks
*3
0.7
(Sub
*6,*8
are ON
are OFF
operation ,
*6,*7,*8
When all peripheral clocks
*3
Normal
ICC
mA
GDC clock 160 MHz
4.1
CR)
supply
181
4 MHz
High-speed
Power
Remarks
0.74
*5
88.65
mA
When all peripheral clocks
are ON
100 kHz
*3
0.73
74.65
mA
When all peripheral clocks
are OFF
*1: TA=+25°C, VCC=3.3 V
*2: TJ=+125°C, VCC=3.6 V
*3: When all ports are fixed.
*4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2
*5: When operating flash 0 wait-cycle mode and read access 0 wait (FRWTR.RWT = 00, FSYNDN.SD = 000)
*6: With data access to a main flash memory.
*7: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit)
*8: Data access is nothing to VFLASH memory
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
87
D a t a S h e e t
Table 14-6 Typical and Maximum Current Consumption in Sleep Operation (PLL), when PCLK0 = PCLK1 = PCLK2 =
HCLK/2
Parameter
Symbol
Pin
Name
Conditions
ICCS
4
Value
1
2
Unit
Remarks
(MHz)
Typ*
Max*
160 MHz
103
181
mA
144 MHz
98
175
mA
120 MHz
91
168
mA
100 MHz
86
162
mA
*3
Sleep *5,*6
80 MHz
80
155
mA
When all peripheral clocks
operation (PLL)
60 MHz
74
149
mA
are ON
40 MHz
69
143
mA
GDC clock 160 MHz
20 MHz
63
137
mA
8 MHz
59
132
mA
4 MHz
58
131
mA
160 MHz
24
91
mA
144 MHz
22
89
mA
120 MHz
19
86
mA
100 MHz
16
83
mA
80 MHz
14
81
mA
60 MHz
11
78
mA
40 MHz
9
76
mA
20 MHz
6
73
mA
8 MHz
5
72
mA
4 MHz
4
71
mA
Power
supply
Frequency*
VCC
current
Sleep *5,*6
operation
(PLL)
*3
When all peripheral clocks
are OFF
*1: TA=+25°C, VCC=3.3 V
*2: TJ=+125°C, VCC=3.6 V
*3: When all ports are fixed.
*4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2
*5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)
*6: Data access is nothing to VFLASH memory
88
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Table 14-7 Typical and Maximum Current Consumption in Sleep Operation (PLL), when PCLK0 = PCLK1 = PCLK2 =
HCLK
Parameter
Symbol
Pin
Name
Power
supply
current
Conditions
Sleep *5,*6
ICCS
VCC
operation
(PLL)
Frequency*
4
Value
1
2
Unit
Remarks
(MHz)
Typ*
Max*
72 MHz
84
160
mA
60 MHz
80
155
mA
48 MHz
75
150
mA
*3
36 MHz
71
145
mA
When all peripheral clocks
24 MHz
67
141
mA
are ON
12 MHz
63
137
mA
GDC clock 160 MHz
8 MHz
61
134
mA
4 MHz
60
133
mA
72 MHz
15
82
mA
60 MHz
13
80
mA
48 MHz
12
79
mA
36 MHz
10
77
mA
24 MHz
8
75
mA
12 MHz
7
74
mA
8 MHz
6
73
mA
4 MHz
5
72
mA
*3
When all peripheral clocks
are OFF
*1: TA=+25°C, VCC=3.3 V
*2: TJ=+125°C, VCC=3.6 V
*3: When all ports are fixed.
*4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK
*5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)
*6: Data access is nothing to VFLASH memory
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
89
D a t a S h e e t
Table 14-8 Typical and Maximum Current Consumption in Sleep Operation (other than PLL), when PCLK0 = PCLK1 =
PCLK2 = HCLK/2
Parameter
Symbol
Pin
Name
Conditions
Frequency*
(MHz)
4
Value
1
Typ*
2
Max*
Unit
Remarks
*3
56
Sleep *6
operation
(built-in
126
mA
When all peripheral clocks
are ON
GDC clock 160 MHz
4 MHz
*3
High-speed CR)
2
72
mA
When all peripheral clocks
are OFF
*3
Power
supply
current
ICCS
VCC
0.52
Sleep *5,*6
operation
69.65
mA
are ON
32 kHz
(Sub oscillation)
When all peripheral clocks
*3
0.51
69.65
mA
When all peripheral clocks
are OFF
*3
0.54
Sleep *6
operation
(built-in
Low-speed CR)
70.65
mA
When all peripheral clocks
are ON
100 kHz
*3
0.52
69.65
mA
When all peripheral clocks
are OFF
*1: TA=+25°C, VCC=3.3 V
*2: TJ=+125°C, VCC=3.6 V
*3: When all ports are fixed.
*4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2
*5: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit)
*6: Data access is nothing to VFLASH memory
90
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Table 14-9 Typical and Maximum Current Consumption in Stop Mode, Timer Mode and RTC Mode
Parameter
Symbol
Pin
Name
ICCH
Conditions
Stop mode
Value
Frequency
(MHz)
-
1
2
Unit
Typ*
Max*
0.41
2.07
mA
-
21.35
mA
-
30.57
mA
1.14
2.8
mA
-
22.08
mA
-
31.3
mA
0.43
2.09
mA
-
21.37
mA
-
30.59
mA
0.43
2.09
mA
-
21.37
mA
-
30.59
mA
0.41
2.07
mA
-
21.35
mA
-
30.57
mA
Timer mode
(built-in
4 MHz
High-speed CR)
Power
supply
ICCT
current
VCC
Timer mode *5
(Sub oscillation)
32 kHz
Timer mode
(built-in
100 kHz
Low-speed CR)
ICCR
RTC mode
(Sub oscillation)
32 kHz
Remarks
*3, *4
TA=+25°C
*3, *4
TA=+85°C
*3, *4
TA=+105°C
*3, *4
TA=+25°C
*3, *4
TA=+85°C
*3, *4
TA=+105°C
*3, *4
TA=+25°C
*3, *4
TA=+85°C
*3, *4
TA=+105°C
*3, *4
TA=+25°C
*3, *4
TA=+85°C
*3, *4
TA=+105°C
*3, *4
TA=+25°C
*3, *4
TA=+85°C
*3, *4
TA=+105°C
*1: VCC=3.3 V
*2: VCC=3.6 V
*3: When all ports are fixed.
*4: When LVD is OFF
*5: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit)
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
91
D a t a S h e e t
Table 14-10 Typical and Maximum Current Consumption in Deep Standby Stop Mode, Deep Standby RTC Mode and
VBAT
Parameter
Symbol
Pin
Name
Conditions
Value
Frequency
(MHz)
1
2
Unit
Typ*
Max*
108
173
μA
-
1774
μA
-
2208
μA
112
177
μA
-
1778
μA
-
2212
μA
109
174
μA
-
1771
μA
-
2205
μA
113
178
μA
-
1775
μA
-
2209
μA
0.009
0.032
μA
-
0.994
μA
-
1.491
μA
1.0
1.636
μA
-
2.828
μA
-
4.242
μA
Deep Standby
Stop mode
(When RAM
-
is OFF)
ICCHD
Deep Standby
Stop mode
(When RAM
-
is ON)
VCC
Remarks
*3, *4
TA=+25°C
*3, *4
TA=+85°C
*3, *4
TA=+105°C
*3, *4
TA=+25°C
*3, *4
TA=+85°C
*3, *4
TA=+105°C
*3, *4
TA=+25°C
Deep Standby
RTC mode
(When RAM
TA=+85°C
is OFF)
Power
supply
*3, *4
ICCRD
32 kHz
*3, *4
TA=+105°C
current
Deep Standby
RTC mode
(When RAM
is ON)
RTC stop
ICCVBAT
VBAT
-
RTC *6
operation
*3, *4
TA=+25°C
*3, *4
TA=+85°C
*3, *4
TA=+105°C
*3, *4, *5
TA=+25°C
*3, *4, *5
TA=+85°C
*3, *4, *5
TA=+105°C
*3, *4
TA=+25°C
*3, *4
TA=+85°C
*3, *4
TA=+105°C
*1: VCC=3.3 V
*2: VCC=3.6 V
*3: When all ports are fixed.
*4: When LVD is OFF
*5: When sub oscillation is OFF
*6: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit)
92
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Table 14-11 Typical and Maximum Current Consumption in Low-voltage Detection Circuit, Main Flash Memory
Write/erase, VFLASH Memory
Parameter
Pin
Symbol
name
Conditions
Value
Unit
Min
Typ
Max
At operation
-
4
7
μA
At Write/Erase
-
13.4
15.8
mA
At Standby
-
15
25
μA
At Read
-
At Write/Erase
-
Remarks
Low-voltage
detection
circuit (LVD)
ICCLVD
power supply
For occurrence of
interrupt
current
Main flash
memory
ICCFLASH
write/erase
VCC
current
VFLASH memory
Standby current
VFLASH memory
ICCVFLASH
Read current
VFLASH memory
write/erase current
9
14
13
20
20
25
mA
40MHz
80MHz
mA
Peripheral Current Dissipation
Clock
system
Peripheral
Unit
GPIO
Frequency (MHz)
40
80
160
All ports
0.30
0.60
1.19
DMAC
-
0.99
1.95
3.82
DSTC
-
0.41
0.83
1.61
External bus I/F
-
0.18
0.35
0.70
CAN-FD
1ch.
0.54
1.07
2.13
USB
1ch.
0.47
0.93
1.85
I2S
1ch.
0.36
0.71
1.42
Programmable CRC
-
0.04
0.09
0.18
Base timer
4ch.
0.20
0.39
0.76
1unit/4ch.
0.61
1.21
2.40
1 unit
0.04
0.09
0.18
A/DC
1 unit
0.25
0.50
1.00
Multi-function serial
1ch.
0.44
0.88
-
GDC
1 unit
31
57
109
High-Speed Quad SPI
1ch.
1.1
2.3
-
HyperBus I/F
1ch.
0.6
1.2
-
SDRAM-IF
1ch.
2.3
4.6
-
HCLK
Unit
Remarks
mA
Multi-functional
timer/PPG
PCLK1
mA
Quadrature
position/Revolution
counter
PCLK2
G
GECLK
D
C
mA
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
mA
93
D a t a S h e e t
14.3.2
Pin Characteristics
(VCC = AVCC = 2.7V to 3.6V, VSS = AVSS = 0V)
Parameter
Symbol
Pin Name
(hysteresis
Max
-
VCC×0.8
-
VCC + 0.3
V
-
VCC×0.8
-
VSS + 5.5
V
-
VCC×0.7
-
VSS + 5.5
V
-
2.0
-
VCC+0.3
V
-
VSS - 0.3
-
VCC×0.2
V
-
VSS - 0.3
-
VCC×0.2
V
-
VSS
-
VCC×0.3
V
-
VSS - 0.3
-
0.8
V
2 mA type
IOH = - 2 mA
VCC - 0.5
-
VCC
V
4 mA type
IOH = - 4 mA
VCC - 0.5
-
VCC
V
8 mA type
IOH = - 8 mA
VCC - 0.5
-
VCC
V
11 mA type
IOH = - 11 mA
VCC - 0.5
-
VCC
V
IOH = - 13.0 mA
VCC - 0.4
-
VCC
V
IOH = - 3 mA
VCC - 0.5
-
VCC
V
At GPIO
Unit
Remarks
5 V tolerant input pin
VIHS
Input pin doubled as
I2C Fm+
input)
TTL Schmitt
input pin
CMOS hysteresis
input pin, MD0, MD1
L level input
voltage
(hysteresis
5 V tolerant input pin
VILS
Input pin doubled as
I2C Fm+
input)
TTL Schmitt
input pin
H level output
voltage
VOH
The pin
doubled as USB I/O
The pin
doubled as I2C Fm+
Parameter
L level output
voltage
Symbol
VOL
Pin Name
current
Pull-up
resistor value
Value
Conditions
Min
Typ
Max
2 mA type
IOL = 2 mA
VSS
-
0.4
V
4 mA type
IOL = 4 mA
VSS
-
0.4
V
8 mA type
IOL = 8 mA
VSS
-
0.4
V
11 mA type
IOL = 11 mA
VSS
-
0.4
V
IOL = 10.5 mA
VSS
-
0.4
V
VSS
-
0.4
V
μA
The pin doubled as
USB I/O
Input leak
Remarks
Typ
CMOS hysteresis
voltage
Unit
Min
input pin, MD0, MD1
H level input
Value
Conditions
The pin doubled as I2C
IOL = 3 mA
Fm+
IOL = 20 mA
IIL
-
-
-5
-
+5
-
30
80
200
RPU
Pull-up pin
-
15
33
70
-
-
5
15
kΩ
High-speed
IO
At GPIO
At I2C Fm+
High-speed
IO
Other than
Input
capacitance
VCC,
CIN
VBAT, VSS,
pF
AVCC, AVSS,
AVRH
94
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
14.4 AC Characteristics
14.4.1 Main Clock Input Characteristics
(VCC = AVCC = 2.7V to 3.6V, VSS = AVSS = 0V, TA = -40℃ to +105℃)
Parameter
Input frequency
Input clock cycle
Input clock pulse width
Symbol
X0,
tCYLH
X1
Value
Unit
Remarks
Min
Max
-
4
20
MHz
-
4
20
MHz
When using external clock
-
50
250
ns
When using external clock
45
55
%
When using external clock
-
-
5
ns
When using external clock
PWH/tCYLH,
tCF,
falling time
tCR
frequency
Conditions
When crystal oscillator is
connected
fCH
Input clock rising time and
Internal operating clock*1
Pin
Name
PWL/tCYLH
fCM
-
-
-
160
MHz
Master clock
fCC
-
-
-
160
MHz
Base clock (HCLK/FCLK)
fCP0
-
-
-
80
MHz
APB0 bus clock*2
fCP1
-
-
-
160
MHz
APB1 bus clock*2
fCP2
-
-
-
80
MHz
APB2 bus clock*2
tCYCC
-
-
5
-
ns
Base clock (HCLK/FCLK)
Internal operating clock*1
tCYCP0
-
-
10
-
ns
APB0 bus clock*2
cycle time
tCYCP1
-
-
5
-
ns
APB1 bus clock*2
tCYCP2
-
-
10
-
ns
APB2 bus clock*2
*1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM4 Family Peripheral
Manual Main part (MN709-00001).
*2: For about each APB bus which each peripheral is connected to, see Block Diagram in this data sheet.
X0
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
95
D a t a S h e e t
14.4.2
Sub Clock Input Characteristics
(VBAT = 1.65V to 3.6V, VSS = 0V)
Parameter
Symbol
Input frequency
Pin
Name
Value
Conditions
Unit
Min
Typ
Max
-
-
32.768
-
kHz
-
32
-
100
kHz
-
10
-
31.25
μs
45
-
55
%
1/tCYLL
X0A,
Input clock cycle
tCYLL
Input clock pulse width
X1A
PWH/tCYLL,
-
PWL/tCYLL
Remarks
When crystal oscillator
is connected *
When using external
clock
When using external
clock
When using external
clock
*: For more information about crystal oscillator, see Sub crystal oscillator in 9. Handling Devices.
tCYLL
0.8 × VBAT
0.8 × VBAT
0.2 × VBAT
X0A
PWH
14.4.3
0.8 × VBAT
0.2 × VBAT
PWL
Built-in CR Oscillation Characteristics
Built-in High-speed CR
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Value
Conditions
Min
Typ
Max
TJ = - 20 °C to + 105 °C
3.92
4
4.08
TJ = - 40 °C to + 125 °C
3.88
4
4.12
TJ = - 40 °C to + 125 °C
2.9
4
5
-
-
-
30
Unit
Remarks
When trimming *1
Clock frequency
fCRH
MHz
When not trimming
Frequency
stabilization
tCRWT
μs
*2
time
*1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency/temperature trimming.
*2: This is the time to stabilize the frequency of High-speed CR clock after setting trimming value.
This period is able to use High-speed CR clock as source clock.
Built-in Low-speed CR
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Clock frequency
96
CONFIDENTIAL
Symbol
Condition
fCRL
-
Value
Min
Typ
Max
50
100
150
Unit
Remarks
kHz
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
14.4.4
Operating Conditions of Main PLL (In the Case of Using Main Clock
for Input Clock of PLL)
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
PLL oscillation stabilization wait time*1
(LOCK UP time)
PLL input clock frequency
PLL multiplication rate
PLL macro oscillation clock frequency
Main PLL clock frequency*
2
Symbol
Value
Unit
Min
Typ
Max
tLOCK
100
-
-
μs
fPLLI
4
-
16
MHz
-
13
-
100
multiplier
fPLLO
200
-
400
MHz
fCLKPLL
-
-
200
MHz
Remarks
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1 : Clock in FM4 Family Peripheral Manual
Main part (MN709-00001).
Operating Conditions of USB/I2S/GDC PLL (In the Case of Using
Main Clock for Input Clock of PLL)
14.4.5
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
PLL oscillation stabilization wait time*1
(LOCK UP time)
PLL input clock frequency
PLL multiplication rate
PLL macro oscillation clock frequency
Symbol
Value
Unit
Remarks
Min
Typ
Max
tLOCK
100
-
-
μs
fPLLI
4
-
16
MHz
-
13
-
100
multiplier
400
MHz
USB/GDC
384
MHz
I2S
fPLLO
200
-
USB clock frequency *2
fCLKPLL
-
-
50
MHz
I2S clock frequency *3
fCLKPLL
-
-
12.288
MHz
GDC clock frequency *4
fCLKPLL
-
-
160
MHz
After the M
frequency division
After the M
frequency division
After divided by
GDC part
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about USB clock, see Chapter 2-2: USB Clock Generation in FM4 Family Peripheral
Manual Communication Macro part (MN709-00004).
2
2
*3: For more information about I S clock, see Chapter 7-1: I S Clock Generation in FM4 Family Peripheral Manual
Communication Macro part (MN709-00004).
*4: For more information about GDC clock, see FM4 Family Peripheral Manual GDC part (MN709-00014).
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
97
D a t a S h e e t
14.4.6
Operating Conditions of Main PLL (In the Case of Using Built-in
High-Speed CR Clock for Input Clock of Main PLL)
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
PLL oscillation stabilization wait time*1
(LOCK UP time)
PLL input clock frequency
PLL multiplication rate
PLL macro oscillation clock frequency
Main PLL clock frequency*2
Value
Unit
Min
Typ
Max
tLOCK
100
-
-
fPLLI
3.8
4
4.2
MHz
-
50
-
95
multiplier
fPLLO
190
-
400
MHz
fCLKPLL
-
-
160
MHz
Remarks
μs
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM4 Family Peripheral
Manual Main part (MN709-00001).
Note:
− The High-speed CR clock (CLKHC) should be set with frequency/temperature trimming to act as the
source clock of the Main PLL.
14.4.7
Reset Input Characteristics
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Reset input time
98
CONFIDENTIAL
Symbol
tINITX
Pin
Name
conditions
INITX
-
Value
Unit
Min
Max
500
-
Remarks
ns
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
14.4.8
Power-on Reset Timing
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Power supply rising time
tVCCR
Power supply shut down time
tOFF
Time until releasing Power-on reset
tPRT
Value
Pin
Name
Unit
VCC
Min
Max
0
-
ms
1
-
ms
0.33
0.60
ms
Remarks
VCC_minimum
VCC
VDH_minimum
0.2V
0.2V
0.2V
tVCCR
tPRT
Internal RST
tOFF
RST Active
Release
CPU Operation
start
Glossary
− VCC_minimum : Minimum VCC of recommended operating conditions.
− VDH_minimum : Minimum release voltage of Low-Voltage detection reset.
See 14.7. Low-Voltage Detection Characteristics.
14.4.9
GPIO Output Characteristics
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Output frequency
Symbol
tPCYCLE
Pin
Name
Conditions
Pxx*
-
Value
Unit
Min
Max
-
32
Remarks
MHz
*: GPIO is a target.
Pxx
tPCYCLE
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
99
D a t a S h e e t
14.4.10 External Bus Timing
External Bus Clock Output Characteristics
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Pin Name
Symbol
Output frequency
Value
Conditions
Max
-
50*2
MCLKOUT*1
tCYCLE
Unit
Min
Remarks
MHz
*1: The external bus clock (MCLKOUT) is a divided clock of HCLK.
For more information about setting of clock divider, see Chapter 14: External Bus Interface in FM4 Family
Peripheral Manual Main part (MN709-00001).
*2: Generate MCLKOUT at setting more than 4 divisions when the AHB bus clock exceeds 100 MHz.
0.8 × Vcc
0.8 × Vcc
MCLKOUT
tCYCLE
External Bus Signal Input/output Characteristics
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Signal input characteristics
Signal output characteristics
Symbol
Conditions
Value
Unit
VIH
0.8 × VCC
V
VIL
0.2 × VCC
V
0.8 × VCC
V
0.2 × VCC
V
-
VOH
VOL
Input signal
VIH
VIL
VIH
VIL
Output signal
VOH
VOL
VOH
VOL
100
CONFIDENTIAL
Remarks
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Separate Bus Access Asynchronous SRAM Mode
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
MOEX
tOEW
Mininum pulse width
MCSX↓→Address
tCSL – AV
output delay time
MOEX↑→Address
tOEH - AX
hold time
MCSX↓→
tCSL - OEL
MOEX↓delay time
MOEX↑→
tOEH - CSH
MCSX↑time
MCSX↓→
tCSL - RDQML
MDQM↓delay time
Data setup→
tDS - OE
MOEX↑time
MOEX↑→
tDH - OE
Data hold time
MWEX
tWEW
Mininum pulse width
MWEX↑→Address
tWEH - AX
output delay time
MCSX↓→
tCSL - WEL
MWEX↓delay time
MWEX↑→
tWEH - CSH
MCSX↑delay time
MCSX↓→
tCSL-WDQML
MDQM↓delay time
MCSX↓→
tCSL-DX
Data output time
MWEX↑→
tWEH - DX
Data hold time
Pin name
MOEX
MCSX,
MAD[24:0]
MOEX,
MAD[24:0]
MOEX,
MCSX
MCSX,
MDQM[1:0]
MOEX,
MADATA[15:0]
MOEX,
MADATA[15:0]
MWEX
MWEX,
MAD[24:0]
MWEX,
MCSX
MCSX,
MDQM[1:0]
MCSX,
MADATA[15:0]
MWEX,
MADATA[15:0]
Value
Conditions
Unit
Min
Max
-
MCLK×n-3
-
ns
-
-9
+9
ns
-
0
MCLK×m+9
ns
-
MCLK×m-9
MCLK×m+9
ns
-
0
MCLK×m+9
ns
-
MCLK×m-9
MCLK×m+9
ns
-
20
-
ns
-
0
-
ns
-
MCLK×n-3
-
ns
-
0
MCLK×m+9
ns
-
MCLK×n-9
MCLK×n+9
ns
-
0
MCLK×m+9
ns
-
MCLK×n-9
MCLK×n+9
ns
-
MCLK-9
MCLK+9
ns
-
0
MCLK×m+9
ns
Remarks
Note:
−
When the external load capacitance CL = 30 pF (m=0 to 15, n=1 to 16)
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
101
D a t a S h e e t
tCYCLE
MCLK
tOEH-CSH
tWEH-CSH
MCSX
tCSL-AV
MAD[24:0]
tOEH-AX
Address
tWEH-AX
tCSL-AV
Address
tCSL-OEL
MOEX
tOEW
tCSL-WDQML
tCSL-RDQML
MDQM[1:0]
tCSL-WEL
tWEW
MWEX
tDS-OE
MADATA[15:0]
tDH-OE
RD
tWEH-DX
WD
Invalid
tCSL-DX
102
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Separate Bus Access Synchronous SRAM Mode
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Address delay time
Pin Name
MCLK,
tAV
MAD[24:0]
1
9
ns
1
9
ns
tCSH
MCSX
-
1
9
ns
tREL
MCLK,
-
1
9
ns
tREH
MOEX
-
1
9
ns
-
19
-
ns
-
0
-
ns
MCLK,
MADATA[15:0]
MCLK,
tDH
Data hold time
-
tDS
MCLK↑→
Max
MCLK,
MOEX delay time
→MCLK↑ time
Unit
Min
tCSL
MCSX delay time
Data set up
Value
Conditions
MADATA[15:0]
tWEL
MCLK,
-
1
9
ns
tWEH
MWEX
-
1
9
ns
MDQM[1:0]
tDQML
MCLK,
-
1
9
ns
delay time
tDQMH
MDQM[1:0]
-
1
9
ns
-
MCLK+1
MCLK+18
ns
-
1
18
ns
MWEX delay time
MCLK↑→
MCLK,
tODS
Data output time
MCLK↑→
MADATA[15:0]
MCLK,
tOD
Data hold time
MADATA[15:0]
Remarks
Note:
−
When the external load capacitance CL = 30 pF
tCYCLE
MCLK
tCSL
tCSH
MCSX
tAV
tAV
Address
MAD[24:0]
Address
tREL
tREH
tDQML
tDQMH
MOEX
tDQML
tDQMH
tWEL
tWEH
MDQM[1:0]
MWEX
MADATA[15:0]
tDS
tDH
RD
tOD
WD
Invalid
tODS
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
103
D a t a S h e e t
Multiplexed Bus Access Asynchronous SRAM Mode
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Multiplexed
tALE-CHMADV
address delay time
Multiplexed address hold
time
tCHMADH
Pin Name
MALE,
MAD[24:0]
Value
Conditions
Unit
Min
Max
-
0
10
ns
-
MCLK×n+0
MCLK×n+10
ns
Remarks
Note:
−
When the external load capacitance CL = 30 pF (m=0 to 15, n=1 to 16)
MCLK
MCSX
MALE
MAD [24:0]
MOEX
MDQM [1:0]
MWEX
MADATA[15:0]
104
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Multiplexed Bus Access Synchronous SRAM Mode
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
MCLK↑→Multiplexed
Max
-
1
9
ns
tCHAH
MALE
-
1
9
ns
-
1
tOD
ns
-
1
tOD
ns
tCHMADX
data output time
Unit
Min
MCLK,
tCHMADV
address delay time
Value
Conditions
tCHAL
MALE delay time
MCLK↑→Multiplexed
Pin Name
MCLK,
MADATA[15:0]
Remarks
Note:
−
When the external load capacitance CL = 30 pF
MCLK
MCSX
MALE
MAD [24:0]
MOEX
MDQM [1:0]
MWEX
MADATA[15:0]
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
105
D a t a S h e e t
NAND Flash Mode
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
MNREX
tNREW
Min pulse width
Data set up
tDS – NRE
→MNREX↑time
MNREX↑→
tDH – NRE
Data hold time
MNALE↑→
tALEH - NWEL
MNWEX delay time
MNALE↓→
tALEL - NWEL
MNWEX delay time
MNCLE↑→
tCLEH - NWEL
MNWEX delay time
MNWEX↑→
tNWEH - CLEL
MNCLE delay time
MNWEX
tNWEW
Min pulse width
MNWEX↓→
tNWEL – DV
Data output time
MNWEX↑→
tNWEH – DX
Data hold time
Pin Name
MNREX
MNREX,
MADATA[15:0]
MNREX,
MADATA[15:0]
MNALE,
MNWEX
MNALE,
MNWEX
MNCLE,
MNWEX
MNCLE,
MNWEX
MNWEX
MNWEX,
MADATA[15:0]
MNWEX,
MADATA[15:0]
Value
Conditions
Unit
Min
Max
-
MCLK×n-3
-
ns
-
20
-
ns
-
0
-
ns
-
MCLK×m-9
MCLK×m+9
ns
-
MCLK×m-9
MCLK×m+9
ns
-
MCLK×m-9
MCLK×m+9
ns
-
0
MCLK×m+9
ns
-
MCLK×n-3
-
ns
-
-9
9
ns
-
0
MCLK×m+9
ns
Remarks
Note:
−
When the external load capacitance CL = 30 pF (m=0 to 15, n=1 to 16)
NAND Flash Read
MCLK
MNREX
MADATA[15:0]
Read
106
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
NAND Flash Address Write
MCLK
MNALE
MNCLE
MNWEX
MADATA[15:0]
Write
NAND Flash Command Write
MCLK
MNALE
MNCLE
MNWEX
MADATA[15:0]
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
Write
107
D a t a S h e e t
External Ready Input Timing
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Pin Name
MCLK↑
MRDY input
MCLK,
tRDYI
-
MRDY
setup time
Value
Conditions
Unit
Min
Max
19
-
Remarks
ns
 When RDY is input
·· ·
MCLK
Over 2cycles
Original
MOEX
MWEX
tRDYI
MRDY
 When RDY is released
MCLK
··· ···
2 cycles
Extended
MOEX
MWEX
tRDYI
0.5×VCC
MRDY
108
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
SDRAM Mode
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Output frequency
tCYCSD
Address delay time
tAOSD
MSDCLK↑→
tDOSD
Data output delay time
MSDCLK↑→
tDOZSD
Data output Hi-Z time
MDQM[1:0] delay time
tWROSD
MCSX delay time
tMCSSD
MRASX delay time
tRASSD
MCASX delay time
tCASSD
MSDWEX delay time
tMWESD
MSDCKE delay time
tCKESD
Data setup time
tDSSD
Data hold time
tDHSD
Pin Name
MSDCLK
MSDCLK,
MAD[15:0]
MSDCLK,
MADATA[15:0]
MSDCLK,
MADATA[15:0]
MSDCLK,
MDQM[1:0]
MSDCLK,
MCSX8
MSDCLK,
MRASX
MSDCLK,
MCASX
MSDCLK,
MSDWEX
MSDCLK,
MSDCKE
MSDCLK,
MADATA[15:0]
MSDCLK,
MADATA[15:0]
Unit
Value
Unit
Min
Max
-
-
50
MHz
-
2
12
ns
-
2
12
ns
-
2
19.5
ns
-
1
12
ns
-
2
12
ns
-
2
12
ns
-
2
12
ns
-
2
12
ns
-
2
12
ns
-
19
-
ns
-
0
-
ns
Remarks
Note:
−
When the external load capacitance CL = 30 pF
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
109
D a t a S h e e t
tCYCSD
SDRAM Access
MSDCLK
tAOSD
MAD[24:0]
MDQM[1:0]
MCSX
MRASX
MCASX
MSDWEX
MSDCKE
Address
tWROSD
tMCSSD
tRASSD
tCASSD
tMWESD
tCKESD
tDSSD
MADATA[15:0]
RD
tDOSD
MADATA[15:0]
110
CONFIDENTIAL
tDHSD
tDOZSD
WD
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
14.4.11 Base Timer Input Timing
Timer Input Timing
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Input pulse width
TIOAn/TIOBn
tTIWH, tTIWL
Value
Condi
Pin Name
(when using as ECK, TIN)
tTIWH
tions
Min
Max
-
2tCYCP
-
Unit
Remarks
ns
tTIWL
ECK
VIHS
TIN
VIHS
VILS
VILS
Trigger Input Timing
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Input pulse width
tTRGH, tTRGL
TIOAn/TIOBn
(when using as TGIN)
tTRGH
TGIN
VIHS
Value
Condi
Pin Name
tions
Min
Max
-
2tCYCP
-
Unit
Remarks
ns
tTRGL
VIHS
VILS
VILS
Note:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which the Base Timer is connected to, see 10. Block Diagram in this
data sheet.
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
111
D a t a S h e e t
14.4.12 CSIO Timing
Synchronous Serial (SPI = 0, SCINV = 0)
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Baud rate
Symbol
Pin
Name
Conditions
Value
Min
Max
Unit
-
-
-
8
Mbps
Serial clock cycle time
tSCYC
SCKx
4tCYCP
-
ns
SCK↓→SOT delay time
tSLOVI
- 30
+ 30
ns
50
-
ns
0
-
ns
SIN→SCK↑
setup time
tIVSHI
SCKx,
SOTx
SCKx,
SINx
Internal shift
clock operation
SCKx,
SCK↑→SIN hold time
tSHIXI
Serial clock L pulse width
tSLSH
SCKx
2tCYCP - 10
-
ns
Serial clock H pulse width
tSHSL
SCKx
tCYCP + 10
-
ns
-
50
ns
10
-
ns
20
-
ns
SCK↓→SOT delay time
SIN→SCK↑
setup time
SCK↑→SIN hold time
tSLOVE
tIVSHE
tSHIXE
SINx
SCKx,
SOTx
SCKx,
SINx
SCKx,
External shift
clock
operation
SINx
SCK falling time
tF
SCKx
-
5
ns
SCK rising time
tR
SCKx
-
5
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
112
CONFIDENTIAL
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in
this data sheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance CL = 30 pF.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
tSCYC
VOH
SCK
VOL
VOL
tSLOVI
VOH
VOL
SOT
tIVSHI
VIH
VIL
SIN
tSHIXI
VIH
VIL
MS bit = 0
tSLSH
SCK
VIH
tF
VIL
tSHSL
VIL
SIN
VIH
tR
tSLOVE
SOT
VIH
VOH
VOL
tIVSHE
VIH
VIL
tSHIXE
VIH
VIL
MS bit = 1
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
113
D a t a S h e e t
Synchronous Serial (SPI = 0, SCINV = 1)
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Baud rate
Serial clock cycle time
SCK↑→SOT delay time
Symbol
tSCYC
tSHOVI
Pin
Name
-
Conditions
-
SCKx
SCKx,
SOTx
SCKx,
Value
Unit
Min
Max
-
8
Mbps
4tCYCP
-
ns
- 30
+ 30
ns
50
-
ns
0
-
ns
Internal shift
SIN→SCK↓ setup time
tIVSLI
SCK↓→SIN hold time
tSLIXI
Serial clock L pulse width
tSLSH
SCKx
2tCYCP - 10
-
ns
Serial clock H pulse width
tSHSL
SCKx
tCYCP + 10
-
ns
SCK↑→SOT delay time
tSHOVE
-
50
ns
SIN→SCK↓ setup time
tIVSLE
10
-
ns
SCK↓→SIN hold time
tSLIXE
20
-
ns
SINx
clock operation
SCKx,
SINx
SCKx,
SOTx
SCKx,
External shift
SINx
clock operation
SCKx,
SINx
SCK falling time
tF
SCKx
-
5
ns
SCK rising time
tR
SCKx
-
5
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
114
CONFIDENTIAL
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in
this data sheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance CL = 30 pF.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
tSCYC
VOH
SCK
VOH
VOL
tSHOVI
VOH
VOL
SOT
tIVSLI
VIH
VIL
SIN
tSLIXI
VIH
VIL
MS bit = 0
tSHSL
SCK
VIL
tR
tSLSH
VIH
tSHOVE
SOT
SIN
VIH
VIL
VIL
tF
VOH
VOL
tIVSLE
VIH
VIL
tSLIXE
VIH
VIL
MS bit = 1
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
115
D a t a S h e e t
Synchronous Serial (SPI = 1, SCINV = 0)
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Baud rate
Serial clock cycle time
SCK↑→SOT delay time
SIN→SCK↓
setup time
Symbol
tSCYC
tSHOVI
tIVSLI
Pin
Name
-
Conditions
-
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
Internal shift
Value
Unit
Min
Max
-
8
Mbps
4tCYCP
-
ns
- 30
+ 30
ns
50
-
ns
0
-
ns
2tCYCP - 30
-
ns
clock operation
SCK↓→SIN hold time
tSLIXI
SOT→SCK↓ delay time
tSOVLI
Serial clock L pulse width
tSLSH
SCKx
2tCYCP - 10
-
ns
Serial clock H pulse width
tSHSL
SCKx
tCYCP + 10
-
ns
-
50
ns
10
-
ns
20
-
ns
SCK↑→SOT delay time
SIN→SCK↓
setup time
SCK↓→SIN hold time
tSHOVE
tIVSLE
tSLIXE
SINx
SCKx,
SOTx
SCKx,
SOTx
SCKx,
External shift
SINx
clock operation
SCKx,
SINx
SCK falling time
tF
SCKx
-
5
ns
SCK rising time
tR
SCKx
-
5
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
116
CONFIDENTIAL
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in
this data sheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance CL = 30 pF.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
tSCYC
VOH
VOL
SCK
SOT
VOH
VOL
VOH
VOL
tIVSLI
tSLIXI
VIH
VIL
SIN
VOL
tSHOVI
tSOVLI
VIH
VIL
MS bit = 0
tSLSH
SCK
SOT
VIH
VIL
VIH
VIL
tF
*V
tR
VIH
tSHOVE
VOH
VOL
OH
VOL
tIVSLE
SIN
tSHSL
tSLIXE
VIH
VIL
VIH
VIL
MS bit = 1
*: Changes when writing to TDR register
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
117
D a t a S h e e t
Synchronous Serial (SPI = 1, SCINV = 1)
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Baud rate
Serial clock cycle time
Symbol
tSCYC
Pin
name
-
Conditions
-
SCKx
SCKx,
Value
Unit
Min
Max
-
8
Mbps
4tCYCP
-
ns
- 30
+ 30
ns
50
-
ns
0
-
ns
2tCYCP - 30
-
ns
SCK↓→SOT delay time
tSLOVI
SIN→SCK↑ setup time
tIVSHI
SCK↑→SIN hold time
tSHIXI
SOT→SCK↑ delay time
tSOVHI
Serial clock L pulse width
tSLSH
SCKx
2tCYCP - 10
-
ns
Serial clock H pulse width
tSHSL
SCKx
tCYCP + 10
-
ns
-
50
ns
10
-
ns
20
-
ns
SCK↓→SOT delay time
tSLOVE
SIN→SCK↑ setup time
tIVSHE
SCK↑→SIN hold time
tSHIXE
SOTx
SCKx,
SINx
SCKx,
Internal shift
clock operation
SINx
SCKx,
SOTx
SCKx,
SOTx
SCKx,
External shift
SINx
clock operation
SCKx,
SINx
SCK falling time
tF
SCKx
-
5
ns
SCK rising time
tR
SCKx
-
5
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
118
CONFIDENTIAL
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in
this data sheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance CL = 30 pF.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
tSCYC
VOH
SCK
tSOVHI
SOT
tSLOVI
VOH
VOL
VOH
VOL
tSHIXI
tIVSHI
VIH
VIL
SIN
VOH
VOL
VIH
VIL
MS bit = 0
tSHSL
tR
SCK
VIL
VIH
tSLSH
VIH
VIL
tF
VIL
VIH
tSLOVE
SOT
VOH
VOL
VOH
VOL
tIVSHE
SIN
tSHIXE
VIH
VIL
VIH
VIL
MS bit = 1
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
119
D a t a S h e e t
When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS=0, CSLVL=1)
(VCC = 2.7V to 3.6V, VSS = 0V)
Value
Parameter
SCS↓→SCK↓ setup time
Symbol
tCSSI
SCK↑→SCS↑ hold time
tCSHI
SCS deselect time
tCSDI
SCS↓→SCK↓ setup time
tCSSE
SCK↑→SCS↑ hold time
tCSHE
SCS deselect time
Conditions
Internal shift
clock
Unit
Min
Max
(*1)-50
(*1)+0
ns
(*2)+0
(*2)+50
ns
(*3)-50
(*3)+50
+5tCYCP
+5tCYCP
3tCYCP+30
-
ns
External shift
0
-
ns
tCSDE
clock
3tCYCP+30
-
ns
SCS↓→SOT delay time
tDSE
operation
-
40
ns
SCS↑→SOT delay time
tDEE
0
-
ns
operation
ns
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in
this data sheet.
120
CONFIDENTIAL
−
About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral
Manual Main part (MN709-00001).
−
When the external load capacitance CL = 30 pF.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
SCS
output
tCSDI
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
SCS input
tCSDE
tCSSE
tCSHE
SCK input
tDEE
SOT
(SPI=0)
tDSE
SOT
(SPI=1)
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
121
D a t a S h e e t
When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS=0, CSLVL=1)
(VCC = 2.7V to 3.6V, VSS = 0V)
Value
Parameter
Symbol
Conditions
Unit
Min
Max
Internal shift
(*1)-50
(*1)+0
ns
SCS↓→SCK↑ setup time
tCSSI
SCK↓→SCS↑ hold time
tCSHI
clock
(*2)+0
(*2)+50
ns
tCSDI
operation
(*3)-50+5tCYCP
(*3)+50+5tCYCP
ns
SCS deselect time
SCS↓→SCK↑ setup time
tCSSE
3tCYCP+30
-
ns
SCK↓→SCS↑ hold time
tCSHE
External shift
0
-
ns
SCS deselect time
tCSDE
clock
3tCYCP+30
-
ns
SCS↓→SOT delay time
tDSE
operation
-
40
ns
SCS↑→SOT delay time
tDEE
0
-
ns
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this
data sheet.
122
CONFIDENTIAL
−
About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral
Manual Main part (MN709-00001).
−
When the external load capacitance CL = 30 pF.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
SCS
output
tCSDI
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
SCS
input
tCSDE
tCSSE
tCSHE
SCK
input
tDEE
SOT
(SPI=0)
tDSE
SOT
(SPI=1)
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
123
D a t a S h e e t
When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS=0, CSLVL=0)
(VCC = 2.7V to 3.6V, VSS = 0V)
Value
Parameter
SCS↑→SCK↓ setup time
Symbol
Conditions
tCSSI
Internal shift
Unit
Min
Max
(*1)-50
(*1)+0
ns
SCK↑→SCS↓ hold time
tCSHI
(*2)+0
(*2)+50
ns
SCS deselect time
tCSDI
(*3)-50+5tCYCP
(*3)+50+5tCYCP
ns
SCS↑→SCK↓ setup time
tCSSE
3tCYCP+30
-
ns
SCK↑→SCS↓ hold time
tCSHE
0
-
ns
clock operation
External shift
SCS deselect time
tCSDE
3tCYCP+30
-
ns
SCS↑→SOT delay time
tDSE
-
40
ns
SCS↓→SOT delay time
tDEE
0
-
ns
clock operation
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this
data sheet.
124
CONFIDENTIAL
−
About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral
Manual Main part (MN709-00001).
−
When the external load capacitance CL = 30 pF.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
tCSDI
SCS
output
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
tCSDE
SCS
input
tCSSE
tCSHE
SCK
input
tDEE
SOT
(SPI=0)
SOT
tDSE
(SPI=1)
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
125
D a t a S h e e t
When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS=0, CSLVL=0)
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Value
Conditions
Min
SCS↑→SCK↑ setup time
tCSSI
SCK↓→SCS↓ hold time
tCSHI
SCS deselect time
Unit
Max
(*1)-50
(*1)+0
ns
(*2)+0
(*2)+50
ns
tCSDI
(*3)-50+5tCYCP
(*3)+50+5tCYCP
ns
SCS↑→SCK↑ setup time
tCSSE
3tCYCP+30
-
ns
SCK↓→SCS↓ hold time
tCSHE
0
-
ns
3tCYCP+30
-
ns
Internal shift
clock operation
External shift
SCS deselect time
tCSDE
SCS↑→SOT delay time
tDSE
-
40
ns
SCS↓→SOT delay time
tDEE
0
-
ns
clock operation
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this
data sheet.
126
CONFIDENTIAL
−
About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral
Manual Main part (MN709-00001).
−
When the external load capacitance CL = 30 pF.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
tCSDI
SCS
output
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
tCSDE
SCS
input
tCSSE
tCSHE
SCK
input
tDEE
SOT
(SPI=0)
SOT
tDSE
(SPI=1)
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
127
D a t a S h e e t
High-Speed Synchronous Serial (SPI = 0, SCINV = 0)
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Baud rate
Serial clock cycle time
SCK↓→SOT delay time
SIN→SCK↑ setup time
Symbol
tSCYC
tSLOVI
tIVSHI
Pin
Name
-
Conditions
-
SCKx
SCKx,
SOTx
SCKx,
SINx
Internal shift
clock operation
Value
Unit
Min
Max
-
25
Mbps
4tCYCP
-
ns
- 10
+ 10
ns
-
ns
5
-
ns
14
12.5*
SCKx,
SCK↑→SIN hold time
tSHIXI
Serial clock L pulse width
tSLSH
SCKx
2tCYCP - 5
-
ns
Serial clock H pulse width
tSHSL
SCKx
tCYCP + 10
-
ns
-
15
ns
5
-
ns
5
-
ns
SCK↓→SOT delay time
tSLOVE
SIN→SCK↑ setup time
tIVSHE
SCK↑→SIN hold time
tSHIXE
SINx
SCKx,
SOTx
SCKx,
External shift
SINx
clock operation
SCKx,
SINx
SCK falling time
tF
SCKx
-
5
ns
SCK rising time
tR
SCKx
-
5
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
128
CONFIDENTIAL
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in
this data sheet.
−
These characteristics only guarantee the following pins.
 SIN6_0, SOT6_0, SCK6_0, SCS60_0
−
When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF)
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
tSCYC
VOH
SCK
VOL
VOL
tSLOVI
VOH
VOL
SOT
tIVSHI
tSHIXI
VIH
VIL
VIH
VIL
SIN
MS bit = 0
tSLSH
SCK
VIH
tF
SOT
VIL
tSHSL
VIL
VIH
VIH
tR
tSLOVE
VOH
VOL
SIN
tIVSHE
VIH
VIL
tSHIXE
VIH
VIL
MS bit = 1
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
129
D a t a S h e e t
High-Speed Synchronous Serial (SPI = 0, SCINV = 1)
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Baud rate
Serial clock cycle time
SCK↑→SOT delay time
SIN→SCK↓ setup time
Symbol
tSCYC
tSHOVI
tIVSLI
SCK↓→SIN hold time
tSLIXI
Serial clock L pulse width
tSLSH
Serial clock H pulse width
tSHSL
SCK↑→SOT delay time
tSHOVE
SIN→SCK↓ setup time
tIVSLE
SCK↓→SIN hold time
tSLIXE
Pin
Name
Conditions
Value
Unit
Min
Max
-
25
Mbps
4tCYCP
-
ns
- 10
+ 10
ns
-
ns
5
-
ns
SCKx
2tCYCP - 5
-
ns
SCKx
tCYCP + 10
-
ns
-
15
ns
5
-
ns
5
-
ns
-
-
SCKx
SCKx,
SOTx
SCKx,
SINx
Internal shift
clock operation
14
12.5*
SCKx,
SINx
SCKx,
SOTx
SCKx,
External shift
SINx
clock operation
SCKx,
SINx
SCK falling time
tF
SCKx
-
5
ns
SCK rising time
tR
SCKx
-
5
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
130
CONFIDENTIAL
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this
data sheet.
−
These characteristics only guarantee the following pins.
 SIN6_0, SOT6_0, SCK6_0, SCS60_0
−
When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF)
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
tSCYC
VOH
SCK
VOH
VOL
tSHOVI
VOH
VOL
SOT
tIVSLI
VIH
VIL
SIN
tSLIXI
VIH
VIL
MS bit = 0
tSHSL
SCK
VIL
tR
SOT
tSLSH
VIH
VIH
VIL
VIL
tF
tSHOVE
VOH
VOL
SIN
tIVSLE
VIH
VIL
tSLIXE
VIH
VIL
MS bit = 1
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
131
D a t a S h e e t
High-Speed Synchronous Serial (SPI = 1, SCINV = 0)
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Baud rate
Serial clock cycle time
Symbol
tSCYC
SCK↑→SOT delay time
tSHOVI
SIN→SCK↓ setup time
tIVSLI
Pin
Name
-
Conditions
-
SCKx
SCKx,
SOTx
SCKx,
SINx
Internal shift
clock operation
SCKx,
Value
Unit
Min
Max
-
25
Mbps
4tCYCP
-
ns
- 10
+ 10
ns
-
ns
5
-
ns
2tCYCP - 10
-
ns
14
12.5*
SCK↓→SIN hold time
tSLIXI
SOT→SCK↓ delay time
tSOVLI
Serial clock L pulse width
tSLSH
SCKx
2tCYCP - 5
-
ns
Serial clock H pulse width
tSHSL
SCKx
tCYCP + 10
-
ns
SCK↑→SOT delay time
tSHOVE
-
15
ns
SIN→SCK↓ setup time
tIVSLE
5
-
ns
SCK↓→SIN hold time
tSLIXE
5
-
ns
SINx
SCKx,
SOTx
SCKx,
SOTx
SCKx,
External shift
SINx
clock operation
SCKx,
SINx
SCK falling time
tF
SCKx
-
5
ns
SCK rising time
tR
SCKx
-
5
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
132
CONFIDENTIAL
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in
this data sheet.
−
These characteristics only guarantee the following pins.
SIN6_0, SOT6_0, SCK6_0, SCS60_0
−
When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF)
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
tSCYC
VOH
VOL
SCK
SOT
VOH
VOL
VOH
VOL
tIVSLI
tSLIXI
VIH
VIL
SIN
VOL
tSHOVI
tSOVLI
VIH
VIL
MS bit = 0
tSLSH
SCK
SOT
VIH
VIL
VIH
VIL
tF
*V
tR
VIH
tSHOVE
VOH
VOL
OH
VOL
tIVSLE
SIN
tSHSL
tSLIXE
VIH
VIL
VIH
VIL
MS bit = 1
*: Changes when writing to TDR register
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
133
D a t a S h e e t
High-Speed Synchronous Serial (SPI = 1, SCINV = 1)
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Baud rate
Serial clock cycle time
Symbol
tSCYC
SCK↓→SOT delay time
tSLOVI
SIN→SCK↑ setup time
tIVSHI
SCK↑→SIN hold time
tSHIXI
SOT→SCK↑ delay time
tSOVHI
Serial clock L pulse width
tSLSH
Serial clock H pulse width
tSHSL
SCK↓→SOT delay time
tSLOVE
SIN→SCK↑ setup time
tIVSHE
SCK↑→SIN hold time
tSHIXE
Pin
Name
Conditions
Value
Unit
Min
Max
-
25
Mbps
4tCYCP
-
ns
- 10
+ 10
ns
-
ns
5
-
ns
2tCYCP - 10
-
ns
SCKx
2tCYCP - 5
-
ns
SCKx
tCYCP + 10
-
ns
-
15
ns
5
-
ns
5
-
ns
-
-
SCKx
SCKx,
SOTx
SCKx,
SINx
Internal shift
clock operation
SCKx,
SINx
SCKx,
SOTx
SCKx,
SOTx
SCKx,
External shift
SINx
clock operation
SCKx,
SINx
14
12.5*
SCK falling time
tF
SCKx
-
5
ns
SCK rising time
tR
SCKx
-
5
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
134
CONFIDENTIAL
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this
data sheet.
−
These characteristics only guarantee the following pins.
SIN6_0, SOT6_0, SCK6_0, SCS60_0
−
When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF)
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
tSCYC
SCK
VOH
tSOVHI
SOT
tSLOVI
VOH
VOL
VOH
VOL
tSHIXI
tIVSHI
VIH
VIL
SIN
VOH
VOL
VIH
VIL
MS bit = 0
VIL
SOT
SIN
tSHSL
tR
SCK
VIH
tSLSH
VIH
VIL
tF
VIL
VIH
tSLOVE
VOH
VOL
VOH
VOL
tIVSHE
tSHIXE
VIH
VIL
VIH
VIL
MS bit = 1
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
135
D a t a S h e e t
When Using High-Speed Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS=0,
CSLVL=1)
(VCC = 2.7V to 3.6V, VSS = 0V)
Value
Parameter
Symbol
Conditions
Unit
Min
Max
Internal shift
(*1)-20
(*1)+0
ns
SCS↓→SCK↓ setup time
tCSSI
SCK↑→SCS↑ hold time
tCSHI
clock
(*2)+0
(*2)+20
ns
SCS deselect time
tCSDI
operation
(*3)-20+5tCYCP
(*3)+20+5tCYCP
ns
SCS↓→SCK↓ setup time
tCSSE
3tCYCP+15
-
ns
SCK↑→SCS↑ hold time
tCSHE
External shift
0
-
ns
SCS deselect time
tCSDE
clock
3tCYCP+15
-
ns
SCS↓→SOT delay time
tDSE
operation
-
25
ns
SCS↑→SOT delay time
tDEE
0
-
ns
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this
data sheet.
136
CONFIDENTIAL
−
About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral
Manual Main part (MN709-00001).
−
When the external load capacitance CL = 30 pF.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
SCS
output
tCSDI
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
SCS
input
tCSDE
tCSSE
tCSHE
SCK
input
tDEE
SOT
(SPI=0)
tDSE
SOT
(SPI=1)
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
137
D a t a S h e e t
When Using High-Speed Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS=0,
CSLVL=1)
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Value
Conditions
Unit
Min
Max
Internal shift
(*1)-20
(*1)+0
ns
SCS↓→SCK↑ setup time
tCSSI
SCK↓→SCS↑ hold time
tCSHI
clock
(*2)+0
(*2)+20
ns
SCS deselect time
tCSDI
operation
(*3)-20+5tCYCP
(*3)+20+5tCYCP
ns
SCS↓→SCK↑ setup time
tCSSE
3tCYCP+15
-
ns
SCK↓→SCS↑ hold time
tCSHE
External shift
0
-
ns
SCS deselect time
tCSDE
clock
3tCYCP+15
-
ns
SCS↓→SOT delay time
tDSE
operation
-
25
ns
SCS↑→SOT delay time
tDEE
0
-
ns
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this
data sheet.
138
CONFIDENTIAL
−
About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral
Manual Main part (MN709-00001).
−
When the external load capacitance CL = 30 pF.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
SCS
output
tCSDI
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
SCS
intpu
tCSDE
tCSSE
tCSHE
SCK
input
tDEE
SOT
(SPI=0)
tDSE
SOT
(SPI=1)
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
139
D a t a S h e e t
When Using High-Speed Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS=0,
CSLVL=0)
(VCC = 2.7V to 3.6V, VSS = 0V)
Value
Parameter
Symbol
Conditions
SCS↑→SCK↓ setup time
tCSSI
Internal shift
SCK↑→SCS↓ hold time
tCSHI
clock
SCS deselect time
tCSDI
operation
SCS↑→SCK↓ setup time
tCSSE
SCK↑→SCS↓ hold time
tCSHE
SCS deselect time
tCSDE
SCS↑→SOT delay time
tDSE
SCS↓→SOT delay time
tDEE
Unit
Min
Max
(*1)-20
(*1)+0
ns
(*2)+0
(*2)+20
ns
(*3)-20+5tCYCP
(*3)+20+5tCYCP
ns
3tCYCP+15
-
ns
External shift
0
-
ns
clock
3tCYCP+15
-
ns
operation
-
25
ns
0
-
ns
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this
data sheet.
140
CONFIDENTIAL
−
About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral
Manual Main part (MN709-00001).
−
When the external load capacitance CL = 30 pF.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
tCSDI
SCS
output
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
tCSDE
SCS
input
tCSSE
tCSHE
SCK
input
tDEE
SOT
(SPI=0)
SOT
tDSE
(SPI=1)
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
141
D a t a S h e e t
When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS=0, CSLVL=0)
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Value
Conditions
Min
Unit
Max
SCS↑→SCK↑ setup time
tCSSI
Internal shift
(*1)-20
(*1)+0
ns
SCK↑→SCS↓ hold time
tCSHI
clock
(*2)+0
(*2)+20
ns
SCS deselect time
tCSDI
operation
(*3)-20+5tCYCP
(*3)+20+5tCYCP
ns
SCS↑→SCK↑ setup time
tCSSE
3tCYCP+15
-
ns
SCK↓→SCS↓ hold time
tCSHE
External shift
0
-
ns
SCS deselect time
tCSDE
clock
3tCYCP+15
-
ns
SCS↑→SOT delay time
tDSE
operation
-
40
ns
SCS↓→SOT delay time
tDEE
0
-
ns
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this
data sheet.
142
CONFIDENTIAL
−
About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral
Manual Main part (MN709-00001).
−
When the external load capacitance CL = 30 pF.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
tCSDI
SCS
output
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
SCS
tCSDE
input
tCSSE
tCSHE
SCK
input
tDEE
SOT
(SPI=0)
SOT
tDSE
(SPI=1)
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
143
D a t a S h e e t
External Clock (EXT = 1): when in Asynchronous Mode Only
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Serial clock L pulse width
tSLSH
Serial clock H pulse width
tSHSL
SCK falling time
tF
SCK rising time
tR
CL = 30 pF
tR
V IL
CONFIDENTIAL
VIH
Unit
Min
Max
tCYCP + 10
-
ns
tCYCP + 10
-
ns
-
5
ns
-
5
ns
tSHSL
SCK
144
Value
Condition
tF
tSLSH
VIH
V IL
Remarks
V IL
VIH
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
14.4.13 External Input Timing
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Pin Name
Conditions
Value
Min
Max
Unit
ADTGx
FRCKx
A/D converter trigger input
-
2tCYCP*1
-
ns
-
2tCYCP*1
-
ns
-
ns
500(*2)
-
ns
500(*3)
-
ns
ICxx
Input pulse
width
tINH, tINL
DTTIxX
NMIX
WKUPx
Free-run timer input clock
Input capture
2tCYCP +
INT00 to INT15,
Remarks
-
-
100(*1)
Waveform generator
External interrupt,
NMI
Deep standby wake up
(*1): tCYCP indicates the APB bus clock cycle time except stop when in Stop mode, in timer mode.
About the APB bus number which the Multi-function Timer and External interrupt are connected to, see
10. Block Diagram in this data sheet.
(*2): When in STOP mode, in timer mode.
(*3): When in deep standby RTC mode, in deep standby Stop mode.
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
145
D a t a S h e e t
14.4.14 Quadrature Position/Revolution Counter Timing
(VCC = AVCC = 2.7V to 3.6V, VSS = AVSS = 0V, TA = -40°C to +105°C)
Parameter
Value
Symbol
Conditions
AIN pin H width
tAHL
-
AIN pin L width
tALL
-
BIN pin H width
tBHL
-
BIN pin L width
tBLL
-
tAUBU
PC_Mode2 or PC_Mode3
tBUAD
PC_Mode2 or PC_Mode3
tADBD
PC_Mode2 or PC_Mode3
tBDAU
PC_Mode2 or PC_Mode3
tBUAU
PC_Mode2 or PC_Mode3
tAUBD
PC_Mode2 or PC_Mode3
tBDAD
PC_Mode2 or PC_Mode3
tADBU
PC_Mode2 or PC_Mode3
ZIN pin H width
tZHL
QCR:CGSC=0
ZIN pin L width
tZLL
QCR:CGSC=0
tZABE
QCR:CGSC=1
tABEZ
QCR:CGSC=1
BIN rising time from
AIN pin H level
AIN falling time from
BIN pin H level
BIN falling time from
AIN pin L level
AIN rising time from
BIN pin L level
AIN rising time from
BIN pin H level
BIN falling time from
AIN pin H level
AIN falling time from
BIN pin L level
BIN rising time from
AIN pin L level
AIN/BIN rising and falling time
from determined ZIN level
Determined ZIN level from
AIN/BIN rising and falling time
Min
Max
2tCYCP*
-
Unit
ns
*: tCYCP indicates the APB bus clock cycle time except when in Stop mode, in timer mode.
About the APB bus number which Quadrature Position/Revolution Counter is connected to, see 10.
Block Diagram in this data sheet.
tALL
tAHL
AIN
tAUBU
tADBD
tBUAD
tBDAU
BIN
tBHL
146
CONFIDENTIAL
tBLL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
tBLL
tBHL
BIN
tBUAU
tBDAD
tAUBD
tADBU
AIN
tAHL
tALL
ZIN
ZIN
AIN/BIN
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
147
D a t a S h e e t
14.4.15 I2C Timing
Standard Mode, Fast Mode
(VCC = 2.7V to 3.6, VSS = 0V)
Parameter
Symbol
Conditions
Standard Mode
Fast Mode
Unit
Min
Max
Min
Max
fSCL
0
100
0
400
kHz
tHDSTA
4.0
-
0.6
-
μs
SCL clock L width
tLOW
4.7
-
1.3
-
μs
SCL clock H width
tHIGH
4.0
-
0.6
-
μs
tSUSTA
4.7
-
0.6
-
μs
SCL clock frequency
(Repeated) START condition hold time
SDA ↓ → SCL ↓
(Repeated) Start condition setup time
SCL ↑ → SDA ↓
Data hold time
SCL ↓ → SDA ↓ ↑
Data setup time
SDA ↓ ↑ → SCL ↑
STOP condition setup time
SCL ↑ → SDA ↑
Bus free time between
Stop condition and Start condition
CL = 30 pF,
tHDDAT
*1
R = (Vp/IOL)
*2
0
3.45
*3
0
0.9
μs
tSUDAT
250
-
100
-
ns
tSUSTO
4.0
-
0.6
-
μs
tBUF
4.7
-
1.3
-
μs
*4
-
ns
*4
-
ns
2 MHz ≤
tCYCP<40 MHz
40 MHz ≤
Noise filter
Remarks
tSP
tCYCP<60 MHz
60 MHz ≤
tCYCP<80 MHz
80 MHz ≤
tCYCP ≤ 100 MHz
*4
-
2 tCYCP
*4
-
4 tCYCP
2 tCYCP
4 tCYCP
*5
*4
-
6 tCYCP
*4
-
8 tCYCP
6 tCYCP
8 tCYCP
*4
-
ns
*4
-
ns
*1: R and CL represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates
the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current.
*2: The maximum tHDDAT must satisfy that it does not extend at least L period (tLOW) of device's SCL signal.
2
2
*3: A Fast mode I C bus device can be used on a Standard mode I C bus system as long as the device satisfies the
requirement of tSUDAT ≥ 250 ns.
*4: tCYCP is the APB bus clock cycle time.
2
About the APB bus number that I C is connected to, see 10. Block Diagram in this data sheet.
When the standard mode is used, please set to 2 MHz or more peripheral bus clock.
When fast mode is used, please set to 8MHz or more peripheral bus clock.
*5: The noise filter time can be changed by register settings.
Change the number of the noise filter steps according to APB bus clock frequency.
148
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Fast Mode Plus (Fm+)
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Conditions
Fast Mode Plus (Fm+)*6
Unit
Min
Max
fSCL
0
1000
kHz
tHDSTA
0.26
-
μs
SCL clock L width
tLOW
0.5
-
μs
SCL clock H width
tHIGH
0.26
-
μs
0.26
-
μs
SCL clock frequency
(Repeated) Start condition hold time
SDA ↓ → SCL ↓
(Repeated) Start condition setup time
SCL ↑ → SDA ↓
Data hold time
SCL ↓ → SDA ↓ ↑
Data setup time
SDA ↓ ↑ → SCL ↑
Stop condition setup time
SCL ↑ → SDA ↑
tSUSTA
Remarks
CL = 30 pF,
*1
0
0.45
*2, *3
μs
tSUDAT
50
-
ns
tSUSTO
0.26
-
μs
tBUF
0.5
-
μs
*4
-
ns
*4
-
ns
tHDDAT
Bus free time between
Stop condition and Start condition
R = (Vp/IOL)
60 MHz ≤
Noise filter
tSP
tCYCP<80 MHz
80 MHz ≤
tCYCP ≤100 MHz
6 tCYCP
*5
8 tCYCP
*1: R and CL represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates
the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current.
*2: The maximum tHDDAT must satisfy that it does not extend at least L period (t LOW) of device's SCL signal.
2
2
*3: A Fast mode I C bus device can be used on a Standard mode I C bus system as long as the device satisfies the
requirement of "tSUDAT ≥ 250 ns".
*4: tCYCP is the APB bus clock cycle time.
2
About the APB bus number that I C is connected to, see 10. Block Diagram in this data sheet.
To use fast mode plus (Fm+), set the peripheral bus clock at 64 MHz or more.
*5: The noise filter time can be changed by register settings.
Change the number of the noise filter steps according to APB bus clock frequency.
2
*6: When using fast mode plus (Fm+), set the I/O pin to the mode corresponding to I C Fm+ in the EPFR register. See
Chapter 12 : I/O Port in "FM4 Family Peripheral Manual Main part (MN709-00001)" for the details.
SDA
SCL
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
149
D a t a S h e e t
14.4.16 ETM Timing
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Data hold
tETMH
TRACECLK
Pin Name
TRACECLK,
TRACED[3:0]
1/tTRACE
frequency
Conditions
-
Value
Unit
Min
Max
2
15
ns
32
MHz
-
ns
-
Remarks
TRACECLK
TRACECLK
tTRACE
clock cycle
-
31.25
Note:
−
When the external load capacitance CL= 30 pF.
HCLK
TRACECLK
TRACED[3:0]
150
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
14.4.17 JTAG Timing
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
TMS, TDI setup time
tJTAGS
TMS, TDI hold time
tJTAGH
TDO delay time
tJTAGD
Pin Name
TCK,
TMS, TDI
TCK,
TMS, TDI
TCK,
TDO
Conditions
Value
Unit
Min
Max
-
15
-
ns
-
15
-
ns
-
-
45
ns
Remarks
Note:
−
When the external load capacitance CL= 30 pF.
TCK
TMS/TDI
TDO
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
151
D a t a S h e e t
14.4.18 I2S Timing
Master Mode Timing
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Output frequency
Output clock pulse width
I2SCK→I2SWS
delay time
I2SCK→I2SDO
delay time*
I2SDI→I2SCK
Symbol
Pin Name
Conditions
tMCYC
I2SCK
-
tMHW
Min
Max
Unit
-
12.288
MHz
45
55
%
45
55
%
I2SCK
-
tDFS
I2SCK, I2SWS
-
0
24.0
ns
tDDO
I2SCK, I2SDO
-
0
24.0
ns
-
25.0
-
ns
-
0
-
ns
-
-
5
ns
-
-
5
ns
tMLW
tHSDI
setup time
Value
Remarks
I2SCK, I2SDI
I2SDI→I2SCK
tHDI
hold time
Input signal rising time
tRI
Input signal falling time
tFI
I2SDI
*: Except for the first bit of transmission frame
Notes:
−
−
152
CONFIDENTIAL
When the external load capacitance CL = 20 pF
When I2SWS=48 kHz, I2MCLK=256 × I2SWS
Frame synchronization signal (I2SWS) is settable to 48 kHz, 32 kHz, 16 kHz.
2
See Chapter 7-2: I S(Inter-IC Sound bus)Interface in FM4 Family Peripheral Manual
Communication part (MN709-00004) for the details.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
t MCYC
tMHW
I2SCK (CPOL=0)
tMLW
I2SCK (CPOL=1)
tDFS
I2SWS
(FSPH=0, FSLN=0)
tDFS
tDFS
tDFS
I2SWS
(FSPH=1, FSLN=0)
tDFS
tDFS
I2SWS
(FSPH=0, FSLN=1)
tDFS
tDFS
I2SWS
(FSPH=1, FSLN=1)
tDDO
I2SDO
tSDI
tHDI
tSDI
tHDI
I2SDI
(SMPL=0)
tSDI
tHDI
I2SDI
(SMPL=1)
Note:
−
I2SDI
2
See Chapter 7-2: I S(Inter-IC Sound bus)Interface in FM4 Family Peripheral Manual
Communication part (MN709-00004) for the details of CPOL, FSPH, FSLIN, SMPL .
0. 8×VCC
0. 8×VCC
0.2×V CC
t FI
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
0. 8×VCC
0.2×V CC
tRI
153
D a t a S h e e t
Slave Mode Timing
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Input frequency
Conditions
tSCYC
I2SCK
-
I2SCK
-
tSFI
I2SCK, I2SWS
tHFI
I2SCK, I2SWS
tSLW
I2SWS→I2SCK
Setup time
I2SWS→I2SCK
Hold time
I2SCK↑→I2SDO
tDDO
*1
Value
Unit
Min
Max
-
12.288
MHz
45
55
%
45
55
%
-
8
-
ns
-
0
-
ns
-
0
32
ns
-
0
32
ns
-
8
-
ns
-
0
-
ns
Remarks
I2SCK, I2SDO
I2SCK↑→I2SDO
Delay Time
Pin Name
tSHW
Input clock pulse width
Delay time
Symbol
tDFB1
*2
I2SDI→I2SCK↓
tSDI
Setup time
I2SCK, I2SDI
I2SDI→I2SCK↓
tHDI
Hold time
Input signal rising time
tRI
I2SCK,
-
-
5
ns
Input signal falling time
tFI
I2SWS,I2SDI
-
-
5
ns
*1: Except for the first bit of transmission frame
*2: When FSPH register 1.
Notes:
−
−
154
CONFIDENTIAL
When the external load capacitance CL = 20 pF
When I2SWS=48 kHz, I2MCLK=256 × I2SWS
Frame synchronization signal (I2SWS) is settable to 48 kHz, 32 kHz, 16 kHz.
2
See Chapter 7-2: I S(Inter-IC Sound bus)Interface in FM4 Family Peripheral Manual
Communication part (MN709-00004) for the details.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
tSCYC
tSHW
I2SCK (CPOL=0)
tSLW
I2SCK (CPOL=1)
tSFI tHFI
I2SWS
(FSPH=0, FSLN=0)
tSFI tHFI
I2SWS
(FSPH=1, FSLN=0)
tSFI
I2SWS
(FSPH=0, FSLN=1)
tSFI
I2SWS
(FSPH=1, FSLN=1)
tDDO
tDFB1
1
I2SDO
tSDI
tHDI
tSDI
tHDI
I2SDI
(SMPL=0)
tSDI
tHDI
I2SDI
(SMPL=1)
Notes:
I2SCK
I2SWS
I2SDI
−
See Chapter 7-2: I S(Inter-IC Sound bus)Interface in FM4 Family Peripheral Manual
Communication part (MN709-00004) for the details of FSPH, FSLN, SMPL
−
I2SCK input is selectable polarity by CPOL bit of CNTREG register
2
0. 8×VCC
0. 8×VCC
0.2×V CC
t FI
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
0. 8×VCC
0.2×V CC
tRI
155
D a t a S h e e t
・I2SMCLK Input Characteristics
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Symbol
Pin Name
Conditions
Input frequency
fCHS
I2SCK
Input clock cycle
tCYLHS
-
-
-
Input clock pulse width
Input clock rising time and
tCFS
falling time
tCRS
Unit
Max
-
-
25
MHz
-
40
-
ns
45
55
%
-
5
ns
PWHS/tCYLHS
PWLS/tCYLHS
-
Value
Min
-
Remarks
When using
external clock
When using
external clock
tCYLHS
0.8×VCC
I2SMCLK
0.8×VCC
0.8×VCC
0.2×VCC
PWHS
0.2×VCC
PWLS
tCFS
tCRS
・I2SMCLK Output Characteristics
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Input frequency
156
CONFIDENTIAL
Symbol
Pin Name
Conditions
fCHS
I2SCK
-
Value
Min
Max
-
12.288
Unit
Remarks
MHz
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
14.4.19 GDC:Panel Output Timing
(VCC = 3.0V to 3.6V, VSS = 0V, TA = -40℃ to +85℃)
Parameter
Output frequency
PNL_DCLK↓→PNL_PD[23:0]
Output delay time
PNL_DCLK↓→PNL_LH_SYNC
Output delay time
PNL_DCLK↓→PNL_FV_SYNC
Output delay time
PNL_DCLK↓→PNL_LE
Output delay time
PNL_DCLK↓→PNL_DEN
Output delay time
PNL_DCLK↓→PNL_PWE
Output delay time
Symbol
Pin Name
Conditions
tCYCPNGE
PNL_DCLK
tPDOPDGE
Value
Unit
Min
Max
-
-
40
MHz
PNL_PD[23:0]
-
-4.5
4.5
ns
tHDOPDGE
PNL_LH_SYNC
-
-4.5
4.5
ns
tVDOPDGE
PNL_FV_SYNC
-
-4.5
4.5
ns
tLDOPDGE
PNL_LE
-
-4.5
4.5
ns
tDDOPDGE
PNL_DEN
-
-4.5
4.5
ns
tPDOPDGE
PNL_PWE
-4.5
4.5
ns
tCYCPNGE
PNL_DCLK
PNL_PD[23:0]
tPDOPDGE
PNL_LHSYNC
tHDOPDGE
PNL_FVSYNC
tVDOPDGE
PNL_LE
tLDOPDGE
PNL_DEN
tDDOPDGE
PNL_PWE
tPDOPDGE
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
157
D a t a S h e e t
14.4.20 GDC: SDRAM-IF Timing
(VCC = 3.0V to 3.6V, VSS = 0V, TA = -40℃ to +85℃)
Parameter
Symbol
Pin Name
Output frequency
tCYCSD
GE_SDCLK
Address delay time
tAOSD
Bank address delay time
tBAOSD
GE_SDCLK↑→ Data output delay time
tDOSD
GE_SDCLK↑→ Data output Hi-Z time
tDOZSD
GE_SDDQM[3:0] delay time
tWROSD
GE_SDCSX delay time
tSCSSD
GE_SDRASX delay time
tRASSD
GE_SDCASX delay time
tCASSD
GE_SDWEX delay time
tSWESD
GE_SDCKE delay time
tCKESD
Data setup time
tDSSD
Data hold time
tDHSD
158
CONFIDENTIAL
GE_SDCLK
GE_SDA[11:0]
GE_SDCLK
GE_SDBA[1:0]
GE_SDCLK
GE_SDDQ[31:0]
GE_SDCLK
GE_SDDQ[31:0]
GE_SDCLK
GE_SDDQM[3:0]
GE_SDCLK
GE_SDCSX
GE_SDCLK
GE_SDRASX
GE_SDCLK
GE_SDCASX
GE_SDCLK
GE_SDWEX
GE_SDCLK
GE_SDCKE
GE_SDCLK
GE_SDDQ[31:0]
GE_SDCLK
GE_SDDQ[31:0]
Value
Unit
Min
Max
-
80
MHz
1
5
ns
1
5
ns
1
5
ns
1
5
ns
1
5
ns
1
5
ns
1
5
ns
1
5
ns
1
5
ns
1
5
ns
4
-
ns
0
-
ns
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
tCYCSD
GE_SDCLK
tAOSD
Address
GE_SDA[11:0]
tBAOSD
Address
GE_SDBA[1:0]
tWROSD
GE_SDDQM[3:0]
tSCSSD
GE_SDCSX
tRASSD
GE_SDRASX
tCASSD
GE_SDCASX
tSWESD
GE_SDWEX
tCKESD
GE_SDCKE
tDSSD
GE_SDRASX
RD
tDOSD
GE_SDRASX
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
tDHSD
tDOZSD
WD
159
D a t a S h e e t
14.4.21 GDC: High-Speed Quad SPI Timing
(VCC = 3.0V to 3.6V, VSS = 0V, TA = -40℃ to +85℃)
Parameter
Serial clock frequency
Symbol
Pin Name
tSCYCM
GE_SPCK
Value
Conditions
Unit
Min
Max
-
80
MHz
tOSLSK02
1.5×tSCYCM – 4.25
-
ns
tOSLSK13
tSCYCM – 4.25
-
ns
tSCYCM
-
ns
1.5×tSCYCM
-
ns
-1.25
4.25
ns
4
-
ns
0.5×tSCYCM
-
ns
Enabled CS→
CLK Starting Time
(mode0/mode2)
Enabled CS→
CLK Starting Time
(mode1/mode3)
GE_SPCK,
GE_SPCSX_0
CLK Last→
Disabled CS Time
tOSKSL02
CL=20 pF
(mode0/mode2)
CLK Last→
Disabled CS Time
tOSKSL13
(mode1/mode3)
SIO Data output time
GE_SPCK,
tOSDAT
GE_SPDQ0,
SIO Setup
tDSSET
SIO Hold
tSDHOLD
GE_SPDQ1,
GE_SPDQ2,
GE_SPDQ3
Note:
−
See Chapter 8-3: High-Speed Quad SPI controller in FM4 Family Peripheral Manual
Communication part (MN709-00004) for the detail of RTM mode.
GE_SPCSX_0
tSCYCM
mode 0
mode 2
t OSLSK02
GE_SPCK
t OSKSL02
mode 1
mode 3
t OSKSL13
t OSLSK13
GE_SPDQ0,
GE_SPDQ1,
GE_SPDQ2,
GE_SPDQ3
input
t DSSET
t SDHOLD
output
t OSDAT
160
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
14.4.22 GDC: HyperBus I/F Timing
HyperFlash Write
(VCC = 3.0V to 3.6V, VSS = 0V, TA = -40°C to +85°C)
Parameter
Symbol
Hyper Bus clock cycle
Pin Name
Value
Conditions
Unit
Min
Max
tCKCYC
GE_HBCK
10
-
ns
tCSS
GE_HBCSX_1
GE_HBCSX_0
3
-
ns
tDSV
GE_HBRWDS
-
8
ns
0.8
-
ns
0.8
-
ns
0
-
ns
-
7
ns
8
-
ns
CS↑↓→CK↑
Chip Select setup time
CS↓→RDS↓
Chip select active to RDS valid(Low)
DQ → CK↑↓
Input setup time
CK↑↓→ DQ
Input hold time
CK↓ → CS↑
Chip select hold time
CS↑→ RDS(Hi-z)
Chip select Inactive to RDS High-Z
CS↑ → CS↓
Chip select HIGH between operation
GE_HBDQ7GE_HBDQ0
GE_HBDQ7GE_HBDQ0
GE_HBCSX_1
GE_HBCSX_0
GE_HBCSX_1
GE_HBCSX_0
GE_HBCSX_1
GE_HBCSX_0
tIS
tIH
tCSH
tDSZ
tCSHI
CL=30 pF
tCSHI
GE_HBCSX_0,1
VOH
VOL
tCKCYC
tCSS
VOH
GE_HBCK
tCSH
tCSS
VOL
tDSV
tDSZ
GE_HBRWDS
tIS
GE_HBDQ7-0
CA0
47-40
CA0
39-32
CA1
31-24
CA1
23-16
tIH
VIH
CA2
15-8
CA2
7-0
Dn
15-8
Dn
7-0
VIL
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
161
D a t a S h e e t
HyperFlash Read
(VCC = 3.0V to 3.6V, VSS = 0V, TA = -40°C to +85°C)
Parameter
Hyper Bus clock cycle
Symbol
Pin Name
tRDSCYC
Read initial Access Time
CS↑↓→CK↑
Chip Select setup time
CS↓ → RDS↓
Chip select active to RDS valid (Low)
DQ → CK↑↓
Input setup time
CK↑↓→ DQ
Input hold time
CK↓ → CS↑
Chip select hold time
CS↑ → RDS(Hi-Z)
Chip select Inactive to RDS High-Z
CK↑↓ → DQ (Low Z)
Clock to DQs Low Z
RDS↑↓→ DQ (valid)
RDS transition to DQ valid
RDS↑↓→ DQ (invalid)
RDS transition to DQ invalid
CS↑→ DQ (Hi-Z)
Chip select Inactive to DQs High-Z
CK↑↓→ RDS↑↓
CK transition to RDS transition
CS↑→ CS↓
Chip select HIGH between Operation
Value
Conditions
Unit
Min
Max
GE_HBCK
10
-
ns
tACC
GE_HBCK
-
120
ns
tCSS
GE_HBCSX_1
GE_HBCSX_0
3
-
ns
tDSV
GE_HBRWDS
-
8
ns
0.8
-
ns
0.8
-
ns
0
-
ns
-
7
ns
0
-
ns
-0.8
+0.8
ns
-0.8
+0.8
ns
-
7
ns
GE_HBDQ7GE_HBDQ0
GE_HBDQ7GE_HBDQ0
GE_HBCSX_1
GE_HBCSX_0
tIS
tIH
tCSH
tDSZ
CL=30pF
GE_HBRWDS
GE_HBDQ7GE_HBDQ0
GE_HBDQ7GE_HBDQ0
GE_HBDQ7GE_HBDQ0
GE_HBDQ7GE_HBDQ0
tDQLZ
tDSS
tDSH
tOZ
tCKDS
GE_HBRWDS
1
7
ns
tCSHI
GE_HBCSX_1
GE_HBCSX_0
8
-
ns
tCSHI
tACC
GE_HBCSX_0,1
VOH
VOL
tCSH
tCSS
GE_HBCK
VOL
tDSV
tDQLZ
tCKDS
tRDSCYC
tIH
tIS
tDSH
VIH
CA0
47-40
CA0
39-32
CA1
31-24
CA1
23-16
CA2
15-8
VIL
162
CONFIDENTIAL
tDSZ
tOZ
VOH
GE_HBRWDS
GE_HBDQ7-0
tCSS
VOH
tDSS
VOH
CA2
7-0
Dn
15-8
Dn
7-0
Dn+1
15-8
Dn+1
7-0
VOL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
14.5 12-bit A/D Converter
Electrical Characteristics for the A/D Converter
(VCC = AVCC = 2.7V to 3.6V, VSS = AVSS = AVRL = 0V)
Parameter
Symbol
Pin Name
Resolution
-
Integral Nonlinearity
-
Differential Nonlinearity
-
Zero transition voltage
VZT
Full-scale transition
voltage
VFST
Value
Typ
-
-
-
12
bit
-
- 4.5
-
+ 4.5
LSB
-
- 2.5
-
+ 2.5
LSB
- 15
-
+ 15
mV
AN00 to
AVRH – 15
-
AVRH + 15
mV
AN00 to
AN23
Max
Unit
Min
Remarks
AVRH=2.7 V to 3.6 V
AN23
AVCC - 15
-
AVCC + 15
mV
Conversion time
-
-
1.0*1
-
-
μs
Sampling time *2
tS
-
0.3
-
10
μs
tCCK
-
50
-
1000
ns
tSTT
-
-
-
1.0
μs
-
AVCC
-
0.30
0.45
mA
A/D 1unit operation
-
0.1
9.5
μA
When A/D stop
-
0.66
1.18
mA
-
0.2
3.2
μA
Compare clock cycle*3
State transition time to
operation permission
Power supply current
(analog + digital)
Reference power supply
current(AVRH)
-
AVRH
Analog input capacity
CAIN
-
-
-
12.05
pF
Analog input resistance
RAIN
-
-
-
1.8
kΩ
-
-
-
4
LSB
-
-
5
μA
AN00 to
AVSS
-
AVRH
V
AN23
AVSS
-
AVCC
V
-
AVRH
2.7
-
AVCC
V
-
AVRL
AVSS
-
AVSS
V
Interchannel disparity
Analog port input leak
current
Analog input voltage
Reference voltage
-
AN00 to
AN23
A/D 1unit operation
AVRH=3.3 V
When A/D stop
tCCK ≥ 50 ns
*1: The conversion time is the value of sampling time (tS) + compare time (tC).
Ensure that it satisfies the value of sampling time (tS) and compare clock cycle (tCCK).
For setting of sampling time and compare clock cycle, see Chapter 1-1: A/D Converter in FM4 Family Peripheral
Manual Analog Macro Part (MN709-00003). The register setting of the A/D converter is reflected by the APB bus
clock timing.
For more information about the APB bus signal to which the A/D converter is connected, see 10. Block Diagram in
this data sheet.
The sampling clock and compare clock are set at base clock (HCLK).
*2: A necessary sampling time changes by external impedance. Ensure that it set the sampling time to satisfy (Equation 1).
*3: The compare time (tC) is the value of (Equation 2).
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
163
D a t a S h e e t
AN00 to AN23
Analog input pin
Analog signal
source
REXT
Comparator
RAIN
C
AIN
Cin
(Equation 1) tS ≥ (RAIN + REXT) × CAIN × 9
tS:
Sampling time
RAIN:
Input resistance of A/D = 1.8 kΩ
CAIN:
Input capacity of A/D = 12.05 pF
REXT:
Output impedance of external circuit
(Equation 2) tC = tCCK × 14
164
CONFIDENTIAL
tC:
Compare time
tCCK:
Compare clock cycle
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Definition of 12-bit A/D Converter Terms
 Resolution:
 Integral Nonlinearity:
Analog variation that is recognized by an A/D converter.
Deviation of the line between the zero-transition point
(0b000000000000 ←→ 0b000000000001) and the full-scale transition point
(0b111111111110 ←→ 0b111111111111) from the actual conversion characteristics.
 Differential Nonlinearity:
Deviation from the ideal value of the input voltage that is required to
change the output code by 1 LSB.
Integral Nonlinearity
Differential Nonlinearity
0xFFF
Actual conversion
characteristics
0xFFE
Actual conversion
characteristics
0x(N+1)
{1 LSB(N-1) + VZT}
VFST
VNT
0x004
(Actually-measured
value)
0x003
0x002
(Actuallymeasured
value)
Digital output
Digital output
0xFFD
0xN
Ideal characteristics
V(N+1)T
0x(N-1)
(Actually-measured
value)
Actual conversion
characteristics
Ideal characteristics
VNT
(Actually-measured
value)
0x(N-2)
0x001
VZT (Actually-measured value)
AVss
Actual conversion characteristics
AVRH
AVss
AVRH
Analog input
Integral Nonlinearity of digital output N =
Differential Nonlinearity of digital output N =
1LSB =
N:
VZT:
VFST :
VNT:
VNT - {1LSB × (N - 1) + VZT}
1LSB
V(N + 1) T - VNT
1LSB
[LSB]
- 1 [LSB]
VFST - VZT
4094
A/D converter digital output value.
Voltage at which the digital output changes from 0x000 to 0x001.
Voltage at which the digital output changes from 0xFFE to 0xFFF.
Voltage at which the digital output changes from 0x(N − 1) to 0xN.
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
Analog input
165
D a t a S h e e t
14.6 USB Characteristics
(VCC = AVCC = 3.0V to 3.6V, VSS = AVSS = 0V)
Parameter
Symbol
Pin Name
Conditions
Value
Min
Max
Unit
Remarks
Input H level voltage
VIH
-
2.0
VCC + 0.3
V
*1
Input
Input L level voltage
VIL
-
VSS - 0.3
0.8
V
*1
characteristics
Differential input sensitivity
VDI
-
0.2
-
V
*2
Different common mode range
VCM
-
0.8
2.5
V
*2
2.8
3.6
V
*3
0.0
0.3
V
*3
External pull-up
Output H level voltage
VOH
resistance =
15kΩ
External pull-up
Output L level voltage
Output
Crossover voltage
characteristics
Rising time
Falling time
VOL
UDP0/
resistance =
UDM0
15kΩ
VCRS
-
1.3
2.0
V
*4
tFR
Full-Speed
4
20
ns
*5
tFF
Full-Speed
4
20
ns
*5
Rising/falling time matching
tFRFM
Full-Speed
90
111.11
%
*5
Output impedance
ZDRV
Full-Speed
28
44
Ω
*6
tLR
Low-Speed
75
300
ns
*7
tLF
Low-Speed
75
300
ns
*7
tLRFM
Low-Speed
80
125
%
*7
Rising time
Falling time
Rising/falling time matching
Minimum differential input
sensitivity [V]
*1: The switching threshold voltage of Single-end-receiver of USB I/O buffer is set as within VIL (Max) = 0.8 V,
VIH (Min) = 2.0 V (TTL input standard).
There are some hysteresis to lower noise sensitivity.
*2: Use differential-Receiver to receive USB differential data signal.
Differential-receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to
2.5 V to the local ground reference level.
Above voltage range is the common mode input voltage range.
Common mode input voltage [V]
*3: The output drive capability of the driver is below 0.3 V at Low-state (VOL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or
above (to the VSS and 15 kΩ load) at High-State (VOH).
*4: The cross voltage of the external differential output signal (D + /D − ) of USB I/O buffer is within 1.3 V to 2.0 V.
166
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
D+
Max 2.0 V
Min 1.3 V
D-
VCRS specified range
*5: They indicate Rising time (tFR) and Falling time (tFF) of the Full-speed differential data signal.
They are defined by the time between 10 % and 90 % of the output signal voltage.
For Full-speed buffer, tFR/tFF ratio is regulated as within ± 10 % to minimize RFI emission.
D+
90%
D-
90%
10%
10%
tFR
Rising time
tFF
Falling time
Full-speed Buffer
Rs=27Ω
TxD+
CL=50pF
Rs=27Ω
TxDCL=50pF
3-State Enable
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
167
D a t a S h e e t
*6: USB Full-speed connection is performed via twist pair cable shield with 90 Ω ± 15 % characteristic impedance
(Differential Mode).
USB standard defines that output impedance of USB driver must be in range from 28 Ω to 44 Ω. So, discrete series
resistor (Rs) addition is defined in order to satisfy the above definition and keep balance.
When using this USB I/O, use it with 25 Ω to 30 Ω (recommendation value 27 Ω) Series resistor Rs.
28Ω to 44Ω Equiv. Imped.
28Ω to 44Ω Equiv. Imped.
Mount it as external resistance.
Rs series resistor 25 Ω to 30 Ω
Series resistor of 27 Ω (recommendation value) must be added.
And, use "resistance with an uncertainty of 5% by E24 sequence".
*7: They indicate rising time (tLR) and Falling time (tLF) of the Low-speed differential data signal.
They are defined by the time between 10 % and 90 % of the output signal voltage.
D+
90%
D-
90%
10%
10%
tLR
Rising time
tLF
Falling time
Note:
−
168
CONFIDENTIAL
See Low-speed load (Compliance load) for conditions of external load.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Low-speed load (Upstream port load) - Reference 1
CL = 50pF to 150pF
CL = 50pF to 150pF
Low-speed load (Downstream port load) - Reference 2
CL =
200pF to 600pF
CL =
200pF to 600pF
Low-speed load (Compliance load)
CL = 200pF to 450pF
CL = 200pF to 450pF
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
169
D a t a S h e e t
14.7 Low-Voltage Detection Characteristics
14.7.1 Low-Voltage Detection Reset
Parameter
Symbol
Conditions
Detected voltage
VDL
Released voltage
VDH
14.7.2
Value
Unit
Min
Typ
Max
-
2.46
2.55
2.64
V
-
2.51
2.60
2.69
V
Remarks
When voltage
drops
When voltage
rises
Interrupt of Low-Voltage Detection
Parameter
Symbol
Conditions
Value
Unit
Min
Typ
Max
2.80
2.90
3.00
V
Detected voltage
VDL
Released voltage
VDH
2.90
3.00
3.11
V
Detected voltage
VDL
2.99
3.10
3.21
V
Released voltage
VDH
3.09
3.20
3.31
V
Detected voltage
VDL
3.18
3.30
3.42
V
Released voltage
VDH
3.28
3.40
3.52
V
LVD stabilization wait time
tLVDW
-
-
4800×tCYCP*
μs
SVHI = 00111
SVHI = 00100
SVHI = 01100
-
Remarks
When voltage
drops
When voltage rises
When voltage
drops
When voltage rises
When voltage
drops
When voltage rises
*: tCYCP indicates the APB2 bus clock cycle time.
170
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
14.8 MainFlash Memory Write/Erase Characteristics
(VCC = 2.7V to 3.6V)
Parameter
Value
Unit
Min
Typ
Max
Large Sector
-
0.7
3.7
s
Small Sector
-
0.3
1.1
s
-
12
Sector erase time
Remarks
Includes write time prior to internal erase
Write cycles ≤ 100 times
Half word (16-bit)
write time
100
Write cycles > 100 times
Chip erase time
μs
Not including system-level overhead time
s
Includes write time prior to internal erase
200
-
6.6
31
Write Cycles and Data Hold Time
Erase/Write Cycles (cycle)
Data Hold Time (year)
1,000
20*
10,000
10*
100,000
5*
*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature
acceleration test result into average temperature value at + 85°C) .
14.9
VFLASH Memory Write/Erase Characteristics
(VCC = 2.7V to 3.6V)
Parameter
Value
Unit
Min
Typ
Max
-
50
450
ms
Block Erase Time (64 KB)
-
500
2000
ms
Page Program Time
-
0.7
3
ms
Chip erase time
-
11.2
64
s
Sector erase time
(4 KB)
Remarks
Erase Endurance
Value
Parameter
Erase per sector
Unit
Min
Typ
Max
100k
-
-
Remarks
cycle
*: Data retention of 20 years is based on 1k erase cycle or less.
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
171
D a t a S h e e t
14.10 Standby Recovery Time
14.10.1 Recovery Cause: Interrupt/WKUP
The time from recovery cause reception of the internal circuit to the program operation start is shown.
Recovery Count Time
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Value
Symbol
Sleep mode
Unit
Max*
Typ
Remarks
μs
HCLK×1
High-speed CR Timer mode
40
80
μs
Low-speed CR timer mode
450
900
μs
Sub timer mode
896
1136
μs
316
581
μs
270
540
μs
365
667
μs
365
667
μs
Main Timer mode
PLL Timer mode
RTC mode
tICNT
Stop mode
(High-speed CR /Main/PLL run mode return)
RTC mode
Stop mode
(Low-speed CR/sub run mode return)
Deep standby RTC mode
Deep standby Stop mode
without RAM
retention
with RAM retention
*: The maximum value depends on the built-in CR accuracy.
Example of standby recovery operation (when in external interrupt recovery*)
Ext.INT
Interrupt factor
accept
Active
tICNT
CPU
Operation
Interrupt factor
clear by CPU
Start
*: External interrupt is set to detecting fall edge.
172
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Example of Standby Recovery Operation (when in Internal Resource Interrupt Recovery*)
Internal
Resource INT
Interrupt factor
accept
Active
tICNT
CPU
Operation
Interrupt factor
clear by CPU
Start
*: Depending on the standby mode, interrupt from the internal resource is not included in the recovery cause.
Notes:
−
The return factor is different in each Low-Power consumption modes.
See Chapter 6: The return factor from each low power consumption modes in “FM4 Family
Peripheral Manual Main Part (MN709-00001).
−
When interrupt recoveries, the operation mode that CPU recoveries depends on the state before
the Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode" in
"FM4 Family Peripheral Manual Main part (MN709-00001).
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
173
D a t a S h e e t
14.10.2 Recovery Cause: Reset
The time from reset release to the program operation start is shown.
Recovery Count Time
(VCC = 2.7V to 3.6V, VSS = 0V)
Parameter
Value
Symbol
Sleep mode
Unit
Typ
Max*
155
266
μs
155
266
μs
315
567
μs
315
567
μs
315
567
μs
336
667
μs
336
667
μs
Remarks
High-speed CR Timer mode
Main Timer mode
PLL Timer mode
Low-speed CR timer mode
tRCNT
Sub timer mode
RTC mode
Stop mode
Deep standby RTC mode
Deep standby Stop mode
without RAM
retention
with RAM retention
*: The maximum value depends on the built-in CR accuracy.
Example of Standby Recovery Operation (when in INITX Recovery)
INITX
Internal RST
RST Active
Release
tRCNT
CPU
Operation
174
CONFIDENTIAL
Start
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Example of Standby Recovery Operation (when in Internal Resource Reset Recovery*)
Internal
Resource RST
Internal RST
RST Active
Release
tRCNT
CPU
Operation
Start
*: Depending on the Low-Power consumption mode, the reset issue from the internal resource is not included in the
recovery cause.
Notes:
−
The return factor is different in each low power consumption mode.
See Chapter 6: The return factor from each low power consumption modes in “FM4 Family
Peripheral Manual Main Part (MN709-00001).
−
The recovery process is unique for each operating mode. See Chapter 6: Low Power
Consumption mode in FM4 Family Peripheral Manual Main Part (MN709-00001)
−
When the power-on reset/low-voltage detection reset, they are not included in the return factor.
See 14.4.8 Power-on Reset Timing.
−
In recovering from reset, CPU changes to High-speed Run mode. In the case of using the main
clock and PLL clock, they need further main clock oscillation stabilization wait time and oscillation
stabilization wait time of Main PLL clock.
−
Internal resource reset indicates Watchdog reset and CSV reset.
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
175
D a t a S h e e t
15. Ordering Information
Part Number
Package
S6E2D55G0AGV20000
Plastic・LQFP (0.5 mm pitch), 120 pin
S6E2D55GJAMV20000
(FPT-120P-M21)
S6E2D55J0AGV20000
S6E2D55G0AGB30000
S6E2D55G0AGZ20000
176
CONFIDENTIAL
Plastic・LQFP (0.5 mm pitch), 176 pin
(FPT-176P-M07)
Plastic・PFBGA (0.5 mm pitch), 161 pin
(FDJ161)
Plastic・Ex-LQFP (0.5 mm pitch), 120 pin
(LEM120)
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
16. Package Dimensions
120-pin plastic LQFP
Lead pitch
0.50 mm
Package width ×
package length
16.0 × 16.0 mm
Lead shape
Gullwing
Sealing method
Plastic mold
Mounting height
1.70 mm MAX
Weight
0.88 g
Code
(Reference)
P-LFQFP120-16×16-0.50
(FPT-120P-M21)
120-pin plastic LQFP
(FPT-120P-M21)
Note 1) * : These dimensions do not include resin protrusion.
Resin protrusion is +0.25(.010) MAX(each side).
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.
18.00±0.20(.709±.008)SQ
* 16.00
+0.40
–0.10
.630
+.016
–.004
SQ
90
61
60
91
0.08(.003)
Details of "A" part
1.50
.059
+0.20
–0.10
+.008
–.004
(Mounting height)
INDEX
120
LEAD No.
31
1
30
0.50(.020)
C
0.22±0.05
(.009±.002)
0.08(.003) M
2002-2010 FUJITSU SEMICONDUCTOR LIMITED F120033S-c-4-7
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
0~8°
"A"
0.145
.006
+0.05
–0.03
+.002
–.001
0.60±0.15
(.024±.006)
0.10±0.05
(.004±.002)
(Stand off)
0.25(.010)
Dimensions in mm (inches).
Note: The values in parentheses are reference values.
177
D a t a S h e e t
176-pin plastic LQFP
Lead pitch
0.50 mm
Package width ×
package length
24.0 × 24.0 mm
Lead shape
Gullwing
Sealing method
Plastic mold
Mounting height
1.70 mm MAX
Code
(Reference)
P-LQFP-0176-2424-0.5 0
(FPT-176P-M07)
176-pin plastic LQFP
(FPT-176P-M07)
Note 1) * : Values do not include resin protrusion.
Resin protrusion is +0.25(.010)Max(each side).
Note 2) Pins width and pins thickness include plating thickness
Note 3) Pins width do not include tie bar cutting remainder.
26.00±0.20(1.024±.008)SQ
*24.00±0.10(.945±.004)SQ
132
0.145±0.055
(.006±.002)
89
133
88
0.08(.003)
Details of "A" part
+0.20
1.50 –0.10
+.008 (Mounting height)
.059 –.004
0°~8°
0.10±0.10
(.004±.004)
(Stand off)
INDEX
176
LEAD No.
45
1
44
0.50(.020)
C
0.22±0.05
(.009±.002)
2004-2010 FUJITSU SEMICONDUCTOR LIMITED F176013S-c-1-3
178
CONFIDENTIAL
0.08(.003)
"A"
0.50±0.20
(.020±.008)
0.60±0.15
(.024±.006)
0.25(.010)
M
Dimensions in mm (inches).
Note: The values in parentheses are reference values.
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
Package Type
Package Code
PFBGA 161
FDJ 161
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
179
D a t a S h e e t
Package Type
Package Code
Ex-LQFP 120
LEM 120
180
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
17. Major Changes
Page
Section
Change Results
Revision 0.1
-
-
Initial release
Revision 1.0
1, 3
13, 14
Title
3. Product Lineup
15
4. Packages
176
15. Ordering Information
Deleted the following products.
S6E2D55JAA/ S6E2D55GAA
Added the following description:
6
2. Features
External Bus Interface
Maximum area size : Up to 256 Mbytes
Modified the following description:
0x6000_0000 to 0xDFFF_FFFF to 0x6000_0000 to 0x7FFF_FFFF
7
2. Features
13
3. Product Lineup
8
2. Features
15
4. Packages
16
5. Pin Assignment
20 to 52
6. Pin Descriptions
81
14.2. Recommended Operating
176
15. Ordering Information
Added that CAN-FD Interface supported non-CAN FD.
Modified the ch. Number of I2C ( ch.7→ch.4)
Added the Ex_LQFP(TEQFP)(LEM120)
53
7. I/O Circuit Type
Modified the Type-A Circuit
54,55,58
7. I/O Circuit Type
Added the comment in TypeD/E/F/G/N
59
7. I/O Circuit Type
67
10. Block Diagram
68
12. Memory Map
80
14.2. Recommended Operating
163
14.5 12-bit A/D Converter
82
14.2. Recommended Operating
84 to 93
93
95
97
163
170
14.3.1 Current Rating
14.3.1 Current Rating
Table 14-11
14.4 AC Characteristics
14.4.1 Main Clock Input
14.4 AC Characteristics
14.4.5 Operating Conditions
14.5 12-bit A/D Converter
14.7.2 Interrupt of Low-Voltage
Detection
171
14.9 VFLASH Memory
176
15. Ordering Information
179, 180
16. Package Dimensions
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
Modified theType-Q Remarks
CMOS level output → CMOS level hysteresis input
Deleted the following products.
S6E2D55JAA/ S6E2D55GAA
Modified the External Device Area / GDC Area
Added the AVRL in Analog reference voltage.
Modified the TBD in Current Value
Added the Note
Modified the TBD in Max spec
Added the comment of VFLASH memory
Added the VFLASH memory current
Added the Master clock
Modified the I2S PLL frequency (307.2→384)
Modified the GDC clock frequency (400→160)
Modified the Spec
Modified the comment of Conversion time
Modified the max value in LVD stabilization wait time. (6000→4800)
Added the new
Modified the Part Number (S6E2D55G0AGB10000→S6E2D55G0AGB30000)
Added the Package (Ex_LQFP)
Added the FDJ161/LEM120
181
D a t a S h e e t
182
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015
D a t a S h e e t
April 21, 2015, S6E2D5_DS709-00021-1v0-E
CONFIDENTIAL
183
D a t a S h e e t
Colophon
The products described in this document are designed, developed and manufactured as contemplated for general use,
including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not
designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless
extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury,
severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control,
mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where
chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable
to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions. If any products described in this document
represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law
of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the
respective government entity will be required for export of those products.
Trademarks and Notice
The contents of this document are subject to change without notice. This document may contain information on a Spansion
product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without
notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy,
completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other
warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of
the information in this document.
®
®
®
TM
TM
Copyright © 2015 Cypress All rights reserved. Spansion , the Spansion logo, MirrorBit , MirrorBit Eclipse , ORNAND ,
TM
TM
Easy DesignSim , Traveo and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the
United States and other countries. Other names used are for informational purposes only and may be trademarks of their
respective owners.
184
CONFIDENTIAL
S6E2D5_DS709-00021-1v0-E, April 21, 2015