The following document contains information on Cypress products. S6E2D5 Series ® ® 32-bit ARM Cortex -M4F based Microcontroller S6E2D55J0A/S6E2D55G0A/S6E2D55GJA Data Sheet (Full Production) Notice to Readers: This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur. Publication Number S6E2D5_DS709-00021 CONFIDENTIAL Revision 1.0 Issue Date April 21, 2015 D a t a S h e e t Notice On Data Sheet Designations Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers of product information or intended specifications throughout the product life cycle, including development, qualification, initial production, and full production. In all cases, however, readers are encouraged to verify that they have the latest information before finalizing their design. The following descriptions of Spansion data sheet designations are presented here to highlight their presence and definitions. Advance Information The Advance Information designation indicates that Spansion Inc. is developing one or more specific products, but has not committed any design to production. Information presented in a document with this designation is likely to change, and in some cases, development on the product may discontinue. Spansion Inc. therefore places the following conditions upon Advance Information content: “This document contains information on one or more products under development at Spansion Inc. The information is intended to help you evaluate this product. Do not design in this product without contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed product without notice.” Preliminary The Preliminary designation indicates that the product development has progressed such that a commitment to production has taken place. This designation covers several aspects of the product life cycle, including product qualification, initial production, and the subsequent phases in the manufacturing process that occur before full production is achieved. Changes to the technical specifications presented in a Preliminary document should be expected while keeping these aspects of production under consideration. Spansion places the following conditions upon Preliminary content: “This document states the current technical specifications regarding the Spansion product(s) described herein. The Preliminary status of this document indicates that product qualification has been completed, and that initial production has begun. Due to the phases of the manufacturing process that require maintaining efficiency and quality, this document may be revised by subsequent versions or modifications due to changes in technical specifications.” Combination Some data sheets contain a combination of products with different designations (Advance Information, Preliminary, or Full Production). This type of document distinguishes these products and their designations wherever necessary, typically on the first page, the ordering information page, and pages with the DC Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first page refers the reader to the notice on this page. Full Production (No Designation on Document) When a product has been in production for a period of time such that no changes or only nominal changes are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include those affecting the number of ordering part numbers available, such as the addition or deletion of a speed option, temperature range, package type, or VIO range. Changes may also include those needed to clarify a description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following conditions to documents in this category: “This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur.” Questions regarding these document designations may be directed to your local sales office. 2 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 S6E2D5 Series 32-bit ARM® Cortex®-M4F based Microcontroller S6E2D55J0A/S6E2D55G0A/S6E2D55GJA Data Sheet (Full Production) 1. Description Devices in the S6E2D5 Series are highly integrated 32-bit microcontrollers with high performance and competitive cost. This series is based on the ARM Cortex-M4F Processor with on-chip Flash memory and SRAM. The series has peripheral functions such as graphics engine, display controller, motor control timers, ADCs, and 2 Communication Interfaces (USB, CAN, UART, CSIO, I C, LIN). The products that are described in this data sheet are TYPE4-M4 category products. See the FM4 Family Peripheral Manual Main Part (MN709-00001). Note: − ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries. Publication Number S6E2D5_DS709-00021 Revision 1.0 Issue Date April 21, 2015 This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur. CONFIDENTIAL D a t a S h e e t Table of Contents 1. Description ................................................................................................................................................. 3 2. Features ...................................................................................................................................................... 6 3. Product Lineup ........................................................................................................................................ 13 4. Packages .................................................................................................................................................. 15 5. Pin Assignment........................................................................................................................................ 16 6. Pin Descriptions ...................................................................................................................................... 20 7. I/O Circuit Type ........................................................................................................................................ 53 8. Handling Precautions .............................................................................................................................. 60 8.1. Precautions for Product Design ..................................................................................................... 60 8.2. Precautions for Package Mounting ................................................................................................ 61 8.3. Precautions for Use Environment .................................................................................................. 63 9. Handling Devices ..................................................................................................................................... 64 10. Block Diagram........................................................................................................................................ 67 11. Memory Size ........................................................................................................................................... 68 12. Memory Map ........................................................................................................................................... 68 13. Pin Status in Each CPU State ............................................................................................................... 70 14. Electrical Characteristics ...................................................................................................................... 78 14.1. Absolute Maximum Ratings ......................................................................................................... 78 14.2. Recommended Operating Conditions .......................................................................................... 80 14.3. DC Characteristics ....................................................................................................................... 84 14.3.1. Current Rating.................................................................................................................. 84 14.3.2. Pin Characteristics ........................................................................................................... 94 14.4. AC Characteristics ....................................................................................................................... 95 14.4.1. Main Clock Input Characteristics...................................................................................... 95 14.4.2. Sub Clock Input Characteristics ....................................................................................... 96 14.4.3. Built-in CR Oscillation Characteristics .............................................................................. 96 14.4.4. Operating Conditions of Main PLL (In the Case of Using Main Clock for Input Clock of PLL) ......................................................................................................................... 97 2 14.4.5. Operating Conditions of USB/I S/GDC PLL (In the Case of Using Main Clock for Input Clock of PLL) ..................................................................................................................... 97 14.4.6. Operating Conditions of Main PLL (In the Case of Using Built-in High-Speed CR Clock for Input Clock of Main PLL) ................................................................................................... 98 14.4.7. Reset Input Characteristics .............................................................................................. 98 14.4.8. Power-on Reset Timing ................................................................................................... 99 14.4.9. GPIO Output Characteristics ........................................................................................... 99 14.4.10. External Bus Timing ..................................................................................................... 100 14.4.11. Base Timer Input Timing .............................................................................................. 111 14.4.12. CSIO Timing ................................................................................................................ 112 14.4.13. External Input Timing ................................................................................................... 145 14.4.14. Quadrature Position/Revolution Counter Timing .......................................................... 146 2 14.4.15. I C Timing .................................................................................................................... 148 14.4.16. ETM Timing.................................................................................................................. 150 14.4.17. JTAG Timing ................................................................................................................ 151 2 14.4.18. I S Timing .................................................................................................................... 152 14.4.19. GDC:Panel Output Timing ........................................................................................... 157 14.4.20. GDC: SDRAM-IF Timing .............................................................................................. 158 14.4.21. GDC: High-Speed Quad SPI Timing ............................................................................ 160 14.4.22. GDC: HyperBus I/F Timing .......................................................................................... 161 14.5. 12-bit A/D Converter .................................................................................................................. 163 14.6. USB Characteristics ................................................................................................................... 166 4 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 14.7. Low-Voltage Detection Characteristics ...................................................................................... 170 14.7.1. Low-Voltage Detection Reset ........................................................................................ 170 14.7.2. Interrupt of Low-Voltage Detection................................................................................. 170 14.8. MainFlash Memory Write/Erase Characteristics ........................................................................ 171 14.9. VFLASH Memory Write/Erase Characteristics ........................................................................... 171 14.10. Standby Recovery Time ........................................................................................................... 172 14.10.1. Recovery Cause: Interrupt/WKUP ............................................................................... 172 14.10.2. Recovery Cause: Reset ............................................................................................... 174 15. Ordering Information ........................................................................................................................... 176 16. Package Dimensions ........................................................................................................................... 177 17. Major Changes ..................................................................................................................................... 181 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 5 D a t a S h e e t 2. Features 32-bit ARM Cortex-M4F Core Processor version: r0p1 Up to 160 MHz frequency operation Built-in FPU Supports DSP instructions Memory Protection Unit (MPU): improves the reliability of an embedded system Integrated Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and 128 peripheral interrupts and 16 priority levels 24-bit system timer (Sys Tick): System timer for OS task management On-Chip Memories Flash memory This series has on-chip flash memory with these features: − 384 Kbytes − Built-in Flash Accelerator System with 16 Kbytes trace buffer memory − Security function for code protection Notes: − The read access to flash memory can be achieved without wait-cycle up to operation frequency of 72 MHz. − Even at the operation frequency more than 72 MHz, an equivalent access to flash memory can be obtained by Flash Accelerator System. SRAM This is composed of two independent SRAMs (SRAM0 and SRAM2). SRAM0 is connected to I-code bus and D-code bus of Cortex-M4F core. SRAM2 is connected to the system bus of Cortex-M4F core. − SRAM0: 32 Kbytes − SRAM2: 4 Kbytes VRAM This series is equipped with a SRAM for GDC. − Max 512 Kbytes VFLASH S6E2D55GJA is equipped with a Flash for GDC. − 2 Mbytes External Bus Interface Supports SRAM, NOR, NAND Flash and SDRAM devices Up to two chip selects CS0 and CS8 (CS8 is only for SDRAM) 8-/16-bit data width Up to 25-bit address bit Maximum area size : Up to 256 Mbytes Supports address/data multiplexing Supports external RDY function Supports the scramble function − Possible to set the validity/invalidity of the scramble function for the external areas 0x6000_0000 to 0x7FFF_FFFF in 4 Mbytes units. − Possible to set two kinds of the scramble key. Note: − 6 CONFIDENTIAL It is necessary to prepare the dedicated software library to use the scramble function. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t USB Interface (One channel) A USB interface is composed of function and host. USB function − USB2.0 Full-Speed supported − Max 6 EndPoint supported − − − − − EndPoint 0 is for control transfer EndPoint 1, 2 can be selected for bulk-transfer, interrupt-transfer or isochronous-transfer EndPoint 3 to 5 can select bulk-transfer or interrupt-transfer EndPoint 1 to 5 comprise the double buffer The size of each endpoint is as follows. − Endpoint 0, 2 to 5: 64 bytes − EndPoint 1: 256 bytes USB host − USB2.0 Full-Speed / Low-Speed supported − Bulk-transfer, interrupt-transfer and isochronous-transfer support − USB device connected/disconnected automatically detect − In/out token handshake packet automatically accepted − Max 256-byte packet-length supported − Wake-up function supported CAN-FD Interface (One channel) − Compatible with CAN Specification 2.0A/B − Maximum transfer rate: 5 Mbps − Message buffer for receiver: Up to 192 messages − Message buffer for transmitter: Up to 32 messages − CAN with flexible data rate (non-ISO CAN FD) Notes: − CAN FD cannot communicate between non-ISO CAN FD and ISO CAN FD, because non-ISO CAN FD and ISO CAN FD are different frame format. − About the problem of "non-ISO CAN FD", see the White Paper from CiA(CAN in Automation). http://www.can-newsletter.org/engineering/standardization/141222_can-fd-and-crc-issued_white-pa per_bosch Multi-function Serial Interface (Max eight channels) 64 bytes with FIFO (the FIFO step numbers vary depending on the settings of the communication mode or bit length.) Operation mode is selectable from the following for each channel. − UART − CSIO − LIN − I2 C UART − Full-duplex double buffer − Selection with or without parity supported − Built-in dedicated baud rate generator − External clock available as a serial clock − Various error detect functions available (parity errors, framing errors, and overrun errors) April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 7 D a t a S h e e t CSIO − Full-duplex double buffer − Built-in dedicated baud rate generator − Overrun error detect function available − Serial chip select function (ch.6 and ch.7 only) − Supports High-speed SPI (ch.6 only) − Data length 5 to 16-bit LIN − LIN protocol Rev.2.1 supported − Full-duplex double buffer − Master/Slave mode supported − LIN break field generation (can change to 13 to 16-bit length) − LIN break delimiter generation (can change to 1 to 4-bit length) − Various error detect functions available (parity errors, framing errors, and overrun errors) I2 C − Standard mode (Max 100 kbps) / Fast mode (Max 400 kbps) supported − Fast mode Plus (Fm+) (Max 1000 kbps, only for ch.4=ch.A) supported DMA Controller (Eight channels) The DMA controller has an independent bus for the CPU, so the CPU and the DMA controller can process simultaneously. 8 independently configured and operated channels Transfer can be started by software or requested from the built-in peripherals Transfer address area: 32-bit (4 Gbytes) Transfer mode: Block transfer/Burst transfer/Demand transfer Transfer data type: bytes/half-word/word Transfer block count: 1 to 16 Number of transfers: 1 to 65536 DSTC (Descriptor System Data Transfer Controller) (128 channels) The DSTC can transfer data at high-speed without going via the CPU. The DSTC adopts the descriptor system and, following the specified contents of the descriptor that has already been constructed on the memory, can directly access the memory/peripheral device and performs the data transfer operation. It supports the software activation, the hardware activation, and the chain activation functions. A/D Converter (Max 24 channels) 12-bit A/D Converter − Successive Approximation type − Built-in 2 units − Conversion time: 1.0 μs @ 3.3 V − Priority conversion available (priority at two levels) − Scanning conversion mode − Built-in FIFO for conversion data storage (for SCAN conversion: 16 steps, for priority conversion: four steps) 8 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Base Timer (Max eight channels) Operation mode is selectable from the followings for each channel. 16-bit PWM timer 16-bit PPG timer 16-/32-bit reload timer 16-/32-bit PWC timer General-Purpose I/O Port This series can use its pins as general-purpose I/O ports when they are not used for external bus or peripherals. Moreover, the port relocate function is built in. It can set to which I/O port the peripheral function can be allocated. Capable of pull-up control per pin Capable of reading pin level directly Built-in port relocate function Up to 98 general-purpose I/O ports @ 120-pin package Some I/O pins are 5V tolerant. See "6. Pin Descriptions" and "7. I/O Circuit Type" for the corresponding pins. Multi-Function Timer (One unit) The multi-function timer is composed of the following blocks. Minimum resolution : 6.25 ns 16-bit free-run timer × 3ch. Input capture × 4ch. Output compare × 6ch. A/D activation compare × 6ch. Waveform generator × 3ch. 16-bit PPG timer × 3ch. The following functions can be used to achieve motor control. PWM signal output function DC chopper waveform output function Dead time function Input capture function A/D converter activate function DTIF (motor emergency stop) interrupt function Real-Time Clock (RTC) The real-time clock can count Year/Month/Day/Hour/Minute/Second/A day of the week from 01 to 99. Interrupt function with specifying date and time (Year/Month/Day/Hour/Minute/Second/A day of the week.) is available. This function is also available by specifying only Year, Month, Day, Hour or Minute. Timer interrupt function after set time or each set time. Capable of rewriting the time with continuing the time count. Leap year automatic count is available. April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 9 D a t a S h e e t Quadrature Position/Revolution Counter (QPRC) (One channel) The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position encoder. Moreover, it is possible to use up/down counter. The detection edge of the three external event input pins AIN, BIN and ZIN is configurable. 16-bit position counter 16-bit revolution counter Two 16-bit compare registers Dual Timer (32-/16-bit Down Counter) The dual timer consists of two programmable 32-/16-bit down counters. Operation mode is selectable from the followings for each channel. Free-running Periodic (=Reload) One-shot Watch Counter The watch counter is used for wake up from the low-power consumption mode. It is possible to select the main clock, sub clock, built-in High-speed CR clock or built-in Low-speed CR clock as the clock source. Interval timer: up to 64 s (Max) @ Sub Clock: 32.768 kHz External Interrupt Controller Unit External interrupt input pin: Max 16 pins Include one non-maskable interrupt (NMI) Watchdog Timer (Two channels) A watchdog timer can generate interrupts or a reset when a time-out value is reached. This series consists of two different watchdogs, a hardware watchdog and a software watchdog. The hardware watchdog timer is clocked by low-speed internal CR oscillator. Therefore, the hardware watchdog is active in any power saving mode except RTC mode and stop mode. CRC (Cyclic Redundancy Check) Accelerator The CRC accelerator helps verify data transmission or storage integrity. CCITT CRC16 and IEEE-802.3 CRC32 are supported. CCITT CRC16 Generator Polynomial: 0x1021 IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7 PRGCRC (Programmable Cyclic Redundancy Check) Accelerator The CRC accelerator helps verify data transmission or storage integrity. CCITT CRC16, IEEE-802.3 CRC32 and a generating polynominal are supported. CCITT CRC16 Generator Polynomial: 0x1021 IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7 Generating polynominal 10 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 2 I S Interface (TX x two channels, RX x two channels) Support three transfer protocols − I2 S − Left Justified − DSP mode Master/Slave Mode selectable RX only, TX only or TX and RX simultaneous operation selectable Word length is programmable from 7 bits to 32 bits RX/TX FIFO integrated (RX: 66 words x 32 bits, TX: 66 words x 32 bits) DMA, interrupts, or polling based data transfer supported GDC Unit Controller for external graphics display Accelerator for 2D block image transfer (blit) operations Embedded SRAM video memory High-Speed Quad SPI (Serial Peripheral Interface for external memory extensions) SDRAM interface for external memory extensions HBI (Hyper Bus Interface) interface for external memory extensions Maximum core system clock frequency : 160 MHz Clock and Reset Clocks Five clock sources (two external oscillators, two internal CR oscillator, and Main PLL) that are dynamically selectable. − − − − − Main clock: Sub Clock : High-speed internal CR Clock: Low-speed internal CR Clock: Main PLL Clock 4 MHz to 20 MHz 32.768 kHz 4 MHz 100 kHz Resets − Reset requests from INITX pin − Power on reset − Software reset − Watchdog timers reset − Low voltage detector reset − Clock supervisor reset Clock Super Visor (CSV) Clocks generated by internal CR oscillators are used to supervise abnormality of the external clocks. External OSC clock failure (clock stop) is detected, reset is asserted. External OSC frequency anomaly is detected, interrupt or reset is asserted. Low-Voltage Detector (LVD) This Series include 2-stage monitoring of voltage on the VCC pins. When the voltage falls below the voltage has been set, Low-Voltage Detector generates an interrupt or reset. LVD1: error reporting via interrupt LVD2: auto-reset operation April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 11 D a t a S h e e t Low-Power Consumption Mode Six low-power consumption modes are supported. Sleep Timer RTC Stop Deep standby RTC (selectable from with/without RAM retention) Deep standby Stop (selectable from with/without RAM retention) Peripheral Clock Gating The system can reduce the current consumption of the total system with gating the operation clocks of peripheral functions not used. VBAT The consumption power during the RTC operation can be reduced by supplying the power supply independent from the RTC (calendar circuit)/32 kHz oscillation circuit. The following circuits can also be used. RTC 32 kHz oscillation circuit Power-on circuit Back up register : 32 bytes Port circuit Debug Serial Wire Debug Port (SWJ-DP) Embedded Trace Macrocells (ETM) provide comprehensive debug and trace facilities. Unique ID Unique value of the device (41-bit) is set. Power Supply Two Power Supplies − Power supply: VCC = 2.7 V to 3.6 V (when USB or GDC unit is not used) = 3.0 V to 3.6 V (when USB or GDC unit is used) − Power supply for VBAT: 12 CONFIDENTIAL VBAT = 1.65 V to 3.6 V S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 3. Product Lineup Memory Size S6E2D55G0A Product Name S6E2D55GJA S6E2D55J0A On-chip Flash memory On-chip SRAM 384 Kbytes SRAM 36 Kbytes SRAM0 32 Kbytes SRAM2 4 Kbytes VRAM for GDC 512 Kbytes ― VFLASH for GDC 2 Mbytes Function Product Name Pin count S6E2D55G0A S6E2D55J0A S6E2D55GJA 120/161 176 120 Cortex-M4F, MPU, NVIC 128ch. CPU Freq. 160 MHz Power supply voltage range 2.7 V to 3.6 V USB2.0 (Function/Host) 1ch. CAN-FD (non-ISO CAN FD) 1ch. DMAC 8ch. DSTC 128ch. 1ch. Graphics・Display controller GDC High-Speed Quad SPI unit Hyper Bus Interface 1ch. 1ch. SDRAM-IF - 1ch. Addr:25-bit (Max), Data: 8-/16-bit, CS:2 (Max) External Bus Interface SRAM, NOR Flash, NAND Flash, SDRAM 8ch. (Max) Base Timer (PWC/Reload timer/PWM/PPG) 8ch. (Max) MF Timer Multi-function Serial Interface (UART/CSIO/LIN/I2C) A/D activation compare 6ch. Input capture 4ch. Free-run timer 3ch. Output compare 6ch. Waveform generator 3ch. PPG 3ch. 1 unit I2S 2 units QPRC 1ch. Dual Timer 1 unit Real-Time Clock 1 unit Watch Counter 1 unit CRC Accelerator Yes(Fixed, Programmable) Watchdog Timer 1ch. (SW) + 1ch. (HW) External Interrupts 16 pins (Max)+ NMI × 1 I/O ports 12-bit A/D converter 98 pins (Max) 154 pins (Max) Yes LVD (Low-Voltage Detector) 2ch. CONFIDENTIAL 90 pins (Max) 24ch. (2 units) CSV (Clock Super Visor) April 21, 2015, S6E2D5_DS709-00021-1v0-E - 13 D a t a S h e e t Product Name S6E2D55G0A High-speed Built-in CR Low-speed Debug Function S6E2D55J0A S6E2D55GJA 4 MHz 100 kHz SWJ-DP/ETM Unique ID Yes Notes: 14 CONFIDENTIAL − All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the I/O port according to your function use. − See 14.4.3 Built-in CR Oscillation Characteristics for the accuracy of the built-in CR. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 4. Packages Product Name Package S6E2D55G0A LQFP: FPT-120P-M21 (0.5 mm pitch) LQFP: FPT-176P-M07 (0.5 mm pitch) - PFBGA: FDJ161 (0.5 mm pitch) Ex_LQFP(TEQFP): LEM120 (0.5 mm pitch) S6E2D55J0A - S6E2D55GJA - - - : Supported Note: − See 16. Package Dimensions for detailed information on each package. April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 15 D a t a S h e e t 5. Pin Assignment FPT-120P-M21 / LEM120 VSS P81/UDP0 P80/UDM0 VCC P60/SIN4_0/INT15_1/WKUP3/MALE_0 P61/UHCONX0/SOT4_0/TX2_0/RTCCO_0/SUBOUT_0/MDQM0_0 P62/SCK4_0/RX2_0/INT14_1/MDQM1_0 P63/ADTG_3/RTS4_0/PNL_PD0 P64/CTS4_0/PNL_PD1 P65/PNL_PD2 P66/SIN3_1/INT13_1/PNL_PD3 P67/SOT3_1/PNL_PD4/MSDCKE_0 P68/SCK3_1/PNL_PD5/MSDCLK_0 VSS P0E/WKUP2/PNL_PD6/MCSX8_0 P0D/PNL_PD7/MSDWEX_0 P0C/SCK5_1/PNL_PD8/MAD11_0 P0B/SOT5_1/TIOB7_1/PNL_PD9/MAD12_0 P0A/SIN5_1/TIOA7_1/INT12_1/PNL_PD10/MAD13_0 P09/SCK2_1/PNL_PD11/MAD14_0 P08/SOT2_1/PNL_PD12/MAD15_0 P07/SIN2_1/INT11_1/PNL_PD13/MAD16_0 P06/TX2_2/PNL_PD14/MAD17_0 P05/RX2_2/INT10_1/PNL_PD15/MAD18_0 P04/TDO/SWO P03/TMS/SWDIO P02/TDI/MAD24_0 P01/TCK/SWCLK P00/TRSTX VCC 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 (TOP VIEW) VCC 1 90 VSS P3B/TIOA0_1/INT04_1/AIN0_1/I2SMCLK0_0/RTO00_0/MAD10_0 2 89 P97/AN23/PNL_PD16/MCASX_0 P3C/SCS70_0/TIOA1_1/INT05_1/BIN0_1/I2SDO0_0/RTO01_0/MAD09_0 3 88 P96/AN22/PNL_TSIG5/PNL_PD17/MRASX_0 P3D/SIN7_0/TIOA2_1/INT06_1/ZIN0_1/I2SWS0_0/RTO02_0/MAD08_0 4 87 P95/AN21/SCK1_1/PNL_TSIG6/PNL_PD18/MAD19_0 P3E/SOT7_0/TIOA3_1/INT07_1/I2SDI0_0/RTO03_0/MAD07_0 5 86 P94/AN20/SOT1_1/TRACED3/PNL_TSIG7/PNL_PD19/MAD20_0 P3F/SCK7_0/TIOA4_1/I2SCK0_0/RTO04_0/MAD06_0 6 85 P93/AN19/SIN1_1/TRACED2/INT09_1/PNL_TSIG8/PNL_PD20/MNREX_0/MAD21_0 P7C/TIOA5_1/RTO05_0/MWEX_0 7 84 P92/AN18/SCK0_1/TRACED1/PNL_TSIG9/PNL_PD21/MNWEX_0/MAD22_0 P7B/ADTG_2/MOEX_0/GE_HBCSX_1 8 83 P91/AN17/SOT0_1/TRACED0/PNL_TSIG10/PNL_PD22/MNCLE_0/MAD23_0 P33/SIN6_0/INT00_1 9 82 P90/AN16/SIN0_1/TRACECLK/INT08_1/PNL_TSIG11/PNL_PD23/MNALE_0/MCLKOUT_0 P34/SOT6_0/FRCK0_0 10 81 P1F/AN15/SCK6_1/TIOB7_0/MADATA15_0 P35/SCK6_0/IC03_0 11 80 P1E/AN14/SOT6_1/TIOA7_0/RTO05_1/MADATA14_0 P36/SCS60_0/INT01_1/IC02_0 12 79 P1D/AN13/SIN6_1/TIOB6_0/INT15_0/RTO04_1/MADATA13_0 VCC 13 78 P1C/AN12/SCS60_1/TIOA6_0/INT14_0/RTO03_1/MADATA12_0 VSS 14 77 P1B/AN11/SCK5_0/TIOB5_0/ZIN0_2/RTO02_1/MADATA11_0 P37/RX2_1/INT02_1/GE_HBRESETX/IC01_0 15 76 P1A/AN10/SOT5_0/TIOA5_0/BIN0_2/RTO01_1/MADATA10_0 P38/TX2_1/INT03_1/GE_HBINTX/IC00_0 16 75 P19/AN09/SIN5_0/TIOB4_0/INT13_0/AIN0_2/RTO00_1/MADATA09_0 P39/ADTG_0/GE_HBRSTOX/DTTIX_0 17 74 P18/AN08/SCK3_0/TIOA4_0/IC03_1/MADATA08_0 P3A/GE_HBWPX 18 73 P17/AN07/SOT3_0/TIOB3_0/IC02_1/MADATA07_0 P7A/GE_HBRWDS 19 72 P16/AN06/SIN3_0/TIOA3_0/INT12_0/IC01_1/MADATA06_0 P70/GE_SPCK/GE_HBCK 20 71 P15/AN05/SCK2_0/TIOB2_0/INT11_0/IC00_1/MADATA05_0 P71/GE_SPDQ0/GE_HBCSX_0 21 70 P14/AN04/SOT2_0/TIOA2_0/DTTI0X_1/MADATA04_0 120pin Package 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 P50/WKUP1/MCSX0_0 P51/TIOB0_1/PNL_TSIG4/PNL_PWE P52/TIOB1_1/PNL_DCLK P53/TIOB2_1/PNL_TSIG2/PNL_DEN P54/TIOB3_1/PNL_TSIG3/PNL_LE P55/TIOB4_1/PNL_TSIG0/PNL_LH_SYNC P56/TIOB5_1/PNL_TSIG1/PNL_FV_SYNC INITX P46/X0A P47/X1A VBATVCC P48/VREGCTL P49/VWAKEUP PE0/MD1 MD0 PE2/X0 PE3/X1 VSS 42 VCC P27/ADTG_1/CROUT_1/MRDY_0 61 41 30 40 AVCC VCC VCC 62 P26/RTCCO_1/SUBOUT_1/MAD00_0 29 39 AVSS P79/INT07_0/GE_HBDQ7 VSS AVRL 63 38 64 28 37 27 P78/INT06_0/GE_HBDQ6 C AVRH P77/INT05_0/GE_HBDQ5 P25/I2SCK1_0/MAD01_0 65 36 26 P24/SCK0_0/TIOB6_1/I2SDI1_0/MAD02_0 P10/AN00/SIN1_0/TIOA0_0/INT09_0/AIN0_0/MADATA00_0 P76/INT04_0/GE_HBDQ4 35 66 34 25 P23/SOT0_0/TIOA6_1/I2SWS1_0/MAD03_0 P11/AN01/SOT1_0/TIOB0_0/BIN0_0/MADATA01_0 P75/INT03_0/GE_SPDQ2/GE_HBDQ3 P22/SIN0_0/INT08_0/I2SDO1_0/CROUT_0/MAD04_0 67 33 24 32 P12/AN02/SCK1_0/TIOA1_0/ZIN0_0/MADATA02_0 P74/INT02_0/GE_SPDQ1/GE_HBDQ2 31 P13/AN03/SIN2_0/TIOB1_0/INT10_0/FRCK0_1/MADATA03_0 68 VSS 69 23 P20/NMIX/WKUP0 22 P21/I2SMCLK1_0/MAD05_0 P72/INT00_0/GE_SPDQ3/GE_HBDQ0 P73/INT01_0/GE_SPCSX_0/GE_HBDQ1 Note: − 16 CONFIDENTIAL The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t FPT-120P-M21 (S6E2D55GJA) VSS P81/UDP0 P80/UDM0 VCC P60/SIN4_0/INT15_1/WKUP3/MALE_0 P61/UHCONX0/SOT4_0/TX2_0/RTCCO_0/SUBOUT_0/MDQM0_0 P62/SCK4_0/RX2_0/INT14_1/MDQM1_0 P63/ADTG_3/RTS4_0/PNL_PD0 P64/CTS4_0/PNL_PD1 P65/PNL_PD2 P66/SIN3_1/INT13_1/PNL_PD3 P67/SOT3_1/PNL_PD4/MSDCKE_0 P68/SCK3_1/PNL_PD5/MSDCLK_0 VSS P0E/WKUP2/PNL_PD6/MCSX8_0 P0D/PNL_PD7/MSDWEX_0 P0C/SCK5_1/PNL_PD8/MAD11_0 P0B/SOT5_1/TIOB7_1/PNL_PD9/MAD12_0 P0A/SIN5_1/TIOA7_1/INT12_1/PNL_PD10/MAD13_0 P09/SCK2_1/PNL_PD11/MAD14_0 P08/SOT2_1/PNL_PD12/MAD15_0 P07/SIN2_1/INT11_1/PNL_PD13/MAD16_0 P06/TX2_2/PNL_PD14/MAD17_0 P05/RX2_2/INT10_1/PNL_PD15/MAD18_0 P04/TDO/SWO P03/TMS/SWDIO P02/TDI/MAD24_0 P01/TCK/SWCLK P00/TRSTX VCC 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 (TOP VIEW) VCC 1 90 VSS P3B/TIOA0_1/INT04_1/AIN0_1/I2SMCLK0_0/RTO00_0/MAD10_0 2 89 P97/AN23/PNL_PD16/MCASX_0 P3C/SCS70_0/TIOA1_1/INT05_1/BIN0_1/I2SDO0_0/RTO01_0/MAD09_0 3 88 P96/AN22/PNL_TSIG5/PNL_PD17/MRASX_0 P3D/SIN7_0/TIOA2_1/INT06_1/ZIN0_1/I2SWS0_0/RTO02_0/MAD08_0 4 87 P95/AN21/SCK1_1/PNL_TSIG6/PNL_PD18/MAD19_0 P3E/SOT7_0/TIOA3_1/INT07_1/I2SDI0_0/RTO03_0/MAD07_0 5 86 P94/AN20/SOT1_1/TRACED3/PNL_TSIG7/PNL_PD19/MAD20_0 P3F/SCK7_0/TIOA4_1/I2SCK0_0/RTO04_0/MAD06_0 6 85 P93/AN19/SIN1_1/TRACED2/INT09_1/PNL_TSIG8/PNL_PD20/MNREX_0/MAD21_0 P7C/TIOA5_1/RTO05_0/MWEX_0 7 84 P92/AN18/SCK0_1/TRACED1/PNL_TSIG9/PNL_PD21/MNWEX_0/MAD22_0 P7B/ADTG_2/MOEX_0 8 83 P91/AN17/SOT0_1/TRACED0/PNL_TSIG10/PNL_PD22/MNCLE_0/MAD23_0 P33/SIN6_0/INT00_1 9 82 P90/AN16/SIN0_1/TRACECLK/INT08_1/PNL_TSIG11/PNL_PD23/MNALE_0/MCLKOUT_0 P34/SOT6_0/FRCK0_0 10 81 P1F/AN15/SCK6_1/TIOB7_0/MADATA15_0 P35/SCK6_0/IC03_0 11 80 P1E/AN14/SOT6_1/TIOA7_0/RTO05_1/MADATA14_0 P36/SCS60_0/INT01_1/IC02_0 12 79 P1D/AN13/SIN6_1/TIOB6_0/INT15_0/RTO04_1/MADATA13_0 VCC 13 78 P1C/AN12/SCS60_1/TIOA6_0/INT14_0/RTO03_1/MADATA12_0 77 P1B/AN11/SCK5_0/TIOB5_0/ZIN0_2/RTO02_1/MADATA11_0 76 P1A/AN10/SOT5_0/TIOA5_0/BIN0_2/RTO01_1/MADATA10_0 75 P19/AN09/SIN5_0/TIOB4_0/INT13_0/AIN0_2/RTO00_1/MADATA09_0 74 P18/AN08/SCK3_0/TIOA4_0/IC03_1/MADATA08_0 VSS 14 P37/RX2_1/INT02_1/IC01_0 15 P38/TX2_1/INT03_1/IC00_0 16 P39/ADTG_0/DTTIX_0 17 P3A 18 73 P17/AN07/SOT3_0/TIOB3_0/IC02_1/MADATA07_0 (N.C.) 19 72 P16/AN06/SIN3_0/TIOA3_0/INT12_0/IC01_1/MADATA06_0 (N.C.) 20 71 P15/AN05/SCK2_0/TIOB2_0/INT11_0/IC00_1/MADATA05_0 (N.C.) 21 70 P14/AN04/SOT2_0/TIOA2_0/DTTI0X_1/MADATA04_0 VCC 22 69 P13/AN03/SIN2_0/TIOB1_0/INT10_0/FRCK0_1/MADATA03_0 (DNU0)*1 23 68 P12/AN02/SCK1_0/TIOA1_0/ZIN0_0/MADATA02_0 (DNU1)*1 24 67 P11/AN01/SOT1_0/TIOB0_0/BIN0_0/MADATA01_0 (N.C.) 25 66 P10/AN00/SIN1_0/TIOA0_0/INT09_0/AIN0_0/MADATA00_0 120pin Package 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 C VSS VCC P26/RTCCO_1/SUBOUT_1/MAD00_0 P27/ADTG_1/CROUT_1/MRDY_0 P50/WKUP1/MCSX0_0 P51/TIOB0_1/PNL_TSIG4/PNL_PWE P52/TIOB1_1/PNL_DCLK P53/TIOB2_1/PNL_TSIG2/PNL_DEN P54/TIOB3_1/PNL_TSIG3/PNL_LE P55/TIOB4_1/PNL_TSIG0/PNL_LH_SYNC P56/TIOB5_1/PNL_TSIG1/PNL_FV_SYNC INITX P46/X0A P47/X1A VBATVCC P48/VREGCTL P49/VWAKEUP PE0/MD1 MD0 PE2/X0 PE3/X1 VSS VCC 36 61 P25/I2SCK1_0/MAD01_0 30 P24/SCK0_0/TIOB6_1/I2SDI1_0/MAD02_0 AVCC VCC 35 62 P23/SOT0_0/TIOA6_1/I2SWS1_0/MAD03_0 29 34 AVSS P79/INT07_0 33 63 P21/I2SMCLK1_0/MAD05_0 28 P22/SIN0_0/INT08_0/I2SDO1_0/CROUT_0/MAD04_0 AVRL P78/INT06_0 32 AVRH 64 31 65 27 VSS 26 P20/NMIX/WKUP0 (N.C.) P77/INT05_0 *1: The DNU0 / 1 (23 pin / 24 pin), please pull up and short-circuit on the board. For more information, please refer to the 9. Handling Devices. Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 17 D a t a S h e e t FPT-176P-M07 VSS P81/UDP0 P80/UDM0 VCC P60/SIN4_0/INT15_1/WKUP3/MALE_0 P61/UHCONX0/SOT4_0/TX2_0/RTCCO_0/SUBOUT_0/MDQM0_0 P62/SCK4_0/RX2_0/INT14_1/MDQM1_0 PDD/GE_SDCSX PDC/GE_SDCASX PDB/GE_SDRASX PDA/GE_SDWEX P63/ADTG_3/RTS4_0/PNL_PD0 P64/CTS4_0/PNL_PD1 P65/PNL_PD2 P66/SIN3_1/INT13_1/PNL_PD3 P67/SOT3_1/PNL_PD4/MSDCKE_0 P68/SCK3_1/PNL_PD5/MSDCLK_0 VSS P0E/WKUP2/PNL_PD6/MCSX8_0 P0D/PNL_PD7/MSDWEX_0 P0C/SCK5_1/PNL_PD8/MAD11_0 P0B/SOT5_1/TIOB7_1/PNL_PD9/MAD12_0 P0A/SIN5_1/TIOA7_1/INT12_1/PNL_PD10/MAD13_0 P09/SCK2_1/PNL_PD11/MAD14_0 P08/SOT2_1/PNL_PD12/MAD15_0 P07/SIN2_1/INT11_1/PNL_PD13/MAD16_0 P06/TX2_2/PNL_PD14/MAD17_0 P05/RX2_2/INT10_1/PNL_PD15/MAD18_0 PD9/GE_SDDQM0 PD8/GE_SDDQM1 PD7/GE_SDDQM2 PD6/GE_SDDQM3 PD5/GE_SDA0 P04/TDO/SWO P03/TMS/SWDIO P02/TDI/MAD24_0 P01/TCK/SWCLK P00/TRSTX PD4/GE_SDA1 PD3/GE_SDA2 PD2/GE_SDA3 PD1/GE_SDA4 PD0/GE_SDA5 VCC 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 (TOP VIEW) VCC 1 132 VSS PA0/GE_SDCKE 2 131 P97/AN23/PNL_PD16/MCASX_0 PA1/GE_SDCLK 3 130 P96/AN22/PNL_TSIG5/PNL_PD17/MRASX_0 PA2/GE_SDDQ31 4 129 PCD/GE_SDA6 PA3/GE_SDDQ30 5 128 PCC/GE_SDA7 P3B/TIOA0_1/INT04_1/AIN0_1/I2SMCLK0_0/RTO00_0/MAD10_0 6 127 PCB/GE_SDA8 P3C/SCS70_0/TIOA1_1/INT05_1/BIN0_1/I2SDO0_0/RTO01_0/MAD09_0 7 126 PCA/GE_SDA9 P3D/SIN7_0/TIOA2_1/INT06_1/ZIN0_1/I2SWS0_0/RTO02_0/MAD08_0 8 125 P95/AN21/SCK1_1/PNL_TSIG6/PNL_PD18/MAD19_0 P3E/SOT7_0/TIOA3_1/INT07_1/I2SDI0_0/RTO03_0/MAD07_0 9 124 P94/AN20/SOT1_1/TRACED3/PNL_TSIG7/PNL_PD19/MAD20_0 P3F/SCK7_0/TIOA4_1/I2SCK0_0/RTO04_0/MAD06_0 10 123 P93/AN19/SIN1_1/TRACED2/INT09_1/PNL_TSIG8/PNL_PD20/MNREX_0/MAD21_0 P7C/TIOA5_1/RTO05_0/MWEX_0 11 122 P92/AN18/SCK0_1/TRACED1/PNL_TSIG9/PNL_PD21/MNWEX_0/MAD22_0 P7B/ADTG_2/MOEX_0/GE_HBCSX_1 12 121 P91/AN17/SOT0_1/TRACED0/PNL_TSIG10/PNL_PD22/MNCLE_0/MAD23_0 PA8/GE_SDDQ29 13 120 P90/AN16/SIN0_1/TRACECLK/INT08_1/PNL_TSIG11/PNL_PD23/MNALE_0/MCLKOUT_0 PA9/GE_SDDQ28 14 119 P1F/AN15/SCK6_1/TIOB7_0/MADATA15_0 PAA/GE_SDDQ27 15 118 P1E/AN14/SOT6_1/TIOA7_0/RTO05_1/MADATA14_0 PAB/GE_SDDQ26 16 117 P1D/AN13/SIN6_1/TIOB6_0/INT15_0/RTO04_1/MADATA13_0 PAC/GE_SDDQ25 17 116 P1C/AN12/SCS60_1/TIOA6_0/INT14_0/RTO03_1/MADATA12_0 PAD/GE_SDDQ24 18 115 PC9/GE_SDA10 P33/SIN6_0/INT00_1 19 114 PC8/GE_SDA11 P34/SOT6_0/FRCK0_0 20 113 PC7/GE_SDBA0 P35/SCK6_0/IC03_0 21 112 PC6/GE_SDBA1 P36/SCS60_0/INT01_1/IC02_0 22 111 P1B/AN11/SCK5_0/TIOB5_0/ZIN0_2/RTO02_1/MADATA11_0 VCC 23 110 P1A/AN10/SOT5_0/TIOA5_0/BIN0_2/RTO01_1/MADATA10_0 VSS 24 109 P19/AN09/SIN5_0/TIOB4_0/INT13_0/AIN0_2/RTO00_1/MADATA09_0 P37/RX2_1/INT02_1/GE_HBRESETX/IC01_0 25 108 P18/AN08/SCK3_0/TIOA4_0/IC03_1/MADATA08_0 P38/TX2_1/INT03_1/GE_HBINTX/IC00_0 26 107 P17/AN07/SOT3_0/TIOB3_0/IC02_1/MADATA07_0 P39/ADTG_0/GE_HBRSTOX/DTTIX_0 27 106 P16/AN06/SIN3_0/TIOA3_0/INT12_0/IC01_1/MADATA06_0 P3A/GE_HBWPX 28 105 P15/AN05/SCK2_0/TIOB2_0/INT11_0/IC00_1/MADATA05_0 PA4/GE_SDDQ23 29 104 P14/AN04/SOT2_0/TIOA2_0/DTTI0X_1/MADATA04_0 PA5/GE_SDDQ22 30 103 P13/AN03/SIN2_0/TIOB1_0/INT10_0/FRCK0_1/MADATA03_0 PA6/GE_SDDQ21 31 102 P12/AN02/SCK1_0/TIOA1_0/ZIN0_0/MADATA02_0 PA7/GE_SDDQ20 32 101 P11/AN01/SOT1_0/TIOB0_0/BIN0_0/MADATA01_0 P7A/GE_HBRWDS 33 100 P10/AN00/SIN1_0/TIOA0_0/INT09_0/AIN0_0/MADATA00_0 P70/GE_SPCK/GE_HBCK 34 99 PC5/GE_SDDQ0 P71/GE_SPDQ0/GE_HBCSX_0 35 98 PC4/GE_SDDQ1 P72/INT00_0/GE_SPDQ3/GE_HBDQ0 36 97 PC3/GE_SDDQ2 P73/INT01_0/GE_SPCSX_0/GE_HBDQ1 37 96 PC2/GE_SDDQ3 P74/INT02_0/GE_SPDQ1/GE_HBDQ2 38 95 PC1/GE_SDDQ4 P75/INT03_0/GE_SPDQ2/GE_HBDQ3 39 94 PC0/GE_SDDQ5 P76/INT04_0/GE_HBDQ4 40 93 AVRH P77/INT05_0/GE_HBDQ5 41 92 AVRL P78/INT06_0/GE_HBDQ6 42 91 AVSS P79/INT07_0/GE_HBDQ7 43 90 AVCC VCC 44 89 VCC 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 PB4/GE_SDDQ15 PB5/GE_SDDQ14 PB6/GE_SDDQ13 PB7/GE_SDDQ12 C VSS VCC P26/RTCCO_1/SUBOUT_1/MAD00_0 P27/ADTG_1/CROUT_1/MRDY_0 P50/WKUP1/MCSX0_0 P51/TIOB0_1/PNL_TSIG4/PNL_PWE P52/TIOB1_1/PNL_DCLK P53/TIOB2_1/PNL_TSIG2/PNL_DEN P54/TIOB3_1/PNL_TSIG3/PNL_LE P55/TIOB4_1/PNL_TSIG0/PNL_LH_SYNC P56/TIOB5_1/PNL_TSIG1/PNL_FV_SYNC PB8/GE_SDDQ11 PB9/GE_SDDQ10 PBA/GE_SDDQ9 PBB/GE_SDDQ8 PBC/GE_SDDQ7 PBD/GE_SDDQ6 INITX P46/X0A P47/X1A VBATVCC P48/VREGCTL P49/VWAKEUP PE0/MD1 MD0 PE2/X0 PE3/X1 VSS 51 P21/I2SMCLK1_0/MAD05_0 P25/I2SCK1_0/MAD01_0 50 PB3/GE_SDDQ16 54 49 PB2/GE_SDDQ17 P24/SCK0_0/TIOB6_1/I2SDI1_0/MAD02_0 48 PB1/GE_SDDQ18 53 47 P23/SOT0_0/TIOA6_1/I2SWS1_0/MAD03_0 46 PB0/GE_SDDQ19 P22/SIN0_0/INT08_0/I2SDO1_0/CROUT_0/MAD04_0 52 45 VSS P20/NMIX/WKUP0 176pin Package Note: − 18 CONFIDENTIAL The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t FDJ161 (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 12 13 VCC VSS A VSS UDP0 UDM0 VCC VSS P66 VSS P0C P09 VSS TCK B VSS P60 P61 P62 P64 P67 P0E P0B P08 TDO TMS TRSTX VSS C VCC P3C P3B P63 P65 P68 P0D P0A P07 P05 TDI P96 P97 D P3F P3E P3D P7C VSS VSS VSS VSS P06 P92 P93 P94 P95 E P35 P34 P33 P7B VSS VSS VSS VSS VSS P1E P1F P90 P91 F P39 P38 P37 P36 VSS VSS VSS P1A P1B P1C P1D G VCC P7A P3A VSS VSS VSS P16 P17 P18 P19 H VSS P72 P73 VSS VSS VSS P12 P13 P14 P15 J P70 P74 P75 VSS VSS VSS VSS VSS VSS VSS P11 AVRH AVRL K P71 P76 P77 VSS P24 VSS P50 P52 P54 VSS P10 AVSS AVCC L VCC P78 P79 P22 P25 VSS P51 P53 P55 P56 P48 P49 VCC M VSS P20 P21 P23 P26 VSS VSS INITX VBAT VSS MD0 MD1 VSS N VSS C VSS VCC P27 VSS X0A VSS X0 X1 VSS X1A VSS Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 19 D a t a S h e e t 6. Pin Descriptions List of Pin Functions The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Pin No. LQFP176 1 LQFP120 LQFP120 Ex_LQFP120 (S6E2D55GJA) 1 1 - PFBGA161 C1 2 - - 3 - - - 4 - - - 5 - - - Pin name VCC PA0 GE_SDCKE PA1 GE_SDCLK PA2 GE_SDDQ31 PA3 GE_SDDQ30 I/O Pin circuit state type type - - K I K I L I L I G K G K G K P3B TIOA0_1 INT04_1 6 2 2 C3 AIN0_1 I2SMCLK0_0 RTO00_0 (PPG00_0) MAD10_0 P3C SCS70_0 TIOA1_1 INT05_1 7 3 3 C2 BIN0_1 I2SDO0_0 RTO01_0 (PPG00_0) MAD09_0 P3D SIN7_0 TIOA2_1 INT06_1 8 4 4 D3 ZIN0_1 I2SWS0_0 RTO02_0 (PPG02_0) MAD08_0 20 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Pin No. LQFP176 LQFP120 LQFP120 Ex_LQFP120 (S6E2D55GJA) PFBGA161 Pin name I/O Pin circuit state type type G K G I G I K I K I L I L I L I L I L I L I D K P3E SOT7_0 (SDA7_0) TIOA3_1 9 5 5 D2 INT07_1 I2SDI0_0 RTO03_0 (PPG02_0) MAD07_0 P3F SCK7_0 (SCL7_0) 10 6 6 D1 TIOA4_1 I2SCK0_0 RTO04_0 (PPG04_0) MAD06_0 P7C TIOA5_1 11 7 7 D4 RTO05_0 (PPG04_0) MWEX_0 P7B 12 8 - E4 ADTG_2 GE_HBCSX_1 MOEX_0 P7B - - 8 - ADTG_2 MOEX_0 13 - - - 14 - - - 15 - - - 16 - - - 17 - - - 18 - - - 19 9 PA8 GE_SDDQ29 PA9 GE_SDDQ28 PAA GE_SDDQ27 PAB GE_SDDQ26 PAC GE_SDDQ25 PAD GE_SDDQ24 P33 9 E3 SIN6_0 INT00_1 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 21 D a t a S h e e t Pin No. LQFP176 LQFP120 LQFP120 Ex_LQFP120 (S6E2D55GJA) PFBGA161 Pin name I/O Pin circuit state type type D I D I D K P34 20 10 10 E2 SOT6_0 (SDA6_0) FRCK0_0 P35 21 11 11 E1 SCK6_0 (SCL6_0) IC03_0 P36 SCS60_0 22 12 12 F4 23 13 13 G1 VCC - - 24 14 14 H1 VSS - - D K D K D K D K E I E I INT01_1 IC02_0 P37 RX2_1 25 15 - F3 GE_HBRESETX INT02_1 IC01_0 P37 - - 15 - RX2_1 INT02_1 IC01_0 P38 TX2_1 26 16 - F2 GE_HBINTX INT03_1 IC00_0 P38 - - 16 - TX2_1 INT03_1 IC00_0 P39 27 17 - F1 ADTG_0 GE_HBRSTOX DTTI0X_0 P39 - - 17 - ADTG_0 DTTI0X_0 22 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Pin No. LQFP176 LQFP120 LQFP120 Ex_LQFP120 (S6E2D55GJA) 28 18 - G3 - - 18 - PFBGA161 Pin name P3A GE_HBWPX P3A PA4 29 - - - 30 - - - 31 - - - 32 - - - 33 19 - G2 - - 19 - (N.C.) 34 20 - J1 GE_SPCK - - 20 - (N.C.) 35 21 - K1 GE_SPDQ0 - - 21 - GE_SDDQ23 PA5 GE_SDDQ22 PA6 GE_SDDQ21 PA7 GE_SDDQ20 P7A GE_HBRWDS I/O Pin circuit state type type E I E I L I L I L I L I K I - - K I - - K I - - K K - - K K - - K K - - P70 GE_HBCK P71 GE_HBCSX_0 (N.C.) P72 36 22 - H2 GE_SPDQ3 GE_HBDQ0 INT00_0 - - 22 - VCC P73 37 23 - H3 - - 23 - GE_SPCSX_0 GE_HBDQ1 INT01_0 (DNU0) P74 38 24 - J2 GE_SPDQ1 GE_HBDQ2 INT02_0 - - April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 24 - (DNU1) 23 D a t a S h e e t Pin No. LQFP176 LQFP120 LQFP120 Ex_LQFP120 (S6E2D55GJA) PFBGA161 Pin name I/O Pin circuit state type type K K - - K K - - K K K K K K K K K K K K P75 39 25 - J3 GE_SPDQ2 GE_HBDQ3 INT03_0 - - 25 - (N.C.) P76 40 26 - K2 GE_HBDQ4 INT04_0 - - 26 - (N.C.) P77 41 27 - K3 GE_HBDQ5 INT05_0 - - 27 - 42 28 - L2 P77 INT05_0 P78 GE_HBDQ6 INT06_0 - - 28 - P78 INT06_0 P79 43 29 - L3 GE_HBDQ7 INT07_0 - P79 - - 29 44 30 30 L1 VCC - - 45 31 31 M1 VSS - - 46 32 32 M2 NMIX I F L I L I L I L I E I E K INT07_0 P20 WKUP0 47 - - - 48 - - - 49 - - - 50 - - - PB0 GE_SDDQ19 PB1 GE_SDDQ18 PB2 GE_SDDQ17 PB3 GE_SDDQ16 P21 51 33 33 M3 I2SMCLK1_0 MAD05_0 P22 CROUT_0 52 34 34 L4 SIN0_0 INT08_0 I2SDO1_0 MAD04_0 24 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Pin No. LQFP176 LQFP120 LQFP120 Ex_LQFP120 (S6E2D55GJA) PFBGA161 Pin name I/O Pin circuit state type type E I E I E I L I L I L I L I P23 SOT0_0 (SDA0_0) 53 35 35 M4 TIOA6_1 I2SWS1_0 MAD03_0 P24 SCK0_0 (SCL0_0) 54 36 36 K5 TIOB6_1 I2SDI1_0 MAD02_0 P25 55 37 37 L5 I2SCK1_0 MAD01_0 - - PB4 56 - 57 - - - 58 - - - 59 - - - 60 38 38 N2 C - - 61 39 39 N3 VSS - - 62 40 40 N4 VCC - - E I E I D P E I D I GE_SDDQ15 PB5 GE_SDDQ14 PB6 GE_SDDQ13 PB7 GE_SDDQ12 P26 63 41 41 M5 RTCCO_1 SUBOUT_1 MAD00_0 P27 64 42 42 N5 ADTG_1 CROUT_1 MRDY_0 P50 65 43 43 K7 WKUP1 MCSX0_0 P51 66 44 44 L7 TIOB0_1 PNL_PWE PNL_TSIG4 P52 67 45 45 K8 TIOB1_1 PNL_DCLK April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 25 D a t a S h e e t Pin No. LQFP176 LQFP120 LQFP120 Ex_LQFP120 (S6E2D55GJA) PFBGA161 Pin name I/O Pin circuit state type type E I E I E I E I L I L I L I L I L I L I B C P S Q T - - O U O U C E J D A A A B - - P53 68 46 46 L8 TIOB2_1 PNL_DEN PNL_TSIG2 P54 69 47 47 K9 TIOB3_1 PNL_LE PNL_TSIG3 P55 70 48 48 L9 TIOB4_1 PNL_LH_SYNC PNL_TSIG0 P56 71 49 49 L10 TIOB5_1 PNL_FV_SYNC PNL_TSIG1 26 CONFIDENTIAL 72 - - - 73 - - - 74 - - - 75 - - - 76 - - - 77 - - - 78 50 PB8 GE_SDDQ11 PB9 GE_SDDQ10 PBA GE_SDDQ9 PBB GE_SDDQ8 PBC GE_SDDQ7 PBD GE_SDDQ6 50 M8 79 51 51 N7 80 52 52 N9 81 53 53 M9 82 54 54 L11 83 55 55 L12 84 56 56 M12 85 57 57 M11 86 58 58 N11 87 59 59 N12 88 60 60 M13 INITX P46 X0A P47 X1A VBAT P48 VREGCTL P49 VWAKEUP PE0 MD1 MD0 PE2 X0 PE3 X1 VSS S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Pin No. LQFP176 Pin circuit state type type LQFP120 LQFP120 Ex_LQFP120 (S6E2D55GJA) 89 61 61 L13 VCC - - 90 62 62 K13 AVCC - - 91 63 63 K12 AVSS - - 92 64 64 J13 AVRL - - 93 65 65 J12 AVRH - - L I L I L I L I L I L I F M F L F L F M - PFBGA161 94 - - 95 - - - 96 - - - 97 - - - 98 - - - 99 - - - Pin name I/O PC0 GE_SDDQ5 PC1 GE_SDDQ4 PC2 GE_SDDQ3 PC3 GE_SDDQ2 PC4 GE_SDDQ1 PC5 GE_SDDQ0 P10 AN00 SIN1_0 100 66 66 K11 TIOA0_0 INT09_0 AIN0_0 MADATA00_0 P11 AN01 SOT1_0 101 67 67 J11 (SDA1_0) TIOB0_0 BIN0_0 MADATA01_0 P12 AN02 SCK1_0 102 68 68 H10 (SCL1_0) TIOA1_0 ZIN0_0 MADATA02_0 P13 AN03 SIN2_0 103 69 69 H11 TIOB1_0 INT10_0 FRCK0_1 MADATA03_0 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 27 D a t a S h e e t Pin No. LQFP176 LQFP120 LQFP120 Ex_LQFP120 (S6E2D55GJA) PFBGA161 Pin name I/O Pin circuit state type type F L F M F M F L F L F M P14 AN04 SOT2_0 104 70 70 H12 (SDA2_0) TIOA2_0 DTTI0X_1 MADATA04_0 P15 AN05 SCK2_0 (SCL2_0) 105 71 71 H13 TIOB2_0 INT11_0 IC00_1 MADATA05_0 P16 AN06 SIN3_0 106 72 72 G10 TIOA3_0 INT12_0 IC01_1 MADATA06_0 P17 AN07 SOT3_0 107 73 73 G11 (SDA3_0) TIOB3_0 IC02_1 MADATA07_0 P18 AN08 SCK3_0 108 74 74 G12 (SCL3_0) TIOA4_0 IC03_1 MADATA08_0 P19 AN09 SIN5_0 TIOB4_0 109 75 75 G13 INT13_0 AIN0_2 RTO00_1 (PPG00_1) MADATA09_0 28 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Pin No. LQFP176 LQFP120 LQFP120 Ex_LQFP120 (S6E2D55GJA) PFBGA161 Pin name I/O Pin circuit state type type F L F L K I K I K I K I F M F M P1A AN10 SOT5_0 (SDA5_0) 110 76 76 F10 TIOA5_0 BIN0_2 RTO01_1 (PPG00_1) MADATA10_0 P1B AN11 SCK5_0 (SCL5_0) 111 77 77 F11 TIOB5_0 ZIN0_2 RTO02_1 (PPG02_1) MADATA11_0 112 - - - 113 - - - 114 - - - 115 - PC6 GE_SDBA1 PC7 GE_SDBA0 PC8 GE_SDA11 - - PC9 GE_SDA10 P1C AN12 SCS60_1 116 78 78 F12 TIOA6_0 INT14_0 RTO03_1 (PPG02_1) MADATA12_0 P1D AN13 SIN6_1 117 79 79 F13 TIOB6_0 INT15_0 RTO04_1 (PPG04_1) MADATA13_0 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 29 D a t a S h e e t Pin No. LQFP176 LQFP120 LQFP120 Ex_LQFP120 (S6E2D55GJA) PFBGA161 Pin name I/O Pin circuit state type type F L F L F O F N F N P1E AN14 SOT6_1 118 80 80 E10 (SDA6_1) TIOA7_0 RTO05_1 (PPG04_1) MADATA14_0 P1F AN15 119 81 81 E11 SCK6_1 (SCL6_1) TIOB7_0 MADATA15_0 P90 AN16 SIN0_1 INT08_1 120 82 82 E12 PNL_PD23 PNL_TSIG11 MCLKOUT_0 MNALE_0 TRACECLK P91 AN17 SOT0_1 (SDA0_1) 121 83 83 E13 PNL_PD22 PNL_TSIG10 MAD23_0 MNCLE_0 TRACED0 P92 AN18 SCK0_1 (SCL0_1) 122 84 84 D10 PNL_PD21 PNL_TSIG9 MAD22_0 MNWEX_0 TRACED1 30 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Pin No. LQFP176 LQFP120 LQFP120 Ex_LQFP120 (S6E2D55GJA) PFBGA161 Pin name I/O Pin circuit state type type F O F N F L K I K I K I K I F L F L P93 AN19 SIN1_1 INT09_1 123 85 85 D11 PNL_PD20 PNL_TSIG8 MAD21_0 MNREX_0 TRACED2 P94 AN20 SOT1_1 (SDA1_1) 124 86 86 D12 PNL_PD19 PNL_TSIG7 MAD20_0 TRACED3 P95 AN21 SCK1_1 125 87 87 D13 (SCL1_1) PNL_PD18 PNL_TSIG6 MAD19_0 126 - - - 127 - - - 128 - - - 129 - - - PCA GE_SDA9 PCB GE_SDA8 PCC GE_SDA7 PCD GE_SDA6 P96 AN22 130 88 88 C12 PNL_PD17 PNL_TSIG5 MRASX_0 P97 131 89 89 C13 AN23 PNL_PD16 MCASX_0 132 90 90 B13 VSS - - 133 91 91 A12 VCC - - 134 - - - K I 135 - - - K I April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL PD0 GE_SDA5 PD1 GE_SDA4 31 D a t a S h e e t Pin No. LQFP176 LQFP120 LQFP120 Ex_LQFP120 (S6E2D55GJA) 136 - - - 137 - - - 138 - - - 139 92 92 B12 140 93 93 A11 PFBGA161 Pin name PD2 GE_SDA3 PD3 GE_SDA2 PD4 GE_SDA1 P00 TRSTX I/O Pin circuit state type type K I K I K I E G E G E H E G E G K I K I K I K I K I E K E I E K P01 TCK SWCLK P02 141 94 94 C11 TDI MAD24_0 P03 142 95 95 B11 TMS SWDIO P04 143 96 96 B10 TDO SWO 144 - - - 145 - - - 146 - - - 147 - - - 148 - PD5 GE_SDA0 PD6 GE_SDDQM3 PD7 GE_SDDQM2 PD8 GE_SDDQM1 - - PD9 GE_SDDQM0 P05 RX2_2 149 97 97 C10 INT10_1 PNL_PD15 MAD18_0 P06 150 98 98 D9 TX2_2 PNL_PD14 MAD17_0 P07 SIN2_1 151 99 99 C9 INT11_1 PNL_PD13 MAD16_0 32 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Pin No. LQFP176 LQFP120 LQFP120 Ex_LQFP120 (S6E2D55GJA) PFBGA161 Pin name I/O Pin circuit state type type E I E I E K E I E I D I D P - - D I D I P08 SOT2_1 152 100 100 B9 (SDA2_1) PNL_PD12 MAD15_0 P09 SCK2_1 153 101 101 A9 (SCL2_1) PNL_PD11 MAD14_0 P0A SIN5_1 154 102 102 C8 TIOA7_1 INT12_1 PNL_PD10 MAD13_0 P0B SOT5_1 (SDA5_1) 155 103 103 B8 TIOB7_1 PNL_PD9 MAD12_0 P0C SCK5_1 156 104 104 A8 (SCL5_1) PNL_PD8 MAD11_0 P0D 157 105 105 C7 PNL_PD7 MSDWEX_0 P0E 158 106 106 B7 WKUP2 PNL_PD6 MCSX8_0 159 107 107 A7 VSS P68 SCK3_1 160 108 108 C6 (SCL3_1) PNL_PD5 MSDCLK_0 P67 SOT3_1 161 109 109 B6 (SDA3_1) PNL_PD4 MSDCKE_0 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 33 D a t a S h e e t Pin No. LQFP176 LQFP120 LQFP120 Ex_LQFP120 (S6E2D55GJA) PFBGA161 Pin name I/O Pin circuit state type type E K E I E I E I K I K I K I K I N K N I I Q - - H R H R P66 162 110 110 A6 SIN3_1 INT13_1 PNL_PD3 163 111 111 C5 164 112 112 B5 P65 PNL_PD2 P64 CTS4_0 PNL_PD1 P63 165 113 113 C4 ADTG_3 RTS4_0 PNL_PD0 166 - - - 167 - - - 168 - - - 169 - PDA GE_SDWEX PDB GE_SDRASX PDC GE_SDCASX - - PDD GE_SDCSX P62 RX2_0 170 114 114 B4 SCK4_0 (SCL4_0) INT14_1 MDQM1_0 P61 UHCONX0 RTCCO_0 171 115 115 B3 SUBOUT_0 TX2_0 SOT4_0 (SDA4_0) MDQM0_0 P60 WKUP3 172 116 116 B2 SIN4_0 INT15_1 MALE_0 34 CONFIDENTIAL 173 117 117 A4 174 118 118 A3 175 119 119 A2 VCC P80 UDM0 P81 UDP0 S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Pin No. LQFP176 176 LQFP120 LQFP120 Ex_LQFP120 (S6E2D55GJA) 120 120 PFBGA161 B1 I/O Pin circuit state type type VSS - - VSS - - Pin name A1, A5, A10, A13, D5, D6, D7, D8, E5, E6, E7, E8, E9, F5, F6, F9, G4, G5, G9, H4, H5, - - - H9, J4, J5, J6, J7, J8, J9, J10, K4, K6, K10, L6, M6, M7, M10, N1, N6, N8, N10, N13 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 35 D a t a S h e e t Signal Description The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. PFBGA161 17 17 F1 64 42 42 N5 A/D converter external trigger input pin 12 8 8 E4 ADTG_3 165 113 113 C4 AN00 100 66 66 K11 AN01 101 67 67 J11 AN02 102 68 68 H10 AN03 103 69 69 H11 AN04 104 70 70 H12 AN05 105 71 71 H13 AN06 106 72 72 G10 AN07 107 73 73 G11 AN08 108 74 74 G12 AN09 109 75 75 G13 AN10 110 76 76 F10 AN11 A/D converter analog input pin. 111 77 77 F11 AN12 ANxx describes ADC ch.xx. 116 78 78 F12 AN13 117 79 79 F13 AN14 118 80 80 E10 AN15 119 81 81 E11 AN16 120 82 82 E12 AN17 121 83 83 E13 AN18 122 84 84 D10 AN19 123 85 85 D11 AN20 124 86 86 D12 AN21 125 87 87 D13 AN22 130 88 88 C12 AN23 131 89 89 C13 100 66 66 K11 6 2 2 C3 101 67 67 J11 66 44 44 L7 102 68 68 H10 7 3 3 C2 103 69 69 H11 67 45 45 K8 TIOA0_0 TIOA0_1 0 TIOB0_0 TIOB0_1 TIOA1_0 Base Timer TIOA1_1 1 TIOB1_0 TIOB1_1 CONFIDENTIAL LQFP120 27 ADTG_1 Base Timer 36 (S6E2D55GJA) ADTG_0 ADTG_2 ADC Function LQFP120 Pin Name Ex_LQFP120 Module LQFP176 Pin No. Base Timer ch.0 TIOA Pin Base Timer ch.0 TIOB Pin Base Timer ch.1 TIOA Pin Base Timer ch.1 TIOB Pin S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t TIOA2_0 Base Timer TIOA2_1 2 TIOB2_0 TIOB2_1 TIOA3_0 Base Timer TIOA3_1 3 TIOB3_0 TIOB3_1 TIOA4_0 Base Timer TIOA4_1 4 TIOB4_0 TIOB4_1 TIOA5_0 Base Timer TIOA5_1 5 TIOB5_0 TIOB5_1 TIOA6_0 Base Timer TIOA6_1 6 TIOB6_0 TIOB6_1 TIOA7_0 Base Timer TIOA7_1 7 TIOB7_0 TIOB7_1 Base Timer ch.2 TIOA Pin Base Timer ch.2 TIOB Pin Base Timer ch.3 TIOA Pin Base Timer ch.3 TIOB Pin Base Timer ch.4 TIOA Pin Base Timer ch.4 TIOB Pin Base Timer ch.5 TIOA Pin Base Timer ch.5 TIOB Pin Base Timer ch.6 TIOA Pin Base Timer ch.6 TIOB Pin Base Timer ch.7 TIOA Pin Base Timer ch.7 TIOB Pin TX2_0 TX2_1 CAN-FD interface TX output pin PFBGA161 LQFP120 (S6E2D55GJA) Function LQFP120 Pin Name Ex_LQFP120 Module LQFP176 Pin No. 104 70 70 H12 8 4 4 D3 105 71 71 H13 68 46 46 L8 106 72 72 G10 9 5 5 D2 107 73 73 G11 69 47 47 K9 108 74 74 G12 10 6 6 D1 109 75 75 G13 70 48 48 L9 110 76 76 F10 11 7 7 D4 111 77 77 F11 71 49 49 L10 116 78 78 F12 53 35 35 M4 117 79 79 F13 54 36 36 K5 118 80 80 E10 154 102 102 C8 119 81 81 E11 155 103 103 B8 171 115 115 B3 26 16 16 F2 CAN TX2_2 150 98 98 D9 (CAN-FD) RX2_0 170 114 114 B4 RX2_1 CAN-FD interface RX input pin RX2_2 Debugger 15 15 F3 97 97 C10 SWCLK Serial wire debug interface clock input pin 140 93 93 A11 SWDIO Serial wire debug interface data input / output pin 142 95 95 B11 SWO Serial wire viewer output pin 143 96 96 B10 TCK J-TAG test clock input pin 140 93 93 A11 TDI J-TAG test data input pin 141 94 94 C11 TDO J-TAG debug data output pin 143 96 96 B10 TMS J-TAG test mode state output pin 142 95 95 B11 Trace CLK output pin of ETM 120 82 82 E12 TRACED0 121 83 83 E13 TRACED1 122 84 84 D10 123 85 85 D11 124 86 86 D12 139 92 92 B12 TRACECLK TRACED2 Trace data output pin of ETM TRACED3 TRSTX J-TAG test reset Input pin April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 25 149 37 D a t a S h e e t Bus PFBGA161 41 41 M5 55 37 37 L5 MAD02_0 54 36 36 K5 MAD03_0 53 35 35 M4 MAD04_0 52 34 34 L4 MAD05_0 51 33 33 M3 MAD06_0 10 6 6 D1 MAD07_0 9 5 5 D2 MAD08_0 8 4 4 D3 MAD09_0 7 3 3 C2 MAD10_0 6 2 2 C3 MAD11_0 156 104 104 A8 155 103 103 B8 MAD13_0 154 102 102 C8 MAD14_0 153 101 101 A9 MAD15_0 152 100 100 B9 MAD16_0 151 99 99 C9 MAD17_0 150 98 98 D9 MAD18_0 149 97 97 C10 MAD19_0 125 87 87 D13 MAD20_0 124 86 86 D12 MAD21_0 123 85 85 D11 MAD22_0 122 84 84 D10 MAD23_0 121 83 83 E13 MAD24_0 141 94 94 C11 MCSX0_0 65 43 43 K7 External bus interface address bus External bus interface chip select output pin 158 106 106 B7 MADATA00_0 100 66 66 K11 MADATA01_0 101 67 67 J11 MADATA02_0 102 68 68 H10 MADATA03_0 103 69 69 H11 MADATA04_0 104 70 70 H12 MADATA05_0 105 71 71 H13 MADATA06_0 106 72 72 G10 107 73 73 G11 108 74 74 G12 MADATA09_0 109 75 75 G13 MADATA10_0 110 76 76 F10 External MADATA07_0 Bus MADATA08_0 CONFIDENTIAL LQFP120 63 MAD01_0 MCSX8_0 38 (S6E2D55GJA) MAD00_0 MAD12_0 External Function LQFP120 Pin Name Ex_LQFP120 Module LQFP176 Pin No. External bus interface data bus MADATA11_0 111 77 77 F11 MADATA12_0 116 78 78 F12 MADATA13_0 117 79 79 F13 MADATA14_0 118 80 80 E10 MADATA15_0 119 81 81 E11 S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t MDQM0_0 MDQM1_0 External Bus MALE_0 External bus interface byte mask signal output pin External bus interface Address Latch enable output signal for multiplex PFBGA161 LQFP120 (S6E2D55GJA) 115 115 B3 170 114 114 B4 172 116 116 B2 External bus interface external RDY input signal 64 42 42 N5 MCLKOUT_0 External bus interface external clock output pin 120 82 82 E12 120 82 82 E12 121 83 83 E13 123 85 85 D11 122 84 84 D10 12 8 8 E4 11 7 7 D4 MNCLE_0 MNREX_0 MNWEX_0 External MOEX_0 MWEX_0 External bus interface ALE signal to control NAND Flash output pin External bus interface CLE signal to control NAND Flash output pin External bus interface read enable signal to control NAND Flash output pin External bus interface write enable signal to control NAND Flash output pin External bus interface read enable signal for SRAM External bus interface write enable signal for SRAM MSDCLK_0 SDRAM interface SDRAM clock output pin 160 108 108 C6 MSDCKE_0 SDRAM interface SDRAM clock enable pin 161 109 109 B6 MRASX_0 SDRAM interface SDRAM row active strobe pin 130 88 88 C12 MCASX_0 SDRAM interface SDRAM column active strobe pin 131 89 89 C13 SDRAM interface SDRAM write enable pin 157 105 105 C7 36 22 - H2 19 9 9 E3 37 23 - H3 22 12 12 F4 38 24 - J2 25 15 15 F3 39 25 - J3 26 16 16 F2 40 26 - K2 MSDWEX_0 INT00_0 INT00_1 INT01_0 INT01_1 INT02_0 INT02_1 INT03_0 INT03_1 INT04_0 External INT04_1 Interrupt INT05_0 INT05_1 INT06_0 INT06_1 INT07_0 INT07_1 INT08_0 INT08_1 INT09_0 INT09_1 External interrupt request 00 input pin External interrupt request 01 input pin External interrupt request 02 input pin External interrupt request 03 input pin External interrupt request 04 input pin External interrupt request 05 input pin External interrupt request 06 input pin External interrupt request 07 input pin External interrupt request 08 input pin External interrupt request 09 input pin April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 171 MRDY_0 MNALE_0 Bus Function LQFP120 Pin Name Ex_LQFP120 Module LQFP176 Pin No. 6 2 2 C3 41 27 27 K3 7 3 3 C2 42 28 28 L2 8 4 4 D3 43 29 29 L3 9 5 5 D2 52 34 34 L4 120 82 82 E12 100 66 66 K11 123 85 85 D11 39 D a t a S h e e t INT10_0 INT10_1 INT11_0 INT11_1 INT12_0 INT12_1 External Interrupt INT13_0 INT13_1 INT14_0 INT14_1 INT15_0 INT15_1 NMIX GPIO GPIO 40 CONFIDENTIAL External interrupt request 10 input pin External interrupt request 11 input pin External interrupt request 12 input pin External interrupt request 13 input pin External interrupt request 14 input pin External interrupt request 15 input pin PFBGA161 LQFP120 103 69 69 H11 149 97 97 C10 105 71 71 H13 151 99 99 C9 106 72 72 G10 154 102 102 C8 109 75 75 G13 162 110 110 A6 116 78 78 F12 170 114 114 B4 117 79 79 F13 172 116 116 B2 46 32 32 M2 P00 139 92 92 B12 P01 140 93 93 A11 P02 141 94 94 C11 P03 142 95 95 B11 P04 143 96 96 B10 P05 149 97 97 C10 P06 150 98 98 D9 P07 Non-Maskable Interrupt input pin (S6E2D55GJA) Function LQFP120 Pin Name Ex_LQFP120 Module LQFP176 Pin No. 151 99 99 C9 P08 General-purpose I/O port 0 152 100 100 B9 P09 153 101 101 A9 P0A 154 102 102 C8 P0B 155 103 103 B8 P0C 156 104 104 A8 P0D 157 105 105 C7 P0E 158 106 106 B7 P10 100 66 66 K11 P11 101 67 67 J11 P12 102 68 68 H10 P13 103 69 69 H11 P14 104 70 70 H12 P15 105 71 71 H13 P16 106 72 72 G10 P17 107 73 73 G11 P18 General-purpose I/O port 1 108 74 74 G12 P19 109 75 75 G13 P1A 110 76 76 F10 P1B 111 77 77 F11 P1C 116 78 78 F12 P1D 117 79 79 F13 P1E 118 80 80 E10 P1F 119 81 81 E11 S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t GPIO GPIO GPIO GPIO GPIO PFBGA161 LQFP120 P20 46 32 32 M2 P21 51 33 33 M3 P22 52 34 34 L4 P23 53 35 35 M4 P24 General-purpose I/O port 2 54 36 36 K5 P25 55 37 37 L5 P26 63 41 41 M5 P27 64 42 42 N5 P33 19 9 9 E3 P34 20 10 10 E2 P35 21 11 11 E1 P36 22 12 12 F4 P37 25 15 15 F3 P38 26 16 16 F2 27 17 17 F1 P3A P39 General-purpose I/O port 3 28 18 18 G3 P3B 6 2 2 C3 P3C 7 3 3 C2 P3D 8 4 4 D3 P3E 9 5 5 D2 P3F 10 6 6 D1 P46 79 51 51 N7 80 52 52 N9 82 54 54 L11 P49 83 55 55 L12 P50 65 43 43 K7 P51 66 44 44 L7 P52 67 45 45 K8 P47 P48 P53 General-purpose I/O port 4 68 46 46 L8 P54 69 47 47 K9 P55 70 48 48 L9 P56 71 49 49 L10 P60 172 116 116 B2 P61 171 115 115 B3 P62 170 114 114 B4 P63 165 113 113 C4 P64 General-purpose I/O port 5 164 112 112 B5 P65 General-purpose I/O port 6 163 111 111 C5 P66 162 110 110 A6 P67 161 109 109 B6 P68 160 108 108 C6 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL (S6E2D55GJA) Function LQFP120 Pin Name Ex_LQFP120 Module LQFP176 Pin No. 41 D a t a S h e e t GPIO GPIO GPIO GPIO 42 CONFIDENTIAL PFBGA161 LQFP120 (S6E2D55GJA) Function LQFP120 Pin Name Ex_LQFP120 Module LQFP176 Pin No. P70 34 20 - J1 P71 35 21 - K1 P72 36 22 - H2 P73 37 23 - H3 P74 38 24 - J2 P75 39 25 - J3 40 26 - K2 P77 41 27 27 K3 P78 42 28 28 L2 P79 43 29 29 L3 P7A 33 19 - G2 P7B 12 8 8 E4 P76 General-purpose I/O port 7 P7C 11 7 7 D4 P80 174 118 118 A3 P81 General-purpose I/O port 8 175 119 119 A2 P90 120 82 82 E12 P91 121 83 83 E13 P92 122 84 84 D10 123 85 85 D11 124 86 86 D12 P95 125 87 87 D13 P96 130 88 88 C12 P93 P94 General-purpose I/O port 9 P97 131 89 89 C13 PA0 2 - - - PA1 3 - - - PA2 4 - - - PA3 5 - - - PA4 29 - - - PA5 30 - - - PA6 31 - - - General-purpose I/O port A 32 - - - PA8 13 - - - PA7 PA9 14 - - - PAA 15 - - - PAB 16 - - - PAC 17 - - - PAD 18 - - - S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t GPIO GPIO GPIO PFBGA161 LQFP120 PB0 47 - - - PB1 48 - - - PB2 49 - - - PB3 50 - - - PB4 56 - - - PB5 57 - - - 58 - - - 59 - - - PB8 72 - - - PB9 73 - - - PBA 74 - - - PBB 75 - - - PBC 76 - - - PBD 77 - - - PC0 94 - - - PC1 95 - - - PC2 96 - - - PC3 97 - - - PC4 98 - - - PC5 99 - - - 112 - - - 113 - - - PC8 114 - - - PC9 115 - - - PCA 126 - - - PCB 127 - - - PCC 128 - - - PCD 129 - - - PD0 134 - - - PD1 135 - - - PD2 136 - - - PD3 137 - - - PD4 138 - - - PD5 144 - - - 145 - - - 146 - - - PD8 147 - - - PD9 148 - - - PDA 166 - - - PDB 167 - - - PDC 168 - - - PDD 169 - - - PB6 PB7 PC6 PC7 PD6 PD7 General-purpose I/O port B General-purpose I/O port C General-purpose I/O port D April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL (S6E2D55GJA) Function LQFP120 Pin Name Ex_LQFP120 Module LQFP176 Pin No. 43 D a t a S h e e t PE0 GPIO 0 56 M12 58 58 N11 PE3 87 59 59 N12 SIN0_0 52 34 34 L4 120 82 82 E12 53 35 35 M4 121 83 83 E13 54 36 36 K5 122 84 84 D10 100 66 66 K11 123 85 85 D11 101 67 67 J11 124 86 86 D12 102 68 68 H10 125 87 87 D13 103 69 69 H11 151 99 99 C9 104 70 70 H12 152 100 100 B9 105 71 71 H13 153 101 101 A9 106 72 72 G10 162 110 110 A6 107 73 73 G11 161 109 109 B6 108 74 74 G12 160 108 108 C6 (SDA0_0) SOT0_1 (SDA0_1) (SCL0_1) (operation mode 4) (SDA1_0) SOT1_1 (SDA1_1) 44 CONFIDENTIAL This pin operates as SOT1 when it is used in a UART/CSIO/LIN(operation modes 0 to 3) and as SDA1 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.1 clock I/O pin. This pin operates as SCK1 when it is used in a CSIO SCK1_1 (operation mode 2) and as SCL1 when it is used in an I2C (SCL1_1) (operation mode 4). (SDA2_0) SOT2_1 (SDA2_1) Multi-function serial interface ch.2 input pin Multi-function serial interface ch.2 output pin This pin operates as SOT2 when it is used in a UART/CSIO/LIN (operation mode 0 to 3) and as SDA2 when it is used in an I2C (operation mode 4). SCK2_0 Multi-function serial interface ch.2 clock I/O Pin. (SCL2_0) This pin operates as SCK2 when it is used in a CSIO SCK2_1 (operation mode 2) and as SCL2 when it is used in an I2C (SCL2_1) (operation mode 4). SIN3_1 3 Multi-function serial interface ch.1 output pin SCK1_0 SOT3_0 function serial Multi-function serial interface ch.1 input pin (SCL1_0) SIN3_0 Multi- when it is used in an I2C (operation mode 4). (operation mode 2) and as SCL0 when it is used in an I2C SIN2_1 2 UART/CSIO/LIN (operation modes 0 to 3) and as SDA0 SCK0_1 SOT2_0 function serial This pin operates as SOT0 when it is used in a This pin operates as SCK0 when it is used in a CSIO SIN2_0 Multi- Multi-function serial interface ch.0 output pin Multi-function serial interface ch.0 clock I/O pin. SIN1_1 1 Multi-function serial interface ch.0 input pin SCK0_0 SOT1_0 function serial General-purpose I/O port E (SCL0_0) SIN1_0 Multi- PFBGA161 56 86 SIN0_1 function serial LQFP120 84 PE2 SOT0_0 Multi- (S6E2D55GJA) Function LQFP120 Pin Name Ex_LQFP120 Module LQFP176 Pin No. (SDA3_0) SOT3_1 (SDA3_1) Multi-function serial interface ch.3 input pin Multi-function serial interface ch.3 output pin. This pin operates as SOT3 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA3 when it is used in an I2C (operation mode 4). SCK3_0 Multi-function serial interface ch.3 clock I/O pin. (SCL3_0) This pin operates as SCK3 when it is used in a CSIO SCK3_1 (operation mode 2) and as SCL3 when it is used in an I2C (SCL3_1) (operation mode 4). S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t SIN4_0 Multi-function serial interface ch.4 input pin Multi-function serial interface ch.4 output SOT4_0 (SDA4_0) PFBGA161 LQFP120 172 116 116 B2 171 115 115 B3 170 114 114 B4 pin. This pin operates as SOT4 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA4 when it is used in an I2C (operation mode 4). Multifunction serial 4 (S6E2D55GJA) Function LQFP120 Pin Name Ex_LQFP120 Module LQFP176 Pin No. Multi-function serial interface ch.4 clock I/O pin. SCK4_0 This pin operates as SCK4 when it is used in a CSIO (SCL4_0) (operation mode 2) and as SCL4 when it is used in an I2C (operation mode 4). CTS4_0 Multi-function serial interface ch.4 CTS input pin 164 112 112 B5 RTS4_0 Multi-function serial interface ch.4 RTS output pin 165 113 113 C4 SIN5_0 SIN5_1 SOT5_0 Multifunction serial 5 (SDA5_0) SOT5_1 (SDA5_1) UART/CSIO/LIN (operation modes 0 to 3) and as SDA5 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.5 clock I/O pin. This pin operates as SCK5 when it is used in a CSIO SCK5_1 (operation mode 2) and as SCL5 when it is used in an I2C (SCL5_1) (operation mode 4). SOT6_0 (SDA6_0) 6 This pin operates as SOT5 when it is used in a SCK5_0 SIN6_1 function serial Multi-function serial interface ch.5 output pin. (SCL5_0) SIN6_0 Multi- Multi-function serial interface ch.5 input pin SOT6_1 (SDA6_1) Multi-function serial interface ch.6 input pin Multi-function serial interface ch.6 output pin. This pin operates as SOT6 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA6 when it is used in an I2C (operation mode 4). 75 75 G13 154 102 102 C8 110 76 76 F10 155 103 103 B8 111 77 77 F11 156 104 104 A8 19 9 9 E3 117 79 79 F13 20 10 10 E2 118 80 80 E10 21 11 11 E1 119 81 81 E11 SCK6_0 Multi-function serial interface ch.6 clock I/O pin. (SCL6_0) This pin operates as SCK6 when it is used in a CSIO SCK6_1 (operation mode 2) and as SCL6 when it is used in an I2C (SCL6_1) (operation mode 4). SCS60_0 Multi-function serial interface ch.6 chip select 0 22 12 12 F4 SCS60_1 input/output pin 116 78 78 F12 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 109 45 D a t a S h e e t SIN7_0 Multi-function serial interface ch.7 input pin PFBGA161 LQFP120 (S6E2D55GJA) Function LQFP120 Pin Name Ex_LQFP120 Module LQFP176 Pin No. 8 4 4 D3 9 5 5 D2 10 6 6 D1 7 3 3 C2 Multi-function serial interface ch.7 output pin. SOT7_0 (SDA7_0) UART/CSIO/LIN (operation modes 0 to 3) and as SDA7 when it is used in an I2C (operation mode 4). Multi- Multi-function serial interface ch.7 function serial 7 This pin operates as SOT7 when it is used in a SCK7_0 (SCL7_0) clock I/O pin. This pin operates as SCK7 when it is used in a CSIO (operation mode 2) and as SCL7 when it is used in an I2C (operation mode 4). SCS70_0 Multi-function serial interface ch.7 chip select 0 input/output pin DTTI0X_0 Input signal controlling wave form generator outputs RTO00 27 17 17 F1 DTTI0X_1 to RTO05 of Multi-function timer 0. 104 70 70 H12 FRCK0_0 20 10 10 E2 103 69 69 H11 IC00_0 26 16 16 F2 IC00_1 105 71 71 H13 FRCK0_1 16-bit free-run timer ch.0 external clock input pin IC01_0 IC01_1 IC02_0 16-bit input capture input pin of Multi-function timer 0. ICxx describes channel number. IC02_1 15 F3 72 72 G10 22 12 12 F4 107 73 73 G11 21 11 11 E1 IC03_1 108 74 74 G12 6 2 2 C3 109 75 75 G13 7 3 3 C2 110 76 76 F10 8 4 4 D3 111 77 77 F11 9 5 5 D2 116 78 78 F12 RTO00_0 (PPG00_0) Timer 0 RTO00_1 (PPG00_1) RTO01_0 (PPG00_0) RTO01_1 (PPG00_1) RTO02_0 (PPG02_0) RTO02_1 (PPG02_1) RTO03_0 (PPG02_0) RTO03_1 (PPG02_1) CONFIDENTIAL 15 IC03_0 Multi-function 46 25 106 Wave form generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output modes. Wave form generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output modes. Wave form generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output modes. Wave form generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output modes. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t RTO04_0 (PPG04_0) RTO04_1 Multi-function Timer 0 (PPG04_1) RTO05_0 (PPG04_0) RTO05_1 (PPG04_1) PFBGA161 LQFP120 10 6 6 D1 modes. 117 79 79 F13 Wave form generator output pin of Multi-function timer 0. 11 7 7 D4 118 80 80 E10 100 66 66 K11 6 2 2 C3 Wave form generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output This pin operates as PPG04 when it is used in PPG0 output modes. AIN0_0 AIN0_1 (S6E2D55GJA) Function LQFP120 Pin Name Ex_LQFP120 Module LQFP176 Pin No. QPRC ch.0 AIN input pin Quadrature AIN0_2 109 75 75 G13 Position/ BIN0_0 101 67 67 J11 Revolution BIN0_1 Counter BIN0_2 0 ZIN0_0 ZIN0_1 QPRC ch.0 BIN input pin QPRC ch.0 ZIN input pin 68 H10 4 4 D3 77 77 F11 115 B3 63 41 41 M5 171 115 115 B3 63 41 41 M5 0.5 seconds pulse output pin of Real-time clock Sub clock output pin UDM0 USB ch.0 function/host D – pin 174 118 118 A3 UDP0 USB ch.0 function/host D + pin 175 119 119 A2 UHCONX0 USB ch.0 external pull-up control pin 171 115 115 B3 WKUP0 Deep standby mode return signal input pin 0 46 32 32 M2 WKUP1 Deep standby mode return signal input pin 1 65 43 43 K7 WKUP2 Deep standby mode return signal input pin 2 158 106 106 B7 WKUP3 Deep standby mode return signal input pin 3 172 116 116 B2 VREGCTL On-board regulator control pin 82 54 54 L11 VWAKEUP The return signal input pin from a hibernation state 83 55 55 L12 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 68 8 115 SUBOUT_1 VBAT 102 111 SUBOUT_0 Mode C2 F10 171 RTCCO_1 Consumption 3 76 ZIN0_2 clock Low-Power 3 76 RTCCO_0 Real-time USB0 7 110 47 D a t a S h e e t I2SMCLK0_0 I2SDO0_0 2 IS0 GDC Quad SPI C3 3 C2 2 8 4 4 D3 I2S ch.0 serial received data input pin 9 5 5 D2 2 I S ch.0 bit clock pin 10 6 6 D1 I2S ch.1 external clock pin 51 33 33 M3 I2SDO1_0 I2S ch.1 serial transition data output pin 52 34 34 L4 I2SWS1_0 I2S ch.1 frame synchronization signal pin 53 35 35 M4 I2SDI1_0 I2S ch.1 serial received data input pin 54 36 36 K5 I2SCK1_0 I2S ch.1 bit clock pin 55 37 37 L5 GE_SPCK SPI clock output pin 34 20 - J1 35 21 - K1 38 24 - J2 39 25 - J3 GE_SPDQ1 GE_SPDQ2 SPI data input / output pin GE_SPDQ3 GE_HBCK - H2 23 - H3 HBI clock output pin 20 - J1 36 22 - H2 GE_HBDQ1 37 23 - H3 GE_HBDQ2 38 24 - J2 39 25 - J3 40 26 - K2 GE_HBDQ5 41 27 - K3 GE_HBDQ6 42 28 - L2 GE_HBDQ7 43 29 - L3 GE_HBCSX_0 35 21 - K1 GE_HBCSX_1 GE_HBRWDS GE_HBRESETX GE_HBINTX GE_HBRSTOX GE_HBWPX CONFIDENTIAL 22 37 34 GE_HBDQ4 48 36 SPI chip select output pin GE_HBDQ0 GE_HBDQ3 HyperBus I/F PFBGA161 2 3 I S ch.0 frame synchronization signal pin GE_SPCSX_0 GDC LQFP120 2 7 GE_SPDQ0 High-Speed (S6E2D55GJA) 6 I2S ch.0 serial transition data output pin I2SDI0_0 I2SCK0_0 IS1 I2S ch.0 external clock pin I2SWS0_0 I2SMCLK1_0 2 Function LQFP120 Pin Name Ex_LQFP120 Module LQFP176 Pin No. HBI data input / output pin HBI chip select output pin 12 8 - E4 HBI RWDS input / output pin 33 19 - G2 HBI hardware reset output pin 25 15 - F3 HBI interrupt input pin 26 16 - F2 HBI reset input pin 27 17 - F1 HBI write protect output pin 28 18 - G3 S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t PFBGA161 LQFP120 (S6E2D55GJA) Function LQFP120 Pin Name Ex_LQFP120 Module LQFP176 Pin No. PNL_DCLK GDC clock output pin 67 45 45 K8 PNL_DEN GDC data enable output pin (blanking signal) 68 46 46 L8 PNL_PWE GDC power enable control output pin 66 44 44 L7 GDC line end output pin 69 47 47 K9 PNL_LH_SYNC GDC horizontal synchronization output pin 70 48 48 L9 PNL_FV_SYNC GDC vertical synchronization output pin 71 49 49 L10 PNL_PD0 165 113 113 C4 PNL_PD1 164 112 112 B5 PNL_PD2 163 111 111 C5 PNL_PD3 162 110 110 A6 PNL_PD4 161 109 109 B6 PNL_PD5 160 108 108 C6 PNL_PD6 158 106 106 B7 PNL_PD7 157 105 105 C7 PNL_PD8 156 104 104 A8 PNL_PD9 155 103 103 B8 PNL_PD10 154 102 102 C8 PNL_PD11 153 101 101 A9 PNL_LE PNL_PD12 GDC panel data output pin 152 100 100 B9 PNL_PD13 151 99 99 C9 GDC PNL_PD14 150 98 98 D9 Panel PNL_PD15 149 97 97 C10 PNL_PD16 131 89 89 C13 PNL_PD17 130 88 88 C12 PNL_PD18 125 87 87 D13 PNL_PD19 124 86 86 D12 PNL_PD20 123 85 85 D11 PNL_PD21 122 84 84 D10 PNL_PD22 121 83 83 E13 PNL_PD23 120 82 82 E12 PNL_TSIG0 70 48 48 L9 PNL_TSIG1 71 49 49 L10 PNL_TSIG2 68 46 46 L8 PNL_TSIG3 69 47 47 K9 PNL_TSIG4 66 44 44 L7 PNL_TSIG5 130 88 88 C12 PNL_TSIG6 GDC timing generator for panel control 125 87 87 D13 PNL_TSIG7 124 86 86 D12 PNL_TSIG8 123 85 85 D11 PNL_TSIG9 122 84 84 D10 PNL_TSIG10 121 83 83 E13 PNL_TSIG11 120 82 82 E12 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 49 D a t a S h e e t - - - - - GE_SDA2 137 - - - GE_SDA3 136 - - - GE_SDA4 135 - - - GE_SDA5 134 - - - CONFIDENTIAL SDRAM-IF address output pin 129 - - - GE_SDA7 128 - - - GE_SDA8 127 - - - GE_SDA9 126 - - - GE_SDA10 115 - - - GE_SDA11 114 - - - 113 - - - 112 - - - SDRAM-IF bank address output pin GE_SDCASX SDRAM-IF column active output pin 168 - - - GE_SDRASX SDRAM-IF row active output pin 167 - - - GE_SDWEX SDRAM-IF write enable output pin 166 - - - GE_SDCKE SDRAM-IF clock enable output pin 2 - - - GE_SDCLK SDRAM-IF clock output pin GE_SDCSX SDRAM-IF chip select output pin 3 - - - 169 - - - GE_SDDQ0 99 - - - GE_SDDQ1 98 - - - GE_SDDQ2 97 - - - GE_SDDQ3 96 - - - GE_SDDQ4 95 - - - GE_SDDQ5 94 - - - GE_SDDQ6 77 - - - GE_SDDQ7 76 - - - GE_SDDQ8 75 - - - GE_SDDQ9 74 - - - GE_SDDQ10 73 - - - GE_SDDQ11 72 - - - GE_SDDQ12 50 PFBGA161 - 138 GE_SDBA1 (176 pin only) LQFP120 144 GE_SDA1 GE_SDBA0 SDRAM-IF (S6E2D55GJA) GE_SDA0 GE_SDA6 GDC Function LQFP120 Pin Name Ex_LQFP120 Module LQFP176 Pin No. SDRAM-IF data input / output pin 59 - - - GE_SDDQ13 58 - - - GE_SDDQ14 57 - - - GE_SDDQ15 56 - - - GE_SDDQ16 50 - - - GE_SDDQ17 49 - - - GE_SDDQ18 48 - - - GE_SDDQ19 47 - - - GE_SDDQ20 32 - - - GE_SDDQ21 31 - - - GE_SDDQ22 30 - - - GE_SDDQ23 29 - - - S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t SDRAM-IF (176 pin only) PFBGA161 LQFP120 18 - - - GE_SDDQ25 17 - - - GE_SDDQ26 16 - - - GE_SDDQ27 15 - - - SDRAM-IF data input / output pin 14 - - - GE_SDDQ29 13 - - - GE_SDDQ30 5 - - - GE_SDDQ31 4 - - - GE_SDDQM0 148 - - - GE_SDDQM1 147 - - - 146 - - - 145 - - - 78 50 50 M8 84 56 56 M12 85 57 57 M11 GE_SDDQM2 SDRAM-IF input / output mask pin GE_SDDQM3 Reset (S6E2D55GJA) GE_SDDQ24 GE_SDDQ28 GDC Function LQFP120 Pin Name Ex_LQFP120 Module LQFP176 Pin No. INITX External Reset Input pin. A reset is valid when INITX = L. Mode 1 pin. MD1 During serial programming to Flash memory, MD1 = L must be input. Mode Mode 0 pin. MD0 During normal operation, MD0 = L must be input. During serial programming to Flash memory, MD0 = H must be input. Power GND Clock VCC VSS C1 G1 44 30 30 L1 62 40 40 N4 89 61 61 L13 133 91 91 A12 173 117 117 A4 24 14 14 H1 45 31 31 M1 61 39 39 N3 88 60 60 M13 132 90 90 B13 159 107 107 A7 176 120 120 B1 Main clock (oscillation) input pin 86 58 58 N11 Sub clock (oscillation) input pin 79 51 51 N7 X1 Main clock (oscillation) I/O pin 87 59 59 N12 X1A Sub clock (oscillation) I/O pin 80 52 52 N9 52 34 34 L4 64 42 42 N5 Built-in High-speed CR-osc clock output port AVCC A/D converter analog power supply pin 90 62 62 K13 AVRL A/D converter analog reference voltage input pin 92 64 64 J13 AVRH A/D converter analog reference voltage input pin 93 65 65 J12 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 1 13 X0 CROUT_1 Power GND Pin 1 13 X0A CROUT_0 Analog Power supply Pin 1 23 51 D a t a S h e e t VBAT Power Analog GND C Pin 52 CONFIDENTIAL PFBGA161 LQFP120 (S6E2D55GJA) Function LQFP120 Pin Name Ex_LQFP120 Module LQFP176 Pin No. VBAT power supply pin. VBAT Backup power supply (battery etc.) and system power 81 53 53 M9 A/D converter GND pin 91 63 63 K12 Power supply stabilization capacity pin 60 38 38 N2 supply. AVSS C S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 7. I/O Circuit Type Type Circuit Remarks Pull-up resistor P-ch P-ch Digital output X1 N-ch Digital output R It is possible to select the main oscillation / GPIO function Pull-up resistor control Standby mode control When the main oscillation is selected. ・Oscillation feedback resistor Clock input : Approximately 1 MΩ ・With Standby mode control Digital input Feedback A resistor Standby mode control Digital input Standby mode control Pull-up resistor When the GPIO is selected. ・ CMOS level output. ・ CMOS level hysteresis input ・ With pull-up resistor control ・ With standby mode control ・ Pull-up resistor : Approximately 80 kΩ ・ IOH = -2 mA, IOL = 2 mA R P-ch P-ch Digital output N-ch Digital output X0 Pull-up resistor control ・CMOS level hysteresis input ・Pull-up resistor B Pull-up resistor : Approximately 80 kΩ Digital input April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 53 D a t a S h e e t Type Circuit Remarks Digital input ・Open drain output C Digital output N-ch P-ch P-ch Digital output ・CMOS level hysteresis input ・CMOS level output ・CMOS level hysteresis input ・With pull-up resistor control ・With standby mode control D N-ch Digital output ・Pull-up resistor : Approximately 80 kΩ R ・IOH = -4 mA, IOL = 4 mA ・When this pin is used as an I2C pin, Pull-up resistor control the digital output P-ch transistor is always off. Digital input Standby mode control P-ch P-ch Digital output ・CMOS level output ・CMOS level hysteresis input ・With pull-up resistor control ・With standby mode control ・Pull-up resistor E N-ch Digital output R : Approximately 80 kΩ ・IOH = -2 mA, IOL = 2 mA ・When this pin is used as an I2C pin, the digital output P-ch transistor is always off. Pull-up resistor control Digital input Standby mode control 54 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Type Circuit P-ch Remarks P-ch Digital output ・CMOS level output ・CMOS level hysteresis input ・With input control N-ch Digital output ・Analog input ・With pull-up resistor control ・With standby mode control F ・Pull-up resistor Pull-up resistor control R Digital input Standby mode control : Approximately 80 kΩ ・IOH = -2 mA, IOL = 2 mA ・When this pin is used as an I2C pin, the digital output P-ch transistor is always off. Analog input Input control P-ch P-ch Digital output ・CMOS level output ・CMOS level hysteresis input ・With pull-up resistor control ・With standby mode control ・Pull-up resistor G N-ch Digital output R : Approximately 80 kΩ ・IOH = -8 mA, IOL = 8 mA ・When this pin is used as an I2C pin, the digital output P-ch transistor is always off. Pull-up resistor control Digital input Standby mode control April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 55 D a t a S h e e t Type Circuit Remarks GPIO Digital output GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control It is possible to select the USB I/O / GPIO function. UDP output UDP/Pxx USB Full-speed/Low-speed control UDP input H When the USB I/O is selected. ・Full-speed, Low-speed control Differential Differential input USB/GPIO select UDM/Pxx UDM input When the GPIO is selected. ・CMOS level output ・CMOS level hysteresis input UDM output ・With standby mode control USB Digital input/output direction ・IOH = -20.5 mA, IOL = 18.5 mA GPIO Digital output GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control P-ch P-ch Digital output ・CMOS level output ・CMOS level hysteresis input ・5 V tolerant ・With pull-up resistor control ・With standby mode control I N-ch Digital output R ・Pull-up resistor : Approximately 80 kΩ ・IOH = -2 mA, IOL = 2 mA ・Available to control of PZR registers. Pull-up resistor control Digital input Standby mode control J 56 CONFIDENTIAL Mode input ・CMOS level hysteresis input S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Type Circuit P-ch Remarks P-ch Digital output ・CMOS level output ・CMOS level hysteresis input ・With pull-up resistor control ・With standby mode control K N-ch Digital output R ・Pull-up resistor : Approximately 33 kΩ ・IOH = -11 mA, IOL = 11 mA Pull-up resistor control Digital input Standby mode control P-ch P-ch Digital output ・CMOS level output ・CMOS level hysteresis input ・TTL level hysteresis input N-ch L Digital output R :SDRAM-IF Data Input only ・With pull-up resistor control ・With standby mode control ・Pull-up resistor Pull-up resistor control : Approximately 33 kΩ ・IOH = -11 mA, IOL = 11 mA Digital input (TTL) Digital input (CMOS) Standby mode control April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 57 D a t a S h e e t Type Circuit Remarks P-ch P-ch Pull-up resistor control Digital output ・CMOS level output ・CMOS level hysteresis input ・5 V tolerant ・With pull-up resistor control ・With standby mode control ・Pull-up resistor N N-ch N-ch Digital output : Approximately 80 kΩ ・IOH = -3 mA, IOL = 3 mA (GPIO) ・IOL = 20 mA (Fast Mode Plus) ・Available to control of PZR registers. Fast mode control R ・When this pin is used as an I2C pin, the digital output P-ch transistor is always off Digital input Standby mode control ・CMOS level output P-ch P-ch Pull-up resistor control Digital output ・CMOS level hysteresis input ・5 V tolerant ・With pull-up resistor control ・Pull-up resistor : Approximately 80 kΩ O ・IOH = -2 mA, IOL = 2 mA N-ch Digital output ・Available to control of PZR registers. ・Please refer to the "VBAT domain" setting of the IO in the “Peripheral Manual main part (MN709-00001)". R Digital input X0A R Digital input P ・CMOS level hysteresis input ・Please refer to the "VBAT domain" setting of Sub OSC/GPIO select the IO in the “Peripheral Manual main part (MN709-00001)". OSC 58 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Type Circuit Remarks X1A R Digital input Sub OSC/ GPIO select OSC Q It is possible to select the sub oscillation / GPIO function When the sub oscillation is selected. ・Oscillation feedback resistor : Approximately 12 MΩ RX When the GPIO is selected. ・CMOS level hysteresis input Sub OSC enable ・Please refer to the "VBAT domain" setting of the IO in the “Peripheral Manual main Clock input P-ch P-ch part (MN709-00001)". Digital output ・CMOS level output ・CMOS level hysteresis input N-ch Digital output ・With input control ・Analog input ・With pull-up resistor control R ・With standby mode control R Pull-up resistor control Digital input ・Pull-up resistor : Approximately 80 kΩ ・IOH = -4 mA, IOL = 4 mA Standby mode control Analog input Input control April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 59 D a t a S h e e t 8. Handling Precautions Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Spansion semiconductor devices. 8.1 Precautions for Product Design This section describes precautions when designing electronic equipment using semiconductor devices. Absolute Maximum Ratings Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings. Recommended Operating Conditions Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand. Processing and Protection of Pins These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions. 1. 2. 3. Preventing Over-Voltage and Over-Current Conditions Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage. Protection of Output Pins Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection. Handling of Unused Input Pins Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin. Code: DS00-00004-3E 60 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Latch-up Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up. CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following: 1. 2. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc. Be sure that abnormal current flows do not occur during the power-on sequence. Observance of Safety Regulations and Standards Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products. Fail-Safe Design Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. Precautions Related to Usage of Devices Spansion semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. 8.2 Precautions for Package Mounting Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Spansion's recommended conditions. For detailed information about mount conditions, contact your sales representative. Lead Insertion Type Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket. Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Spansion recommended mounting conditions. If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting. April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 61 D a t a S h e e t Surface Mount Type Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. Spansion recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Spansion ranking of recommended conditions. Lead-Free Packaging CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use. Storage of Semiconductor Devices Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following: 1. 2. 3. 4. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. When you open Dry Package that recommends humidity 40% to 70% relative humidity. When necessary, Spansion packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage. Avoid storing packages where they are exposed to corrosive gases or high levels of dust. Baking Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion recommended conditions for baking. Condition: 125°C/24 h Static Electricity Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions: 1. 2. 3. 4. 5. 62 CONFIDENTIAL Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended. Ground all fixtures and instruments, or protect with anti-static measures. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 8.3 Precautions for Use Environment Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following: 1. Humidity Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing. 2. Discharge of Static Electricity When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges. 3. Corrosive Gases, Dust, or Oil Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices. 4. Radiation, Including Cosmic Radiation Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate. 5. Smoke, Flame CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases. Customers considering the use of Spansion products in other special environmental conditions should consult with sales representatives. Please check the latest handling precautions at the following URL. http://www.spansion.com/fjdocuments/fj/datasheet/e-ds/DS00-00004.pdf April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 63 D a t a S h e e t 9. Handling Devices Power Supply Pins In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with each POWER pins and GND pins of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between VCC and VSS, between AVCC and AVSS and between AVRH and AVRL near this device. A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the VCC power supply voltage. As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard VCC value, and the transient fluctuation rate does not exceed 0.1 V/μs at a momentary fluctuation such as switching the power supply. Crystal Oscillator Circuit Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible. It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation. Evaluate oscillation of your using crystal oscillator by your mount board. Sub Crystal Oscillator This series sub oscillator circuit is low gain to keep the low current consumption. The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation. Surface mount type Size: Load capacitance: Lead type Load capacitance: 64 CONFIDENTIAL More than 3.2 mm × 1.5 mm Approximately 6 pF to 7 pF Approximately 6 pF to 7 pF S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Using an External Clock When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3) can be used as a general-purpose I/O port. Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input, and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port. Example of Using an External Clock Device X0(X0A) Set as External clock input Can be used as general-purpose I/O ports. X1(PE3), X1A (P47) 2 Handling when Using Multi-Function Serial Pin as I C Pin 2 If it is using the multi-function serial pin as I C pins, P-ch transistor of digital output is always disabled. 2 However, I C pins need to keep the electrical characteristic like other pins and not to connect to the external 2 I C bus system with power OFF. C Pin This series contains the regulator. Be sure to connect a smoothing capacitor (C S) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor. A smoothing capacitor of about 4.7 μF would be recommended for this series. C Device CS VSS GND Mode Pins (MD0) Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise. April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 65 D a t a S h e e t Notes on Power-on Turn power on/off in the following order or at the same time. Turning on : VBAT → VCC VCC → AVCC → AVRH Turning off : VCC → VBAT AVRH → AVCC → VCC Serial Communication There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise. Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data. Differences in Features among the Products with Different Memory Sizes and between Flash Products and MASK Products The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash products and MASK products are different because chip layout and memory structures are different. If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics. Pull-Up Function of 5V Tolerant I/O Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5V tolerant I/O. Pin Doubled as Debug Function Please use as output only regarding the pin doubled as TDO/TMS/TDI/TCK/TRSTX, SWO/SWDIO/SWCLK. Don't use as input. S6E2D55GJA The following must correspond to S6E2D55GJA. 1. Terminal DNU0 / 1 is short-circuited, and the pull-up of about 10kΩ is done. Device R DNU0 DNU1 2. Please do not connect the open end NC terminal. 3. Please have the following port settings. PFR7: PDOR7: DDR7: bit6=0, bit10=0 bit6=0, bit10=0 bit6=1, bit10=1 See Chapter 12: I/O Port in FM4 Family Peripheral Manual Main Part (MN709-00001) for the details. 4. Please connect a bypass capacitor as close as possible to GND on the board and VCC in pin number 22. 66 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 10. Block Diagram S6E2D55J0A / S6E2D55G0A / S6E2D55GJA SWJ-DP ETM* TRACEDx, TRACECLK TPIU* ROM Table Cortex-M4 Core @160MHz(Max) SRAM0 32Kbytes SRAM2 4Kbytes I D FPU MPU NVIC Sys Dual-Timer AHB-APB Watchdog Timer (Software) Clock Reset Generator INITX MainFlash I/F Multi-layer AHB (Max:160MHz) TRSTX,TCK, TDI,TMS TDO Trace Buffer (16Kbytes) MainFlash 384Kbytes Security USB2.0 PHY UDP0,UDM0 (Host/Func) UHCONX0 Watchdog Timer DMAC 8ch. CSV DSTC 1unit(128ch.) CLK Source Clock Sub OSC CROUT TIOBx AIN BIN ZIN Unit 0 Unit 1 Base Timer 16bit 16ch./ 32bit 8ch QPRC 1ch. A/D Activation Compare IC0 FRCK0 16bit Input Capture 4ch. 16bit Free-run Timer 3ch. 16bit Output Compare 6ch. DTTI0x RTO0x Waveform Generator 3ch. 16bit PPG 3ch. Multi-function Timer 1unit VBAT VMAKEUP VREGCTL RTCCO,SUBOUT VBAT Domain Real-Time Clock Port Cntl. I2S 2units GPIO PIN-Function-Ctrl MODE-Cntl. VRAM 512Kbytes SDRAM I/F HyperBus I/F HighSpeed Quad SPI PLL USB Clock Cntl. PLL I2S Clock Cntl. PLL MADx MADATAx MCSXx,MDQMx, MOEX,MWEX, MALE,MRDY, MNALE,MNCLE, MNWEX,MNREX, MCLKOUT,MSDWEX, MSDCLK,MSDCKE, MRASX,MCASX ■SDRAM I/F GE_SDCLK,GE_SDCKE,GE_SDCSX, GE_SDCASX,GE_SDRASX,GE_SDWEX, GE_SDDQM[3:0],GE_SDBA[1:0], GE_SDA[11:0],GE_SDDQ[31:0] ■HyperBus I/F GE_HBCK, GE_HBDQ[7:0], GE_HBCSX_0/1, GE_HBRWDS, GE_HBRESETX, GE_HBINTX, GE_HBRSTOX, GE_HBWPX ■HighSpeed Quad SPI GE_SPCK, GE_SPDQ[3:0], GE_SPCSX_0 VFLASH 2Mbytes Power-On Reset LVD Regulator IRQ-Monitor MD0,MD1 *S6E2D55GJA Only LVD Cntl. Peripheral Clock Gating Low-speed CR P0x, P1x, : PFx *S6E2D55GJA Unavailable CAN Prescaler GDC Clock Cntl. I2SMCLKx, I2SWSx,I2SCKx I2SDIx I2SDOx ■Panel I/F PNL_DCLK, PNL_DEN, PNL_PWE, PNL_LE, PNL_LH_SYNC, PNL_FV_SYNC, PNL_PD[23:0], PNL_TSIG[11:0] GDC unit Graphic Engine core TX,RX PRG-CRC Accelerator External Bus I/F AHB-APB Bridge:APB2(Max:80MHz) TIOAx 12bit A/D Converter 24ch. AHB-APB Bridge:APB1(Max:160MHz) AVCC,AVSS, AVRH,AVRL ANxx ADTGx AHB-AHB Bridge (Slave) CR 4MHz VBAT Domain X0A X1A CAN CR 100kHz PLL AHB-AHB Bridge (Master) Main OSC AHB-AHB Bridge (Slave) X0 X1 Deep Standby Cntl. External Interrupt Controller 16ch + NMI C WKUPx INTx NMIX CRC Accelerator Watch Counter April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL Multi-function Serial I/F 8ch. (with FIFO ch.0 to ch.7) HW flow control(ch.4,5) SCKx SINx SOTx CTSx RTSx SCSx 67 D a t a S h e e t 11. Memory Size See Memory size in 3. Product Lineup to confirm the memory size. 12. Memory Map Memory Map GDC Area 0xFFFF_FFFF Reserved 0xE010_0000 0xE000_0000 Cortex-M4 Private Peripherals 0xDFFF_FFFF 0xD0A0_6000 0xD0A0_5000 0xD0A0_4000 0xD0A0_3000 0xD0A0_1000 0xD0A0_0000 0xD008_0000 0xD000_0000 Reserved GDC_HBIF GDC_HSQSPI GDC_SDRAMIF Reserved GDC Reserved VRAM Memory Area for 0xC000_0000 GDC_HSQSPI or GDC_HBIF 0xB000_0000 External SDRAM GDC 0xB000_0000 0x8000_0000 External Device Area Peripherals Area Reserved SDRAM 256Mbytes 0x7000_0000 SRAM /NOR Flash Memory /NAND Flash Memory 0x6000_0000 256Mbytes Reserved 0x4400_0000 0x4200_0000 0x4000_0000 0x2400_0000 0x2200_0000 0x2004_1000 0x2004_0000 0x2000_0000 0x1FFF_8000 32Mbytes Bit band alias Peripherals Reserved 32Mbytes Bit band alias Reserved SRAM2 4Kbytes Reserved SRAM0 32Kbytes Reserved 0x0040_4000 0x0040_2000 0x0040_0000 CR trimming Security Reserved 0x0006_0000 Flash 384Kbytes 0x0000_0000 68 CONFIDENTIAL 0x41FF_FFFF 0x4008_1000 0x4008_0000 0x4007_0000 0x4006_F000 0x4006_E000 0x4006_D000 Programable-CRC CAN-FD GPIO Reserved Reserved 0x4006_C000 0x4006_2000 0x4006_1000 0x4006_0000 0x4005_0000 0x4004_0000 0x4003_F000 0x4003_E000 0x4003_D100 0x4003_D000 0x4003_C800 0x4003_C100 0x4003_C000 0x4003_B000 0x4003_A000 0x4003_9000 0x4003_8000 0x4003_7000 0x4003_6000 0x4003_5000 0x4003_2000 0x4003_1000 0x4003_0000 0x4002_F000 0x4002_E000 0x4002_8000 0x4002_7000 0x4002_6000 0x4002_5000 0x4002_4000 0x4002_1000 0x4002_0000 0x4001_6000 0x4001_5000 0x4001_3000 0x4001_2000 0x4001_1000 0x4001_0000 0x4000_1000 0x4000_0000 I2S Reserved DSTC DMAC Reserved USB ch.0 EXT-bus I/F Reserved GDC Prescaler I2S Prescaler Reserved Peripheral Clock Gating LowSpeed CR Prescaler RTC/Port Ctrl Watch Counter CRC MFS CAN Prescaler USB Clock Ctrl LVD/DS mode Reserved Int-Req.Read EXTI Reserved CR Trim Reserved A/DC QPRC Base Timer PPG Reserved MFT Unit0 Reserved Dual Timer Reserved SW WDT HW WDT Clock/Reset Reserved Flash I/F Reserved S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Peripheral Address Map Start address 0x4000_0000 0x4000_1000 0x4001_0000 0x4001_1000 0x4001_2000 0x4001_3000 0x4001_5000 0x4001_6000 0x4002_0000 0x4002_1000 0x4002_4000 0x4002_5000 0x4002_6000 0x4002_7000 0x4002_8000 0x4002_E000 0x4002_F000 0x4003_0000 0x4003_1000 0x4003_2000 0x4003_5000 0x4003_5800 0x4003_6000 0x4003_7000 0x4003_8000 0x4003_9000 0x4003_A000 0x4003_B000 0x4003_C000 0x4003_C100 0x4003_C800 0x4003_D000 0x4003_D100 0x4003_E000 0x4003_F000 0x4004_0000 0x4005_0000 0x4006_0000 0x4006_1000 0x4006_2000 0x4006_C000 0x4006_D000 0x4006_E000 0x4006_F000 0x4007_0000 0x4008_0000 0x4008_1000 0xB000_0000 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL End address 0x4000_0FFF 0x4000_FFFF 0x4001_0FFF 0x4001_1FFF 0x4001_2FFF 0x4001_4FFF 0x4001_5FFF 0x4001_FFFF 0x4002_0FFF 0x4002_3FFF 0x4002_4FFF 0x4002_5FFF 0x4002_6FFF 0x4002_7FFF 0x4002_DFFF 0x4002_EFFF 0x4002_FFFF 0x4003_0FFF 0x4003_1FFF 0x4003_4FFF 0x4003_57FF 0x4003_5FFF 0x4003_6FFF 0x4003_7FFF 0x4003_8FFF 0x4003_9FFF 0x4003_AFFF 0x4003_BFFF 0x4003_C0FF 0x4003_C7FF 0x4003_CFFF 0x4003_D0FF 0x4003_DFFF 0x4003_EFFF 0x4003_FFFF 0x4004_FFFF 0x4005_FFFF 0x4006_0FFF 0x4006_1FFF 0x4006_BFFF 0x4006_CFFF 0x4006_DFFF 0x4006_EFFF 0x4006_FFFF 0x4007_FFFF 0x4008_0FFF 0x41FF_FFFF 0xDFFF_FFFF Bus AHB APB0 APB1 APB2 Peripherals MainFlash I/F register Reserved Clock/Reset Control Hardware Watchdog timer Software Watchdog timer Reserved Dual-Timer Reserved Multi-function timer unit0 Reserved PPG Base Timer Quadrature Position/Revolution Counter A/D Converter Reserved Internal CR trimming Reserved External Interrupt Controller Interrupt Request Batch-Read Function Reserved Low Voltage Detector Deep standby mode Controller USB clock generator CAN prescaler Multi-function serial Interface CRC Watch Counter RTC/PortCtrl Low-speed CR Prescaler Peripheral Clock Gating Reserved I2S Prescaler GDC Prescaler Reserved External Memory interface USB ch.0 Reserved DMAC register DSTC register Reserved I2S Reserved Reserved GPIO CAN-FD Programmable-CRC Reserved AHB GDC unit AHB 69 D a t a S h e e t 13. Pin Status in Each CPU State The terms used for pin status have the following meanings. INITX=0 This is the period when the INITX pin is the L level. INITX=1 This is the period when the INITX pin is the H level. SPL=0 This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0. SPL=1 This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1. Input enabled Indicates that the input function can be used. Internal input fixed at 0 This is the status that the input function cannot be used. Internal input is fixed at L. Hi-Z Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state. Setting disabled Indicates that the setting is disabled. Maintain previous state Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained. Analog input is enabled Indicates that the analog input is enabled. Trace output Indicates that the trace function can be used. GPIO selected In Deep standby mode, pins switch to the general-purpose I/O port. Setting prohibition Prohibition of a setting by specification limitation. 70 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t List of Pin Status Pin status Type Power-on Function Group Reset or INITX Low-Voltage Input Detection State State Device Run Mode Internal or SLEEP Reset Mode State State Return Timer Mode Deep Standby RTC from Deep RTC Mode or Mode or Deep Standby Standby STOP Mode State STOP Mode State Mode State Power Power Power Power Power Power Supply Supply Supply Supply Supply Supply Unstable Stable Stable Stable Stable Stable INITX=1 INITX=1 INITX=1 ‐ INITX=0 INITX=1 INITX=1 ‐ ‐ ‐ ‐ GPIO Setting Setting Setting selected disabled disabled disabled SPL=0 Maintain Maintain previous previous state state SPL=1 Hi-Z / Internal input fixed at 0 SPL=0 GPIO selected Internal input fixed at 0 SPL=1 - Hi-Z / Internal GPIO input fixed selected at 0 Main A crystal oscillator input pin/ External main Input Input Input Input Input Input Input Input Input enabled enabled enabled enabled enabled enabled enabled enabled enabled clock input selected GPIO Setting Setting Setting selected disabled disabled disabled Maintain Maintain previous previous state state External main clock B input Setting Setting Setting disabled disabled disabled Maintain Maintain previous previous state state selected Hi-Z / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 Maintain previous state Hi-Z / Internal GPIO input fixed selected at 0 Hi-Z / Internal input fixed at 0 Maintain previous state Hi-Z / Main Internal Hi-Z / Hi-Z / crystal input Internal Internal Maintain previous state/ oscillator fixed input input When oscillation stops*1,Hi-Z / output at 0/ fixed fixed Internal input fixed at 0 pin or Input at 0 at 0 Pull-up / Pull-up / Pull-up / Pull-up / Pull-up / Pull-up / Pull-up / Pull-up / Pull-up / input input input input input input input input input enabled enabled enabled enabled enabled enabled enabled enabled enabled enable C D INITX input pin Mode Input Input Input Input Input Input Input Input Input input pin enabled enabled enabled enabled enabled enabled enabled enabled enabled April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 71 D a t a S h e e t Pin status Type Power-on E Function Group Reset or INITX Low-Voltage Input Detection State State Device Run Mode Internal or SLEEP Reset Mode State State Deep Standby RTC from Deep RTC Mode or Mode or Deep Standby Standby STOP Mode State STOP Mode State Mode State Power Power Power Power Power Power Supply Supply Supply Supply Supply Supply Unstable Stable Stable Stable Stable Stable ‐ INITX=0 INITX=1 INITX=1 ‐ ‐ ‐ ‐ INITX=1 SPL=0 INITX=1 SPL=1 SPL=0 INITX=1 SPL=1 - Mode Input Input Input Input Input Input Input Input Input input pin enabled enabled enabled enabled enabled enabled enabled enabled enabled GPIO Setting Setting Setting Maintain Maintain Hi-Z / selected disabled disabled disabled previous previous input state state enabled NMIX Setting Setting Setting selected disabled disabled disabled Resource F Return Timer Mode other than above Hi-Z selected GPIO selected Hi-Z / input enabled GPIO selected Maintain Maintain previous previous state state Maintain Maintain WKUP previous previous Hi-Z / input state state Internal enabled Hi-Z / WKUP input Hi-Z / Hi-Z / input input enabled enabled Pull-up / Pull-up / Maintain Maintain Maintain Maintain Input Input previous previous previous previous enabled enabled state state state input fixed enabled GPIO selected at 0 GPIO selected JTAG selected Hi-Z G GPIO Setting Setting Setting selected disabled disabled disabled state Maintain Maintain previous previous Hi-Z / state state Internal input fixed at 0 JTAG selected Hi-Z above selected Internal input fixed at 0 Hi-Z / Internal GPIO input fixed selected at 0 Pull-up / Maintain Maintain Maintain Maintain Input Input previous previous previous previous enabled enabled state state state state other than selected Pull-up / Resource H GPIO Setting Setting Setting disabled disabled disabled Maintain Maintain previous previous Hi-Z / state state Internal input fixed at 0 GPIO GPIO selected Internal input fixed at 0 Hi-Z / Internal GPIO input fixed selected at 0 selected Resource selected I Hi-Z GPIO selected 72 CONFIDENTIAL Hi-Z / Hi-Z / Maintain Maintain input input previous previous enabled enabled state state Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 Hi-Z / Internal GPIO input fixed selected at 0 S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Pin status Type Power-on Function Group Reset or INITX Low-Voltage Input Detection State State Device Run Mode Internal or SLEEP Reset Mode State State Return Timer Mode Deep Standby RTC from Deep RTC Mode or Mode or Deep Standby Standby STOP Mode State STOP Mode State Mode State Power Power Power Power Power Power Supply Supply Supply Supply Supply Supply Unstable Stable Stable Stable Stable Stable ‐ INITX=0 INITX=1 INITX=1 ‐ ‐ ‐ ‐ interrupt Setting Setting Setting enabled disabled disabled disabled INITX=1 SPL=0 External GPIO Maintain other previous previous state state Hi-Z selected Hi-Z / Hi-Z / input input enabled enabled - state Maintain than INITX=1 SPL=1 previous Resource above SPL=0 Maintain selected K INITX=1 SPL=1 selected Hi-Z / Internal input fixed Internal input fixed at 0 Hi-Z / Internal GPIO input fixed selected at 0 at 0 GPIO selected Analog input Hi-Z selected L Hi-Z / Hi-Z / Internal Internal input input fixed fixed at 0 / at 0 / Analog Analog input input enabled enabled Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Internal Internal Internal Internal Internal Internal input fixed input fixed input fixed input fixed input fixed input fixed at 0 / at 0 / at 0 / at 0 / at 0 / at 0 / Analog Analog Analog Analog Analog Analog input input input input input input enabled enabled enabled enabled enabled enabled Resource other than above selected Setting Setting Setting disabled disabled disabled GPIO Maintain Maintain previous previous state state Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 Hi-Z / Internal GPIO input fixed selected at 0 selected April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 73 D a t a S h e e t Pin status Type Power-on Function Group Reset or INITX Low-Voltage Input Detection State State Run Mode Internal or SLEEP Reset Mode State State Return Timer Mode Deep Standby RTC from Deep RTC Mode or Mode or Deep Standby Standby STOP Mode State STOP Mode State Mode State Power Power Power Power Power Power Supply Supply Supply Supply Supply Supply Unstable Stable Stable Stable Stable Stable ‐ INITX=0 INITX=1 INITX=1 ‐ ‐ ‐ ‐ Analog input Device Hi-Z selected Hi-Z / Hi-Z / Internal Internal input input fixed fixed at 0 / at 0 / Analog Analog input input enabled enabled INITX=1 SPL=0 Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Internal Internal Internal Internal input fixed input fixed input fixed input fixed input fixed input fixed at 0 / at 0 / at 0 / at 0 / at 0 / at 0 / Analog Analog Analog Analog Analog Analog input input input input input input enabled enabled enabled enabled enabled enabled Maintain previous state selected than - Internal enabled other INITX=1 SPL=1 Hi-Z / interrupt Resource SPL=0 Internal External M INITX=1 SPL=1 GPIO Setting Setting Setting disabled disabled disabled Maintain Maintain selected previous previous Internal state state above Hi-Z / Internal input fixed selected input fixed at 0 Hi-Z / Internal GPIO input fixed selected at 0 at 0 GPIO selected Analog input Hi-Z selected N Hi-Z / Hi-Z / Internal Internal input input fixed fixed at 0 / at 0 / Analog Analog input input enabled enabled Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Internal Internal Internal Internal Internal Internal input fixed input fixed input fixed input fixed input fixed input fixed at 0 / at 0 / at 0 / at 0 / at 0 / at 0 / Analog Analog Analog Analog Analog Analog input input input input input input enabled enabled enabled enabled enabled enabled Trace Trace selected output Resource other than above selected GPIO GPIO Setting Setting Setting disabled disabled disabled Maintain Maintain previous previous state state Hi-Z / Internal input fixed at 0 selected Internal input fixed at 0 Hi-Z / Internal GPIO input fixed selected at 0 selected 74 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Pin status Type Power-on Function Group Reset or INITX Low-Voltage Input Detection State State Internal or SLEEP Reset Mode State State Return Timer Mode Deep Standby RTC from Deep RTC Mode or Mode or Deep Standby Standby STOP Mode State STOP Mode State Mode State Power Power Power Power Power Power Supply Supply Supply Supply Supply Unstable Stable Stable Stable Stable Stable ‐ INITX=0 INITX=1 INITX=1 ‐ ‐ ‐ ‐ Hi-Z selected O Run Mode Supply Analog input Device Hi-Z / Hi-Z / Internal Internal input input fixed fixed at 0 / at 0 / Analog Analog input input enabled enabled INITX=1 SPL=0 INITX=1 SPL=1 Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Internal Internal Internal Internal Internal input fixed input fixed input fixed input fixed input fixed input fixed at 0 / at 0 / at 0 / at 0 / at 0 / at 0 / Analog Analog Analog Analog Analog Analog input input input input input input enabled enabled enabled enabled enabled enabled selected output External Maintain interrupt previous enabled other - Hi-Z / Trace Resource INITX=1 SPL=1 Internal Trace selected SPL=0 Setting Setting Setting disabled disabled disabled Maintain Maintain previous previous state state state Internal input fixed Hi-Z / than GPIO selected at 0 Hi-Z / Internal GPIO input fixed selected at 0 Internal above input fixed selected at 0 GPIO selected Maintain WKUP enabled Resource P other than Setting Setting Setting disabled disabled disabled above selected GPIO Maintain Maintain previous previous state state WKUP previous input state enabled Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 Hi-Z / WKUP input enabled GPIO Hi-Z / selected Internal input fixed at 0 selected April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 75 D a t a S h e e t Pin status Type Power-on Function Group Reset or INITX Low-Voltage Input Detection State State Device Run Mode Internal or SLEEP Reset Mode State State Return Timer Mode Deep Standby RTC from Deep RTC Mode or Mode or Deep Standby Standby STOP Mode State STOP Mode State Mode State Power Power Power Power Power Power Supply Supply Supply Supply Supply Supply Unstable Stable Stable Stable Stable Stable ‐ INITX=0 INITX=1 INITX=1 ‐ ‐ ‐ ‐ INITX=1 SPL=0 INITX=1 SPL=1 WKUP WKUP input enabled External Setting Setting Setting disabled disabled disabled Maintain enabled previous enabled Maintain Maintain selected previous previous GPIO Resource state state selected other than above Hi-Z selected INITX=1 SPL=1 Hi-Z / WKUP input enabled WKUP input enabled state interrupt Q SPL=0 Hi-Z / Hi-Z / Hi-Z / input input enabled enabled Hi-Z / Hi-Z / Maintain Maintain input input previous previous enabled enabled state state Internal input fixed Internal input fixed at 0 Hi-Z / Internal GPIO input fixed selected at 0 at 0 GPIO selected GPIO selected Hi-Z Hi-Z at R USB I/O Setting Setting Setting pin disabled disabled disabled Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 Hi-Z / Internal GPIO input fixed selected at 0 Hi-Z at trans- trans- mission/ mission/ Hi-Z / Hi-Z / Hi-Z / Internal Internal input input input input input fixed input fixed enabled enabled enabled enabled at 0 at at 0 at reception reception Hi-Z / *1: Oscillation is stopped at Sub timer mode, low-speed CR timer mode, RTC mode, Stop mode, Deep standby RTC mode, and Deep standby Stop mode. 76 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t List of VBAT Domain Pin Status VBAT Pin Status Type Run VBAT INITX Power-on Input Reset State Device Mode Internal or Reset SLEEP State Mode Function Group Deep Standby Timer Mode RTC Mode or RTC Mode or Deep Standby STOP Mode State STOP Mode State State Power Supply Power Supply Stable Unstable ‐ ‐ INITX=0 Power Supply Power Supply Power Supply Stable Stable INITX=1 INITX=1 Stable INITX=1 INITX=1 ‐ SPL=0 SPL=1 SPL=0 ‐ ‐ Internal Internal Return Return from VBAT from Deep RTC VBAT Standby Mode RTC Mode State Mode Power Power Power Supply Supply Supply State State Stable Stable Sable INITX=1 - - SPL=1 - - - GPIO Setting input input Input Input Input Input Input Input selected disabled fixed fixed enabled enabled enabled enabled enabled enabled at 0 at 0 Input Input Input Input Input Input Input Input Input enabled enabled enabled enabled enabled enabled enabled enabled enabled Internal Internal Setting prohibitio - n Sub crystal S oscillator input pin / External sub clock Maintain Maintain previous previous state state input selected Setting input input Input Input Input Input Input Input selected disabled fixed fixed enabled enabled enabled enabled enabled enabled at 0 at 0 Maintain Maintain Maintain Maintain Maintain Maintain Maintain Maintain Maintain Maintain previous previous previous previous previous previous previous previous previous previous state state state state state state state state state state Maintain Maintain Maintain previous previous previous state state state External T sub clock Setting input disabled selected Sub crystal oscillator output pin Maintain Maintain Maintain Maintain Hi-Z/ previous previous previous previous Internal state / state / state / state / When When When When oscillatio oscillatio oscillatio oscillatio n n n n stops, stops, stops, stops, Hi-Z* Hi-Z* Hi-Z* Hi-Z* input fixed at 0 or input Maintain Maintain Maintain previous previous previous state state state enabled Resource U Setting GPIO selected GPIO selected Hi-Z prohibitio - n Maintain Maintain Maintain Maintain Maintain Maintain Maintain Maintain Maintain Maintain previous previous previous previous previous previous previous previous previous previous state state state state state state state state state state *: When the SOSCNTL bit in the WTOSCCNT register is 0, Sub crystal oscillator output pin is maintain previous state. When the SOSCNTL bit in the WTOSCCNT register is 1, Oscillation is stopped at Stop mode and Deep standby Stop mode April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 77 D a t a S h e e t 14. Electrical Characteristics 14.1 Absolute Maximum Ratings Parameter Symbol 1, 2 Power supply voltage * * 1 , 3 Power supply voltage (VBAT) * * 1 , 4 Analog power supply voltage * * 1 , 4 Analog reference voltage * * 1 Input voltage * Rating Min Max VCC VSS - 0.5 VSS + 4.6 V VBAT VSS - 0.5 VSS + 4.6 V AVCC VSS - 0.5 VSS + 4.6 V AVRH VSS - 0.5 VSS + 4.6 V VI VSS - 0.5 VSS - 0.5 1 Analog pin input voltage * 1 Output voltage * 5 L level maximum output current * L level average output current * VSS - 0.5 VO VSS - 0.5 IOLAV L level total maximum output current 7 L level total average output current * 5 * H level maximum output current VIA IOL 6 6 - - VCC + 0.5 (≤ 4.6 V) VSS + 6.5 AVCC + 0.5 (≤ 4.6 V) VCC + 0.5 (≤ 4.6 V) V V V V 10 mA 2 mA type 20 mA 4 mA type 20 mA 8 mA type 20 mA 11 mA type 22.4 mA I2C Fm+ 2 mA 2 mA type 4 mA 4 mA type 8 mA 8 mA type 11 mA 11 mA type 20 mA I2C Fm+ - 100 mA - 50 mA - 10 mA 2 mA type - - -20 mA 4 mA type - 20 mA 8 mA type - 20 mA 11 mA type -2 mA 2 mA type -4 mA 4 mA type -8 mA 8 mA type - 11 mA 11 mA type mA ∑IOH - - 100 ∑IOHAV - - 50 mA Power consumption PD - 200 mW Storage temperature TSTG - 55 + 150 °C H level total average output current 7 * 5 V tolerant ∑IOL IOHAV H level total maximum output current Remarks ∑IOLAV IOH H level average output current * Unit *1: These parameters are based on the condition that VSS = AVSS = 0.0 V. *2: VCC must not drop below VSS - 0.5 V. *3: VBAT must not drop below VSS - 0.5 V. *4: Ensure that the voltage does not exceed VCC + 0.5 V, for example, when the power is turned on. *5: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins. *6: The average output current is defined as the average current value flowing through any one of the corresponding pins for a 100 ms period. *7: The total average output current is defined as the average current value flowing through all of corresponding pins for a 100 ms. 78 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t WARNING: − Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings. April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 79 D a t a S h e e t 14.2 Recommended Operating Conditions Parameter Symbol Conditions Power supply voltage VCC - Power supply voltage (VBAT) VBAT - Analog power supply voltage AVCC Analog reference voltage Value Unit Min Max 3.0 3.6 2.7 *5 3.6 1.65 3.6 V - 2.7 3.6 V AVRH - *4 AVCC V V AVRL - AVss AVss V Operating Junction temperature TJ - -40 + 125 °C temperature Ambient temperature TA - -40 *3 °C Remarks *1 *2 AVCC = VCC *1: When using the GDC part . When P81/UDP0 and P80/UDM0 pins are used as USB (UDP0, UDM0). *2: When P81/UDP0 and P80/UDM0 pins are used as GPIO (P81, P80). *3: The maximum temperature of the ambient temperature (TA) can guarantee a range that does not exceed the junction temperature (TJ). The calculation formula of the ambient temperature (TA) is shown below. TA(Max) = TJ(Max) - Pd(Max) × θJA Pd: Power dissipation (W) θJA: Package thermal resistance (°C/W) Pd (Max) = VCC × ICC (Max) + Σ (IOL×VOL) + Σ ((VCC-VOH) × (- IOH)) IOL: L level output current IOH: H level output current VOL: L level output voltage VOH: H level output voltage *4: The minimum value of Analog reference voltage depends on the value of compare clock cycle (tCCK). See 14.5 12-bit A/D Converter for the details. *5: In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR(including Main PLL is used) or built-in Low-speed CR is possible to operate only. 80 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Package thermal resistance and maximum permissible power for each package are shown below. The operation is guaranteed maximum permissible power or less for semiconductor devices. Table14-1 Table for Package Thermal Resistance and Maximum Permissible Power Printed Package Circuit Board LQFP:FPT-120P-M21 (0.5 mm pitch) Thermal Maximum Permissible Power Resistance θJA (mW) (°C/W) TA= +85°C TA= +105°C 4 layers 38 1053 526 4 layers 39 1026 513 4 layers 35 1143 571 4 layers 35 1143 571 4 layers 18* 2222 1111 1 LQFP:FPT-120P-M21 * (0.5 mm pitch) LQFP:FPT-176P-M07 (0.5 mm pitch) PFBGA:FDJ161 (0.5 mm pitch) Ex_LQFP:LEM120 (0.5 mm pitch) 2 *1: When S6E2D55GJA product. *2: This is a case where the connection process was carried out back exposed die pad foundation. Please connect directly to GND back exposed die pad. Notes: 1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. 2. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. 3. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. 4. Users considering application outside the listed conditions are advised to contact their representatives beforehand. April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 81 D a t a S h e e t Calculation Method of Power Dissipation (Pd) The power dissipation is shown in the following formula. Pd = VCC × ICC + Σ (IOL × VOL) + Σ ((VCC-VOH) × (-IOH)) IOL: IOH: VOL: VOH: L level output current H level output current L level output voltage H level output voltage ICC is a current consumed in device. It can be analyzed as follows. ICC = ICC(INT) + ΣICC(IO) ICC(INT): Current consumed in internal logic and memory, etc. through regulator ΣICC(IO): Sum of current (I/O switching current) consumed in output pin For ICC (INT), it can be anticipated by "(1) Current Rating" in "3. DC Characteristics" (This rating value does not include ICC (IO) for a value at pin fixed). For Icc (IO), it depends on system used by customers. The calculation formula is shown below. ICC(IO) = (CINT + CEXT) × VCC × fsw CINT: Pin internal load capacitance CEXT: External load capacitance of output pin fSW: Pin switching frequency Parameter Symbol Pin internal load capacitance Conditions Capacitance Value 2 mA type 1.93 pF 4 mA type 3.45 pF 8 mA type 3.42 pF CINT Calculate ICC (Max) as follows when the power dissipation can be evaluated by yourself. (1) Measure current value ICC (Typ) at normal temperature (+25°C). (2) Add maximum leak current value ICC (leak_max) at operating on a value in (1). ICC(Max) = ICC(Typ) + ICC(leak_max) Parameter Symbol Maximum leak current at operating ICC(leak_max) Conditions Current Value TJ = +125 °C 66.8 mA TJ = +105 °C 33.7 mA TJ = +85 °C 22.8 mA Note: − 82 CONFIDENTIAL VFLASH of current is not included S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Current Explanation Diagram Pd = VCC×ICC + Σ(IOL×VOL)+Σ((VCC-VOH)×(-IOH)) ICC = ICC(INT)+ΣICC(IO) VCC A ICC Chip ICC(INT) ΣICC(IO) A Regulator VOL V A ・・・ V IOL Flash VOH ・・・ Logic IOH RAM ICC(IO) CEXT ・・・ April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 83 D a t a S h e e t 14.3 DC Characteristics 14.3.1 Current Rating Table 14-2 Typical and Maximum Current Consumption in Normal Operation (PLL), Code Running from Flash Memory (Flash Accelerator Mode and Trace Buffer Function Enabled) Parameter Symbol Pin Name Frequency* Conditions 2 Unit Remarks Typ* Max* 160 MHz 182 279 mA 144 MHz 176 270 mA 120 MHz 167 256 mA Normal 100 MHz 159 244 mA *3 operation 80 MHz 151 233 mA When all peripheral clocks 60 MHz 143 221 mA are ON 40 MHz 136 210 mA GDC clock 160 MHz 20 MHz 128 199 mA 8 MHz 123 191 mA 4 MHz 122 190 mA 160 MHz 43 117 mA 144 MHz 39 112 mA 120 MHz 34 106 mA 100 MHz 29 100 mA 80 MHz 24 95 mA 60 MHz 20 90 mA 40 MHz 15 84 mA 20 MHz 10 78 mA 8 MHz 7 74 mA 4 MHz 6 73 mA *5 (PLL) Power ICC Value 1 (MHz) *6,*7 supply 4 VCC current Normal operation , *6,*7 (PLL) *5 *3 When all peripheral clocks are OFF *1: TA=+25°C, VCC=3.3 V *2: TJ=+125°C, VCC=3.6 V *3: When all ports are fixed. *4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2 *5: When operating flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 1) *6: Data access is nothing to main flash memory and VFLASH memory *7: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) 84 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Table 14-3 Typical and Maximum Current Consumption in Normal Operation (PLL), Code with Data Accessing Running from Flash Memory (Flash Accelerator Mode and Trace Buffer Function Disabled) Parameter Symbol Pin Name Frequency* Conditions 2 Unit Typ* Max* 160 MHz 185 285 mA 144 MHz 179 276 mA Remarks 120 MHz 169 261 mA 100 MHz 161 250 mA *3 operation 80 MHz 154 239 mA When all peripheral clocks 60 MHz 146 227 mA are ON 40 MHz 138 215 mA GDC clock 160 MHz 20 MHz 130 204 mA 8 MHz 125 196 mA 4 MHz 124 195 mA 160 MHz 45 122 mA 144 MHz 41 117 mA 120 MHz 36 111 mA Normal 100 MHz 31 105 mA operation 80 MHz 26 99 mA 60 MHz 22 94 mA 40 MHz 17 89 mA 20 MHz 12 83 mA 8 MHz 10 80 mA 4 MHz 9 79 mA *5 (PLL) Power ICC Value 1 (MHz) Normal *6,*7,*8 supply 4 VCC current *6,*7,*8 (PLL) *5 *3 When all peripheral clocks are OFF *1: TA=+25°C, VCC=3.3 V *2: TJ=+125°C, VCC=3.6 V *3: When all ports are fixed. *4: Frequency is a value of HCLK. PCLK0=PCLK2=HCLK/2, PCLK1=HCLK *5: When not operating flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 0) *6: With data access to a main flash memory. *7: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) *8: Data access is nothing to VFLASH memory April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 85 D a t a S h e e t Table 14-4 Typical and Maximum Current Consumption in Normal Operation (PLL), Code with Data Accessing Running from Flash Memory (Flash 0 Wait-cycle Mode and Read Access 0 Wait) Parameter Symbol Pin Name Frequency* Conditions *5 Power supply current ICC VCC 4 Value 1 2 Unit Typ* Max* 72 MHz 168 251 mA 60 MHz 161 242 mA 48 MHz 154 233 mA *3 36 MHz 147 224 mA When all peripheral clocks 24 MHz 140 214 mA are ON GDC clock 160 MHz 12 MHz 133 205 mA Normal 8 MHz 131 202 mA operation , 4 MHz 128 199 mA *6,*7,*8 72 MHz 41 114 mA (PLL) 60 MHz 36 108 mA 48 MHz 32 104 mA 36 MHz 27 98 mA 24 MHz 23 94 mA 12 MHz 18 88 mA 8 MHz 17 87 mA 4 MHz 15 85 mA *5 Remarks (MHz) *3 When all peripheral clocks are OFF *1: TA=+25°C, VCC=3.3 V *2: TJ=+125°C, VCC=3.6 V *3: When all ports are fixed. *4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK *5: When operating flash 0 wait-cycle mode and read access 0 wait (FRWTR.RWT = 00, FSYNDN.SD = 000) *6: With data access to a main flash memory. *7: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) *8: Data access is nothing to VFLASH memory 86 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Table 14-5 Typical and Maximum Current Consumption in Normal Operation (other than PLL), Code with Data Accessing Running from Flash Memory (Flash 0 Wait-cycle Mode and Read Access 0 Wait) Parameter Symbol Pin Name Frequency* Conditions (MHz) 4 Value 1 Typ* 2 Max* Unit *3 Normal operation, *6,*8 (built-in 110 *5 current VCC 74 mA *5 76.65 mA *3 0.69 71.65 mA *3 Normal CR) When all peripheral clocks are OFF operation , Low-speed When all peripheral clocks are ON 32 kHz oscillation) (built-in When all peripheral clocks *3 0.7 (Sub *6,*8 are ON are OFF operation , *6,*7,*8 When all peripheral clocks *3 Normal ICC mA GDC clock 160 MHz 4.1 CR) supply 181 4 MHz High-speed Power Remarks 0.74 *5 88.65 mA When all peripheral clocks are ON 100 kHz *3 0.73 74.65 mA When all peripheral clocks are OFF *1: TA=+25°C, VCC=3.3 V *2: TJ=+125°C, VCC=3.6 V *3: When all ports are fixed. *4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2 *5: When operating flash 0 wait-cycle mode and read access 0 wait (FRWTR.RWT = 00, FSYNDN.SD = 000) *6: With data access to a main flash memory. *7: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit) *8: Data access is nothing to VFLASH memory April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 87 D a t a S h e e t Table 14-6 Typical and Maximum Current Consumption in Sleep Operation (PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK/2 Parameter Symbol Pin Name Conditions ICCS 4 Value 1 2 Unit Remarks (MHz) Typ* Max* 160 MHz 103 181 mA 144 MHz 98 175 mA 120 MHz 91 168 mA 100 MHz 86 162 mA *3 Sleep *5,*6 80 MHz 80 155 mA When all peripheral clocks operation (PLL) 60 MHz 74 149 mA are ON 40 MHz 69 143 mA GDC clock 160 MHz 20 MHz 63 137 mA 8 MHz 59 132 mA 4 MHz 58 131 mA 160 MHz 24 91 mA 144 MHz 22 89 mA 120 MHz 19 86 mA 100 MHz 16 83 mA 80 MHz 14 81 mA 60 MHz 11 78 mA 40 MHz 9 76 mA 20 MHz 6 73 mA 8 MHz 5 72 mA 4 MHz 4 71 mA Power supply Frequency* VCC current Sleep *5,*6 operation (PLL) *3 When all peripheral clocks are OFF *1: TA=+25°C, VCC=3.3 V *2: TJ=+125°C, VCC=3.6 V *3: When all ports are fixed. *4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2 *5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) *6: Data access is nothing to VFLASH memory 88 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Table 14-7 Typical and Maximum Current Consumption in Sleep Operation (PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK Parameter Symbol Pin Name Power supply current Conditions Sleep *5,*6 ICCS VCC operation (PLL) Frequency* 4 Value 1 2 Unit Remarks (MHz) Typ* Max* 72 MHz 84 160 mA 60 MHz 80 155 mA 48 MHz 75 150 mA *3 36 MHz 71 145 mA When all peripheral clocks 24 MHz 67 141 mA are ON 12 MHz 63 137 mA GDC clock 160 MHz 8 MHz 61 134 mA 4 MHz 60 133 mA 72 MHz 15 82 mA 60 MHz 13 80 mA 48 MHz 12 79 mA 36 MHz 10 77 mA 24 MHz 8 75 mA 12 MHz 7 74 mA 8 MHz 6 73 mA 4 MHz 5 72 mA *3 When all peripheral clocks are OFF *1: TA=+25°C, VCC=3.3 V *2: TJ=+125°C, VCC=3.6 V *3: When all ports are fixed. *4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK *5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit) *6: Data access is nothing to VFLASH memory April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 89 D a t a S h e e t Table 14-8 Typical and Maximum Current Consumption in Sleep Operation (other than PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK/2 Parameter Symbol Pin Name Conditions Frequency* (MHz) 4 Value 1 Typ* 2 Max* Unit Remarks *3 56 Sleep *6 operation (built-in 126 mA When all peripheral clocks are ON GDC clock 160 MHz 4 MHz *3 High-speed CR) 2 72 mA When all peripheral clocks are OFF *3 Power supply current ICCS VCC 0.52 Sleep *5,*6 operation 69.65 mA are ON 32 kHz (Sub oscillation) When all peripheral clocks *3 0.51 69.65 mA When all peripheral clocks are OFF *3 0.54 Sleep *6 operation (built-in Low-speed CR) 70.65 mA When all peripheral clocks are ON 100 kHz *3 0.52 69.65 mA When all peripheral clocks are OFF *1: TA=+25°C, VCC=3.3 V *2: TJ=+125°C, VCC=3.6 V *3: When all ports are fixed. *4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2 *5: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit) *6: Data access is nothing to VFLASH memory 90 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Table 14-9 Typical and Maximum Current Consumption in Stop Mode, Timer Mode and RTC Mode Parameter Symbol Pin Name ICCH Conditions Stop mode Value Frequency (MHz) - 1 2 Unit Typ* Max* 0.41 2.07 mA - 21.35 mA - 30.57 mA 1.14 2.8 mA - 22.08 mA - 31.3 mA 0.43 2.09 mA - 21.37 mA - 30.59 mA 0.43 2.09 mA - 21.37 mA - 30.59 mA 0.41 2.07 mA - 21.35 mA - 30.57 mA Timer mode (built-in 4 MHz High-speed CR) Power supply ICCT current VCC Timer mode *5 (Sub oscillation) 32 kHz Timer mode (built-in 100 kHz Low-speed CR) ICCR RTC mode (Sub oscillation) 32 kHz Remarks *3, *4 TA=+25°C *3, *4 TA=+85°C *3, *4 TA=+105°C *3, *4 TA=+25°C *3, *4 TA=+85°C *3, *4 TA=+105°C *3, *4 TA=+25°C *3, *4 TA=+85°C *3, *4 TA=+105°C *3, *4 TA=+25°C *3, *4 TA=+85°C *3, *4 TA=+105°C *3, *4 TA=+25°C *3, *4 TA=+85°C *3, *4 TA=+105°C *1: VCC=3.3 V *2: VCC=3.6 V *3: When all ports are fixed. *4: When LVD is OFF *5: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit) April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 91 D a t a S h e e t Table 14-10 Typical and Maximum Current Consumption in Deep Standby Stop Mode, Deep Standby RTC Mode and VBAT Parameter Symbol Pin Name Conditions Value Frequency (MHz) 1 2 Unit Typ* Max* 108 173 μA - 1774 μA - 2208 μA 112 177 μA - 1778 μA - 2212 μA 109 174 μA - 1771 μA - 2205 μA 113 178 μA - 1775 μA - 2209 μA 0.009 0.032 μA - 0.994 μA - 1.491 μA 1.0 1.636 μA - 2.828 μA - 4.242 μA Deep Standby Stop mode (When RAM - is OFF) ICCHD Deep Standby Stop mode (When RAM - is ON) VCC Remarks *3, *4 TA=+25°C *3, *4 TA=+85°C *3, *4 TA=+105°C *3, *4 TA=+25°C *3, *4 TA=+85°C *3, *4 TA=+105°C *3, *4 TA=+25°C Deep Standby RTC mode (When RAM TA=+85°C is OFF) Power supply *3, *4 ICCRD 32 kHz *3, *4 TA=+105°C current Deep Standby RTC mode (When RAM is ON) RTC stop ICCVBAT VBAT - RTC *6 operation *3, *4 TA=+25°C *3, *4 TA=+85°C *3, *4 TA=+105°C *3, *4, *5 TA=+25°C *3, *4, *5 TA=+85°C *3, *4, *5 TA=+105°C *3, *4 TA=+25°C *3, *4 TA=+85°C *3, *4 TA=+105°C *1: VCC=3.3 V *2: VCC=3.6 V *3: When all ports are fixed. *4: When LVD is OFF *5: When sub oscillation is OFF *6: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit) 92 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Table 14-11 Typical and Maximum Current Consumption in Low-voltage Detection Circuit, Main Flash Memory Write/erase, VFLASH Memory Parameter Pin Symbol name Conditions Value Unit Min Typ Max At operation - 4 7 μA At Write/Erase - 13.4 15.8 mA At Standby - 15 25 μA At Read - At Write/Erase - Remarks Low-voltage detection circuit (LVD) ICCLVD power supply For occurrence of interrupt current Main flash memory ICCFLASH write/erase VCC current VFLASH memory Standby current VFLASH memory ICCVFLASH Read current VFLASH memory write/erase current 9 14 13 20 20 25 mA 40MHz 80MHz mA Peripheral Current Dissipation Clock system Peripheral Unit GPIO Frequency (MHz) 40 80 160 All ports 0.30 0.60 1.19 DMAC - 0.99 1.95 3.82 DSTC - 0.41 0.83 1.61 External bus I/F - 0.18 0.35 0.70 CAN-FD 1ch. 0.54 1.07 2.13 USB 1ch. 0.47 0.93 1.85 I2S 1ch. 0.36 0.71 1.42 Programmable CRC - 0.04 0.09 0.18 Base timer 4ch. 0.20 0.39 0.76 1unit/4ch. 0.61 1.21 2.40 1 unit 0.04 0.09 0.18 A/DC 1 unit 0.25 0.50 1.00 Multi-function serial 1ch. 0.44 0.88 - GDC 1 unit 31 57 109 High-Speed Quad SPI 1ch. 1.1 2.3 - HyperBus I/F 1ch. 0.6 1.2 - SDRAM-IF 1ch. 2.3 4.6 - HCLK Unit Remarks mA Multi-functional timer/PPG PCLK1 mA Quadrature position/Revolution counter PCLK2 G GECLK D C mA April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL mA 93 D a t a S h e e t 14.3.2 Pin Characteristics (VCC = AVCC = 2.7V to 3.6V, VSS = AVSS = 0V) Parameter Symbol Pin Name (hysteresis Max - VCC×0.8 - VCC + 0.3 V - VCC×0.8 - VSS + 5.5 V - VCC×0.7 - VSS + 5.5 V - 2.0 - VCC+0.3 V - VSS - 0.3 - VCC×0.2 V - VSS - 0.3 - VCC×0.2 V - VSS - VCC×0.3 V - VSS - 0.3 - 0.8 V 2 mA type IOH = - 2 mA VCC - 0.5 - VCC V 4 mA type IOH = - 4 mA VCC - 0.5 - VCC V 8 mA type IOH = - 8 mA VCC - 0.5 - VCC V 11 mA type IOH = - 11 mA VCC - 0.5 - VCC V IOH = - 13.0 mA VCC - 0.4 - VCC V IOH = - 3 mA VCC - 0.5 - VCC V At GPIO Unit Remarks 5 V tolerant input pin VIHS Input pin doubled as I2C Fm+ input) TTL Schmitt input pin CMOS hysteresis input pin, MD0, MD1 L level input voltage (hysteresis 5 V tolerant input pin VILS Input pin doubled as I2C Fm+ input) TTL Schmitt input pin H level output voltage VOH The pin doubled as USB I/O The pin doubled as I2C Fm+ Parameter L level output voltage Symbol VOL Pin Name current Pull-up resistor value Value Conditions Min Typ Max 2 mA type IOL = 2 mA VSS - 0.4 V 4 mA type IOL = 4 mA VSS - 0.4 V 8 mA type IOL = 8 mA VSS - 0.4 V 11 mA type IOL = 11 mA VSS - 0.4 V IOL = 10.5 mA VSS - 0.4 V VSS - 0.4 V μA The pin doubled as USB I/O Input leak Remarks Typ CMOS hysteresis voltage Unit Min input pin, MD0, MD1 H level input Value Conditions The pin doubled as I2C IOL = 3 mA Fm+ IOL = 20 mA IIL - - -5 - +5 - 30 80 200 RPU Pull-up pin - 15 33 70 - - 5 15 kΩ High-speed IO At GPIO At I2C Fm+ High-speed IO Other than Input capacitance VCC, CIN VBAT, VSS, pF AVCC, AVSS, AVRH 94 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 14.4 AC Characteristics 14.4.1 Main Clock Input Characteristics (VCC = AVCC = 2.7V to 3.6V, VSS = AVSS = 0V, TA = -40℃ to +105℃) Parameter Input frequency Input clock cycle Input clock pulse width Symbol X0, tCYLH X1 Value Unit Remarks Min Max - 4 20 MHz - 4 20 MHz When using external clock - 50 250 ns When using external clock 45 55 % When using external clock - - 5 ns When using external clock PWH/tCYLH, tCF, falling time tCR frequency Conditions When crystal oscillator is connected fCH Input clock rising time and Internal operating clock*1 Pin Name PWL/tCYLH fCM - - - 160 MHz Master clock fCC - - - 160 MHz Base clock (HCLK/FCLK) fCP0 - - - 80 MHz APB0 bus clock*2 fCP1 - - - 160 MHz APB1 bus clock*2 fCP2 - - - 80 MHz APB2 bus clock*2 tCYCC - - 5 - ns Base clock (HCLK/FCLK) Internal operating clock*1 tCYCP0 - - 10 - ns APB0 bus clock*2 cycle time tCYCP1 - - 5 - ns APB1 bus clock*2 tCYCP2 - - 10 - ns APB2 bus clock*2 *1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM4 Family Peripheral Manual Main part (MN709-00001). *2: For about each APB bus which each peripheral is connected to, see Block Diagram in this data sheet. X0 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 95 D a t a S h e e t 14.4.2 Sub Clock Input Characteristics (VBAT = 1.65V to 3.6V, VSS = 0V) Parameter Symbol Input frequency Pin Name Value Conditions Unit Min Typ Max - - 32.768 - kHz - 32 - 100 kHz - 10 - 31.25 μs 45 - 55 % 1/tCYLL X0A, Input clock cycle tCYLL Input clock pulse width X1A PWH/tCYLL, - PWL/tCYLL Remarks When crystal oscillator is connected * When using external clock When using external clock When using external clock *: For more information about crystal oscillator, see Sub crystal oscillator in 9. Handling Devices. tCYLL 0.8 × VBAT 0.8 × VBAT 0.2 × VBAT X0A PWH 14.4.3 0.8 × VBAT 0.2 × VBAT PWL Built-in CR Oscillation Characteristics Built-in High-speed CR (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Value Conditions Min Typ Max TJ = - 20 °C to + 105 °C 3.92 4 4.08 TJ = - 40 °C to + 125 °C 3.88 4 4.12 TJ = - 40 °C to + 125 °C 2.9 4 5 - - - 30 Unit Remarks When trimming *1 Clock frequency fCRH MHz When not trimming Frequency stabilization tCRWT μs *2 time *1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency/temperature trimming. *2: This is the time to stabilize the frequency of High-speed CR clock after setting trimming value. This period is able to use High-speed CR clock as source clock. Built-in Low-speed CR (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Clock frequency 96 CONFIDENTIAL Symbol Condition fCRL - Value Min Typ Max 50 100 150 Unit Remarks kHz S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 14.4.4 Operating Conditions of Main PLL (In the Case of Using Main Clock for Input Clock of PLL) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter PLL oscillation stabilization wait time*1 (LOCK UP time) PLL input clock frequency PLL multiplication rate PLL macro oscillation clock frequency Main PLL clock frequency* 2 Symbol Value Unit Min Typ Max tLOCK 100 - - μs fPLLI 4 - 16 MHz - 13 - 100 multiplier fPLLO 200 - 400 MHz fCLKPLL - - 200 MHz Remarks *1: Time from when the PLL starts operating until the oscillation stabilizes. *2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1 : Clock in FM4 Family Peripheral Manual Main part (MN709-00001). Operating Conditions of USB/I2S/GDC PLL (In the Case of Using Main Clock for Input Clock of PLL) 14.4.5 (VCC = 2.7V to 3.6V, VSS = 0V) Parameter PLL oscillation stabilization wait time*1 (LOCK UP time) PLL input clock frequency PLL multiplication rate PLL macro oscillation clock frequency Symbol Value Unit Remarks Min Typ Max tLOCK 100 - - μs fPLLI 4 - 16 MHz - 13 - 100 multiplier 400 MHz USB/GDC 384 MHz I2S fPLLO 200 - USB clock frequency *2 fCLKPLL - - 50 MHz I2S clock frequency *3 fCLKPLL - - 12.288 MHz GDC clock frequency *4 fCLKPLL - - 160 MHz After the M frequency division After the M frequency division After divided by GDC part *1: Time from when the PLL starts operating until the oscillation stabilizes. *2: For more information about USB clock, see Chapter 2-2: USB Clock Generation in FM4 Family Peripheral Manual Communication Macro part (MN709-00004). 2 2 *3: For more information about I S clock, see Chapter 7-1: I S Clock Generation in FM4 Family Peripheral Manual Communication Macro part (MN709-00004). *4: For more information about GDC clock, see FM4 Family Peripheral Manual GDC part (MN709-00014). April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 97 D a t a S h e e t 14.4.6 Operating Conditions of Main PLL (In the Case of Using Built-in High-Speed CR Clock for Input Clock of Main PLL) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol PLL oscillation stabilization wait time*1 (LOCK UP time) PLL input clock frequency PLL multiplication rate PLL macro oscillation clock frequency Main PLL clock frequency*2 Value Unit Min Typ Max tLOCK 100 - - fPLLI 3.8 4 4.2 MHz - 50 - 95 multiplier fPLLO 190 - 400 MHz fCLKPLL - - 160 MHz Remarks μs *1: Time from when the PLL starts operating until the oscillation stabilizes. *2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM4 Family Peripheral Manual Main part (MN709-00001). Note: − The High-speed CR clock (CLKHC) should be set with frequency/temperature trimming to act as the source clock of the Main PLL. 14.4.7 Reset Input Characteristics (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Reset input time 98 CONFIDENTIAL Symbol tINITX Pin Name conditions INITX - Value Unit Min Max 500 - Remarks ns S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 14.4.8 Power-on Reset Timing (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Power supply rising time tVCCR Power supply shut down time tOFF Time until releasing Power-on reset tPRT Value Pin Name Unit VCC Min Max 0 - ms 1 - ms 0.33 0.60 ms Remarks VCC_minimum VCC VDH_minimum 0.2V 0.2V 0.2V tVCCR tPRT Internal RST tOFF RST Active Release CPU Operation start Glossary − VCC_minimum : Minimum VCC of recommended operating conditions. − VDH_minimum : Minimum release voltage of Low-Voltage detection reset. See 14.7. Low-Voltage Detection Characteristics. 14.4.9 GPIO Output Characteristics (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Output frequency Symbol tPCYCLE Pin Name Conditions Pxx* - Value Unit Min Max - 32 Remarks MHz *: GPIO is a target. Pxx tPCYCLE April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 99 D a t a S h e e t 14.4.10 External Bus Timing External Bus Clock Output Characteristics (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Pin Name Symbol Output frequency Value Conditions Max - 50*2 MCLKOUT*1 tCYCLE Unit Min Remarks MHz *1: The external bus clock (MCLKOUT) is a divided clock of HCLK. For more information about setting of clock divider, see Chapter 14: External Bus Interface in FM4 Family Peripheral Manual Main part (MN709-00001). *2: Generate MCLKOUT at setting more than 4 divisions when the AHB bus clock exceeds 100 MHz. 0.8 × Vcc 0.8 × Vcc MCLKOUT tCYCLE External Bus Signal Input/output Characteristics (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Signal input characteristics Signal output characteristics Symbol Conditions Value Unit VIH 0.8 × VCC V VIL 0.2 × VCC V 0.8 × VCC V 0.2 × VCC V - VOH VOL Input signal VIH VIL VIH VIL Output signal VOH VOL VOH VOL 100 CONFIDENTIAL Remarks S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Separate Bus Access Asynchronous SRAM Mode (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol MOEX tOEW Mininum pulse width MCSX↓→Address tCSL – AV output delay time MOEX↑→Address tOEH - AX hold time MCSX↓→ tCSL - OEL MOEX↓delay time MOEX↑→ tOEH - CSH MCSX↑time MCSX↓→ tCSL - RDQML MDQM↓delay time Data setup→ tDS - OE MOEX↑time MOEX↑→ tDH - OE Data hold time MWEX tWEW Mininum pulse width MWEX↑→Address tWEH - AX output delay time MCSX↓→ tCSL - WEL MWEX↓delay time MWEX↑→ tWEH - CSH MCSX↑delay time MCSX↓→ tCSL-WDQML MDQM↓delay time MCSX↓→ tCSL-DX Data output time MWEX↑→ tWEH - DX Data hold time Pin name MOEX MCSX, MAD[24:0] MOEX, MAD[24:0] MOEX, MCSX MCSX, MDQM[1:0] MOEX, MADATA[15:0] MOEX, MADATA[15:0] MWEX MWEX, MAD[24:0] MWEX, MCSX MCSX, MDQM[1:0] MCSX, MADATA[15:0] MWEX, MADATA[15:0] Value Conditions Unit Min Max - MCLK×n-3 - ns - -9 +9 ns - 0 MCLK×m+9 ns - MCLK×m-9 MCLK×m+9 ns - 0 MCLK×m+9 ns - MCLK×m-9 MCLK×m+9 ns - 20 - ns - 0 - ns - MCLK×n-3 - ns - 0 MCLK×m+9 ns - MCLK×n-9 MCLK×n+9 ns - 0 MCLK×m+9 ns - MCLK×n-9 MCLK×n+9 ns - MCLK-9 MCLK+9 ns - 0 MCLK×m+9 ns Remarks Note: − When the external load capacitance CL = 30 pF (m=0 to 15, n=1 to 16) April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 101 D a t a S h e e t tCYCLE MCLK tOEH-CSH tWEH-CSH MCSX tCSL-AV MAD[24:0] tOEH-AX Address tWEH-AX tCSL-AV Address tCSL-OEL MOEX tOEW tCSL-WDQML tCSL-RDQML MDQM[1:0] tCSL-WEL tWEW MWEX tDS-OE MADATA[15:0] tDH-OE RD tWEH-DX WD Invalid tCSL-DX 102 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Separate Bus Access Synchronous SRAM Mode (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Address delay time Pin Name MCLK, tAV MAD[24:0] 1 9 ns 1 9 ns tCSH MCSX - 1 9 ns tREL MCLK, - 1 9 ns tREH MOEX - 1 9 ns - 19 - ns - 0 - ns MCLK, MADATA[15:0] MCLK, tDH Data hold time - tDS MCLK↑→ Max MCLK, MOEX delay time →MCLK↑ time Unit Min tCSL MCSX delay time Data set up Value Conditions MADATA[15:0] tWEL MCLK, - 1 9 ns tWEH MWEX - 1 9 ns MDQM[1:0] tDQML MCLK, - 1 9 ns delay time tDQMH MDQM[1:0] - 1 9 ns - MCLK+1 MCLK+18 ns - 1 18 ns MWEX delay time MCLK↑→ MCLK, tODS Data output time MCLK↑→ MADATA[15:0] MCLK, tOD Data hold time MADATA[15:0] Remarks Note: − When the external load capacitance CL = 30 pF tCYCLE MCLK tCSL tCSH MCSX tAV tAV Address MAD[24:0] Address tREL tREH tDQML tDQMH MOEX tDQML tDQMH tWEL tWEH MDQM[1:0] MWEX MADATA[15:0] tDS tDH RD tOD WD Invalid tODS April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 103 D a t a S h e e t Multiplexed Bus Access Asynchronous SRAM Mode (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Multiplexed tALE-CHMADV address delay time Multiplexed address hold time tCHMADH Pin Name MALE, MAD[24:0] Value Conditions Unit Min Max - 0 10 ns - MCLK×n+0 MCLK×n+10 ns Remarks Note: − When the external load capacitance CL = 30 pF (m=0 to 15, n=1 to 16) MCLK MCSX MALE MAD [24:0] MOEX MDQM [1:0] MWEX MADATA[15:0] 104 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Multiplexed Bus Access Synchronous SRAM Mode (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol MCLK↑→Multiplexed Max - 1 9 ns tCHAH MALE - 1 9 ns - 1 tOD ns - 1 tOD ns tCHMADX data output time Unit Min MCLK, tCHMADV address delay time Value Conditions tCHAL MALE delay time MCLK↑→Multiplexed Pin Name MCLK, MADATA[15:0] Remarks Note: − When the external load capacitance CL = 30 pF MCLK MCSX MALE MAD [24:0] MOEX MDQM [1:0] MWEX MADATA[15:0] April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 105 D a t a S h e e t NAND Flash Mode (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol MNREX tNREW Min pulse width Data set up tDS – NRE →MNREX↑time MNREX↑→ tDH – NRE Data hold time MNALE↑→ tALEH - NWEL MNWEX delay time MNALE↓→ tALEL - NWEL MNWEX delay time MNCLE↑→ tCLEH - NWEL MNWEX delay time MNWEX↑→ tNWEH - CLEL MNCLE delay time MNWEX tNWEW Min pulse width MNWEX↓→ tNWEL – DV Data output time MNWEX↑→ tNWEH – DX Data hold time Pin Name MNREX MNREX, MADATA[15:0] MNREX, MADATA[15:0] MNALE, MNWEX MNALE, MNWEX MNCLE, MNWEX MNCLE, MNWEX MNWEX MNWEX, MADATA[15:0] MNWEX, MADATA[15:0] Value Conditions Unit Min Max - MCLK×n-3 - ns - 20 - ns - 0 - ns - MCLK×m-9 MCLK×m+9 ns - MCLK×m-9 MCLK×m+9 ns - MCLK×m-9 MCLK×m+9 ns - 0 MCLK×m+9 ns - MCLK×n-3 - ns - -9 9 ns - 0 MCLK×m+9 ns Remarks Note: − When the external load capacitance CL = 30 pF (m=0 to 15, n=1 to 16) NAND Flash Read MCLK MNREX MADATA[15:0] Read 106 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t NAND Flash Address Write MCLK MNALE MNCLE MNWEX MADATA[15:0] Write NAND Flash Command Write MCLK MNALE MNCLE MNWEX MADATA[15:0] April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL Write 107 D a t a S h e e t External Ready Input Timing (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Pin Name MCLK↑ MRDY input MCLK, tRDYI - MRDY setup time Value Conditions Unit Min Max 19 - Remarks ns When RDY is input ·· · MCLK Over 2cycles Original MOEX MWEX tRDYI MRDY When RDY is released MCLK ··· ··· 2 cycles Extended MOEX MWEX tRDYI 0.5×VCC MRDY 108 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t SDRAM Mode (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Output frequency tCYCSD Address delay time tAOSD MSDCLK↑→ tDOSD Data output delay time MSDCLK↑→ tDOZSD Data output Hi-Z time MDQM[1:0] delay time tWROSD MCSX delay time tMCSSD MRASX delay time tRASSD MCASX delay time tCASSD MSDWEX delay time tMWESD MSDCKE delay time tCKESD Data setup time tDSSD Data hold time tDHSD Pin Name MSDCLK MSDCLK, MAD[15:0] MSDCLK, MADATA[15:0] MSDCLK, MADATA[15:0] MSDCLK, MDQM[1:0] MSDCLK, MCSX8 MSDCLK, MRASX MSDCLK, MCASX MSDCLK, MSDWEX MSDCLK, MSDCKE MSDCLK, MADATA[15:0] MSDCLK, MADATA[15:0] Unit Value Unit Min Max - - 50 MHz - 2 12 ns - 2 12 ns - 2 19.5 ns - 1 12 ns - 2 12 ns - 2 12 ns - 2 12 ns - 2 12 ns - 2 12 ns - 19 - ns - 0 - ns Remarks Note: − When the external load capacitance CL = 30 pF April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 109 D a t a S h e e t tCYCSD SDRAM Access MSDCLK tAOSD MAD[24:0] MDQM[1:0] MCSX MRASX MCASX MSDWEX MSDCKE Address tWROSD tMCSSD tRASSD tCASSD tMWESD tCKESD tDSSD MADATA[15:0] RD tDOSD MADATA[15:0] 110 CONFIDENTIAL tDHSD tDOZSD WD S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 14.4.11 Base Timer Input Timing Timer Input Timing (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Input pulse width TIOAn/TIOBn tTIWH, tTIWL Value Condi Pin Name (when using as ECK, TIN) tTIWH tions Min Max - 2tCYCP - Unit Remarks ns tTIWL ECK VIHS TIN VIHS VILS VILS Trigger Input Timing (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Input pulse width tTRGH, tTRGL TIOAn/TIOBn (when using as TGIN) tTRGH TGIN VIHS Value Condi Pin Name tions Min Max - 2tCYCP - Unit Remarks ns tTRGL VIHS VILS VILS Note: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which the Base Timer is connected to, see 10. Block Diagram in this data sheet. April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 111 D a t a S h e e t 14.4.12 CSIO Timing Synchronous Serial (SPI = 0, SCINV = 0) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Baud rate Symbol Pin Name Conditions Value Min Max Unit - - - 8 Mbps Serial clock cycle time tSCYC SCKx 4tCYCP - ns SCK↓→SOT delay time tSLOVI - 30 + 30 ns 50 - ns 0 - ns SIN→SCK↑ setup time tIVSHI SCKx, SOTx SCKx, SINx Internal shift clock operation SCKx, SCK↑→SIN hold time tSHIXI Serial clock L pulse width tSLSH SCKx 2tCYCP - 10 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - ns - 50 ns 10 - ns 20 - ns SCK↓→SOT delay time SIN→SCK↑ setup time SCK↑→SIN hold time tSLOVE tIVSHE tSHIXE SINx SCKx, SOTx SCKx, SINx SCKx, External shift clock operation SINx SCK falling time tF SCKx - 5 ns SCK rising time tR SCKx - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. 112 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this data sheet. − These characteristics only guarantee the same relocate port number. For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance CL = 30 pF. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t tSCYC VOH SCK VOL VOL tSLOVI VOH VOL SOT tIVSHI VIH VIL SIN tSHIXI VIH VIL MS bit = 0 tSLSH SCK VIH tF VIL tSHSL VIL SIN VIH tR tSLOVE SOT VIH VOH VOL tIVSHE VIH VIL tSHIXE VIH VIL MS bit = 1 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 113 D a t a S h e e t Synchronous Serial (SPI = 0, SCINV = 1) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Baud rate Serial clock cycle time SCK↑→SOT delay time Symbol tSCYC tSHOVI Pin Name - Conditions - SCKx SCKx, SOTx SCKx, Value Unit Min Max - 8 Mbps 4tCYCP - ns - 30 + 30 ns 50 - ns 0 - ns Internal shift SIN→SCK↓ setup time tIVSLI SCK↓→SIN hold time tSLIXI Serial clock L pulse width tSLSH SCKx 2tCYCP - 10 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - ns SCK↑→SOT delay time tSHOVE - 50 ns SIN→SCK↓ setup time tIVSLE 10 - ns SCK↓→SIN hold time tSLIXE 20 - ns SINx clock operation SCKx, SINx SCKx, SOTx SCKx, External shift SINx clock operation SCKx, SINx SCK falling time tF SCKx - 5 ns SCK rising time tR SCKx - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. 114 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this data sheet. − These characteristics only guarantee the same relocate port number. For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance CL = 30 pF. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t tSCYC VOH SCK VOH VOL tSHOVI VOH VOL SOT tIVSLI VIH VIL SIN tSLIXI VIH VIL MS bit = 0 tSHSL SCK VIL tR tSLSH VIH tSHOVE SOT SIN VIH VIL VIL tF VOH VOL tIVSLE VIH VIL tSLIXE VIH VIL MS bit = 1 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 115 D a t a S h e e t Synchronous Serial (SPI = 1, SCINV = 0) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Baud rate Serial clock cycle time SCK↑→SOT delay time SIN→SCK↓ setup time Symbol tSCYC tSHOVI tIVSLI Pin Name - Conditions - SCKx SCKx, SOTx SCKx, SINx SCKx, Internal shift Value Unit Min Max - 8 Mbps 4tCYCP - ns - 30 + 30 ns 50 - ns 0 - ns 2tCYCP - 30 - ns clock operation SCK↓→SIN hold time tSLIXI SOT→SCK↓ delay time tSOVLI Serial clock L pulse width tSLSH SCKx 2tCYCP - 10 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - ns - 50 ns 10 - ns 20 - ns SCK↑→SOT delay time SIN→SCK↓ setup time SCK↓→SIN hold time tSHOVE tIVSLE tSLIXE SINx SCKx, SOTx SCKx, SOTx SCKx, External shift SINx clock operation SCKx, SINx SCK falling time tF SCKx - 5 ns SCK rising time tR SCKx - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. 116 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this data sheet. − These characteristics only guarantee the same relocate port number. For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance CL = 30 pF. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t tSCYC VOH VOL SCK SOT VOH VOL VOH VOL tIVSLI tSLIXI VIH VIL SIN VOL tSHOVI tSOVLI VIH VIL MS bit = 0 tSLSH SCK SOT VIH VIL VIH VIL tF *V tR VIH tSHOVE VOH VOL OH VOL tIVSLE SIN tSHSL tSLIXE VIH VIL VIH VIL MS bit = 1 *: Changes when writing to TDR register April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 117 D a t a S h e e t Synchronous Serial (SPI = 1, SCINV = 1) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Baud rate Serial clock cycle time Symbol tSCYC Pin name - Conditions - SCKx SCKx, Value Unit Min Max - 8 Mbps 4tCYCP - ns - 30 + 30 ns 50 - ns 0 - ns 2tCYCP - 30 - ns SCK↓→SOT delay time tSLOVI SIN→SCK↑ setup time tIVSHI SCK↑→SIN hold time tSHIXI SOT→SCK↑ delay time tSOVHI Serial clock L pulse width tSLSH SCKx 2tCYCP - 10 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - ns - 50 ns 10 - ns 20 - ns SCK↓→SOT delay time tSLOVE SIN→SCK↑ setup time tIVSHE SCK↑→SIN hold time tSHIXE SOTx SCKx, SINx SCKx, Internal shift clock operation SINx SCKx, SOTx SCKx, SOTx SCKx, External shift SINx clock operation SCKx, SINx SCK falling time tF SCKx - 5 ns SCK rising time tR SCKx - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. 118 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this data sheet. − These characteristics only guarantee the same relocate port number. For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance CL = 30 pF. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t tSCYC VOH SCK tSOVHI SOT tSLOVI VOH VOL VOH VOL tSHIXI tIVSHI VIH VIL SIN VOH VOL VIH VIL MS bit = 0 tSHSL tR SCK VIL VIH tSLSH VIH VIL tF VIL VIH tSLOVE SOT VOH VOL VOH VOL tIVSHE SIN tSHIXE VIH VIL VIH VIL MS bit = 1 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 119 D a t a S h e e t When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS=0, CSLVL=1) (VCC = 2.7V to 3.6V, VSS = 0V) Value Parameter SCS↓→SCK↓ setup time Symbol tCSSI SCK↑→SCS↑ hold time tCSHI SCS deselect time tCSDI SCS↓→SCK↓ setup time tCSSE SCK↑→SCS↑ hold time tCSHE SCS deselect time Conditions Internal shift clock Unit Min Max (*1)-50 (*1)+0 ns (*2)+0 (*2)+50 ns (*3)-50 (*3)+50 +5tCYCP +5tCYCP 3tCYCP+30 - ns External shift 0 - ns tCSDE clock 3tCYCP+30 - ns SCS↓→SOT delay time tDSE operation - 40 ns SCS↑→SOT delay time tDEE 0 - ns operation ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this data sheet. 120 CONFIDENTIAL − About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part (MN709-00001). − When the external load capacitance CL = 30 pF. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t SCS output tCSDI tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) SCS input tCSDE tCSSE tCSHE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 121 D a t a S h e e t When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS=0, CSLVL=1) (VCC = 2.7V to 3.6V, VSS = 0V) Value Parameter Symbol Conditions Unit Min Max Internal shift (*1)-50 (*1)+0 ns SCS↓→SCK↑ setup time tCSSI SCK↓→SCS↑ hold time tCSHI clock (*2)+0 (*2)+50 ns tCSDI operation (*3)-50+5tCYCP (*3)+50+5tCYCP ns SCS deselect time SCS↓→SCK↑ setup time tCSSE 3tCYCP+30 - ns SCK↓→SCS↑ hold time tCSHE External shift 0 - ns SCS deselect time tCSDE clock 3tCYCP+30 - ns SCS↓→SOT delay time tDSE operation - 40 ns SCS↑→SOT delay time tDEE 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this data sheet. 122 CONFIDENTIAL − About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part (MN709-00001). − When the external load capacitance CL = 30 pF. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t SCS output tCSDI tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) SCS input tCSDE tCSSE tCSHE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 123 D a t a S h e e t When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS=0, CSLVL=0) (VCC = 2.7V to 3.6V, VSS = 0V) Value Parameter SCS↑→SCK↓ setup time Symbol Conditions tCSSI Internal shift Unit Min Max (*1)-50 (*1)+0 ns SCK↑→SCS↓ hold time tCSHI (*2)+0 (*2)+50 ns SCS deselect time tCSDI (*3)-50+5tCYCP (*3)+50+5tCYCP ns SCS↑→SCK↓ setup time tCSSE 3tCYCP+30 - ns SCK↑→SCS↓ hold time tCSHE 0 - ns clock operation External shift SCS deselect time tCSDE 3tCYCP+30 - ns SCS↑→SOT delay time tDSE - 40 ns SCS↓→SOT delay time tDEE 0 - ns clock operation (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this data sheet. 124 CONFIDENTIAL − About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part (MN709-00001). − When the external load capacitance CL = 30 pF. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t tCSDI SCS output tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) tCSDE SCS input tCSSE tCSHE SCK input tDEE SOT (SPI=0) SOT tDSE (SPI=1) April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 125 D a t a S h e e t When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS=0, CSLVL=0) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Value Conditions Min SCS↑→SCK↑ setup time tCSSI SCK↓→SCS↓ hold time tCSHI SCS deselect time Unit Max (*1)-50 (*1)+0 ns (*2)+0 (*2)+50 ns tCSDI (*3)-50+5tCYCP (*3)+50+5tCYCP ns SCS↑→SCK↑ setup time tCSSE 3tCYCP+30 - ns SCK↓→SCS↓ hold time tCSHE 0 - ns 3tCYCP+30 - ns Internal shift clock operation External shift SCS deselect time tCSDE SCS↑→SOT delay time tDSE - 40 ns SCS↓→SOT delay time tDEE 0 - ns clock operation (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this data sheet. 126 CONFIDENTIAL − About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part (MN709-00001). − When the external load capacitance CL = 30 pF. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t tCSDI SCS output tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) tCSDE SCS input tCSSE tCSHE SCK input tDEE SOT (SPI=0) SOT tDSE (SPI=1) April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 127 D a t a S h e e t High-Speed Synchronous Serial (SPI = 0, SCINV = 0) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Baud rate Serial clock cycle time SCK↓→SOT delay time SIN→SCK↑ setup time Symbol tSCYC tSLOVI tIVSHI Pin Name - Conditions - SCKx SCKx, SOTx SCKx, SINx Internal shift clock operation Value Unit Min Max - 25 Mbps 4tCYCP - ns - 10 + 10 ns - ns 5 - ns 14 12.5* SCKx, SCK↑→SIN hold time tSHIXI Serial clock L pulse width tSLSH SCKx 2tCYCP - 5 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - ns - 15 ns 5 - ns 5 - ns SCK↓→SOT delay time tSLOVE SIN→SCK↑ setup time tIVSHE SCK↑→SIN hold time tSHIXE SINx SCKx, SOTx SCKx, External shift SINx clock operation SCKx, SINx SCK falling time tF SCKx - 5 ns SCK rising time tR SCKx - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. 128 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this data sheet. − These characteristics only guarantee the following pins. SIN6_0, SOT6_0, SCK6_0, SCS60_0 − When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF) S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t tSCYC VOH SCK VOL VOL tSLOVI VOH VOL SOT tIVSHI tSHIXI VIH VIL VIH VIL SIN MS bit = 0 tSLSH SCK VIH tF SOT VIL tSHSL VIL VIH VIH tR tSLOVE VOH VOL SIN tIVSHE VIH VIL tSHIXE VIH VIL MS bit = 1 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 129 D a t a S h e e t High-Speed Synchronous Serial (SPI = 0, SCINV = 1) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Baud rate Serial clock cycle time SCK↑→SOT delay time SIN→SCK↓ setup time Symbol tSCYC tSHOVI tIVSLI SCK↓→SIN hold time tSLIXI Serial clock L pulse width tSLSH Serial clock H pulse width tSHSL SCK↑→SOT delay time tSHOVE SIN→SCK↓ setup time tIVSLE SCK↓→SIN hold time tSLIXE Pin Name Conditions Value Unit Min Max - 25 Mbps 4tCYCP - ns - 10 + 10 ns - ns 5 - ns SCKx 2tCYCP - 5 - ns SCKx tCYCP + 10 - ns - 15 ns 5 - ns 5 - ns - - SCKx SCKx, SOTx SCKx, SINx Internal shift clock operation 14 12.5* SCKx, SINx SCKx, SOTx SCKx, External shift SINx clock operation SCKx, SINx SCK falling time tF SCKx - 5 ns SCK rising time tR SCKx - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. 130 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this data sheet. − These characteristics only guarantee the following pins. SIN6_0, SOT6_0, SCK6_0, SCS60_0 − When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF) S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t tSCYC VOH SCK VOH VOL tSHOVI VOH VOL SOT tIVSLI VIH VIL SIN tSLIXI VIH VIL MS bit = 0 tSHSL SCK VIL tR SOT tSLSH VIH VIH VIL VIL tF tSHOVE VOH VOL SIN tIVSLE VIH VIL tSLIXE VIH VIL MS bit = 1 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 131 D a t a S h e e t High-Speed Synchronous Serial (SPI = 1, SCINV = 0) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Baud rate Serial clock cycle time Symbol tSCYC SCK↑→SOT delay time tSHOVI SIN→SCK↓ setup time tIVSLI Pin Name - Conditions - SCKx SCKx, SOTx SCKx, SINx Internal shift clock operation SCKx, Value Unit Min Max - 25 Mbps 4tCYCP - ns - 10 + 10 ns - ns 5 - ns 2tCYCP - 10 - ns 14 12.5* SCK↓→SIN hold time tSLIXI SOT→SCK↓ delay time tSOVLI Serial clock L pulse width tSLSH SCKx 2tCYCP - 5 - ns Serial clock H pulse width tSHSL SCKx tCYCP + 10 - ns SCK↑→SOT delay time tSHOVE - 15 ns SIN→SCK↓ setup time tIVSLE 5 - ns SCK↓→SIN hold time tSLIXE 5 - ns SINx SCKx, SOTx SCKx, SOTx SCKx, External shift SINx clock operation SCKx, SINx SCK falling time tF SCKx - 5 ns SCK rising time tR SCKx - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. 132 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this data sheet. − These characteristics only guarantee the following pins. SIN6_0, SOT6_0, SCK6_0, SCS60_0 − When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF) S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t tSCYC VOH VOL SCK SOT VOH VOL VOH VOL tIVSLI tSLIXI VIH VIL SIN VOL tSHOVI tSOVLI VIH VIL MS bit = 0 tSLSH SCK SOT VIH VIL VIH VIL tF *V tR VIH tSHOVE VOH VOL OH VOL tIVSLE SIN tSHSL tSLIXE VIH VIL VIH VIL MS bit = 1 *: Changes when writing to TDR register April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 133 D a t a S h e e t High-Speed Synchronous Serial (SPI = 1, SCINV = 1) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Baud rate Serial clock cycle time Symbol tSCYC SCK↓→SOT delay time tSLOVI SIN→SCK↑ setup time tIVSHI SCK↑→SIN hold time tSHIXI SOT→SCK↑ delay time tSOVHI Serial clock L pulse width tSLSH Serial clock H pulse width tSHSL SCK↓→SOT delay time tSLOVE SIN→SCK↑ setup time tIVSHE SCK↑→SIN hold time tSHIXE Pin Name Conditions Value Unit Min Max - 25 Mbps 4tCYCP - ns - 10 + 10 ns - ns 5 - ns 2tCYCP - 10 - ns SCKx 2tCYCP - 5 - ns SCKx tCYCP + 10 - ns - 15 ns 5 - ns 5 - ns - - SCKx SCKx, SOTx SCKx, SINx Internal shift clock operation SCKx, SINx SCKx, SOTx SCKx, SOTx SCKx, External shift SINx clock operation SCKx, SINx 14 12.5* SCK falling time tF SCKx - 5 ns SCK rising time tR SCKx - 5 ns Notes: − The above characteristics apply to CLK synchronous mode. 134 CONFIDENTIAL − tCYCP indicates the APB bus clock cycle time. About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this data sheet. − These characteristics only guarantee the following pins. SIN6_0, SOT6_0, SCK6_0, SCS60_0 − When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF) S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t tSCYC SCK VOH tSOVHI SOT tSLOVI VOH VOL VOH VOL tSHIXI tIVSHI VIH VIL SIN VOH VOL VIH VIL MS bit = 0 VIL SOT SIN tSHSL tR SCK VIH tSLSH VIH VIL tF VIL VIH tSLOVE VOH VOL VOH VOL tIVSHE tSHIXE VIH VIL VIH VIL MS bit = 1 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 135 D a t a S h e e t When Using High-Speed Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS=0, CSLVL=1) (VCC = 2.7V to 3.6V, VSS = 0V) Value Parameter Symbol Conditions Unit Min Max Internal shift (*1)-20 (*1)+0 ns SCS↓→SCK↓ setup time tCSSI SCK↑→SCS↑ hold time tCSHI clock (*2)+0 (*2)+20 ns SCS deselect time tCSDI operation (*3)-20+5tCYCP (*3)+20+5tCYCP ns SCS↓→SCK↓ setup time tCSSE 3tCYCP+15 - ns SCK↑→SCS↑ hold time tCSHE External shift 0 - ns SCS deselect time tCSDE clock 3tCYCP+15 - ns SCS↓→SOT delay time tDSE operation - 25 ns SCS↑→SOT delay time tDEE 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this data sheet. 136 CONFIDENTIAL − About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part (MN709-00001). − When the external load capacitance CL = 30 pF. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t SCS output tCSDI tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) SCS input tCSDE tCSSE tCSHE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 137 D a t a S h e e t When Using High-Speed Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS=0, CSLVL=1) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Value Conditions Unit Min Max Internal shift (*1)-20 (*1)+0 ns SCS↓→SCK↑ setup time tCSSI SCK↓→SCS↑ hold time tCSHI clock (*2)+0 (*2)+20 ns SCS deselect time tCSDI operation (*3)-20+5tCYCP (*3)+20+5tCYCP ns SCS↓→SCK↑ setup time tCSSE 3tCYCP+15 - ns SCK↓→SCS↑ hold time tCSHE External shift 0 - ns SCS deselect time tCSDE clock 3tCYCP+15 - ns SCS↓→SOT delay time tDSE operation - 25 ns SCS↑→SOT delay time tDEE 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this data sheet. 138 CONFIDENTIAL − About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part (MN709-00001). − When the external load capacitance CL = 30 pF. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t SCS output tCSDI tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) SCS intpu tCSDE tCSSE tCSHE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 139 D a t a S h e e t When Using High-Speed Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS=0, CSLVL=0) (VCC = 2.7V to 3.6V, VSS = 0V) Value Parameter Symbol Conditions SCS↑→SCK↓ setup time tCSSI Internal shift SCK↑→SCS↓ hold time tCSHI clock SCS deselect time tCSDI operation SCS↑→SCK↓ setup time tCSSE SCK↑→SCS↓ hold time tCSHE SCS deselect time tCSDE SCS↑→SOT delay time tDSE SCS↓→SOT delay time tDEE Unit Min Max (*1)-20 (*1)+0 ns (*2)+0 (*2)+20 ns (*3)-20+5tCYCP (*3)+20+5tCYCP ns 3tCYCP+15 - ns External shift 0 - ns clock 3tCYCP+15 - ns operation - 25 ns 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this data sheet. 140 CONFIDENTIAL − About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part (MN709-00001). − When the external load capacitance CL = 30 pF. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t tCSDI SCS output tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) tCSDE SCS input tCSSE tCSHE SCK input tDEE SOT (SPI=0) SOT tDSE (SPI=1) April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 141 D a t a S h e e t When Using Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS=0, CSLVL=0) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Value Conditions Min Unit Max SCS↑→SCK↑ setup time tCSSI Internal shift (*1)-20 (*1)+0 ns SCK↑→SCS↓ hold time tCSHI clock (*2)+0 (*2)+20 ns SCS deselect time tCSDI operation (*3)-20+5tCYCP (*3)+20+5tCYCP ns SCS↑→SCK↑ setup time tCSSE 3tCYCP+15 - ns SCK↓→SCS↓ hold time tCSHE External shift 0 - ns SCS deselect time tCSDE clock 3tCYCP+15 - ns SCS↑→SOT delay time tDSE operation - 40 ns SCS↓→SOT delay time tDEE 0 - ns (*1): CSSU bit value×serial chip select timing operating clock cycle [ns] (*2): CSHD bit value×serial chip select timing operating clock cycle [ns] (*3): CSDS bit value×serial chip select timing operating clock cycle [ns] Notes: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which multi-function serial is connected to, see 10. Block Diagram in this data sheet. 142 CONFIDENTIAL − About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part (MN709-00001). − When the external load capacitance CL = 30 pF. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t tCSDI SCS output tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) SCS tCSDE input tCSSE tCSHE SCK input tDEE SOT (SPI=0) SOT tDSE (SPI=1) April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 143 D a t a S h e e t External Clock (EXT = 1): when in Asynchronous Mode Only (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Serial clock L pulse width tSLSH Serial clock H pulse width tSHSL SCK falling time tF SCK rising time tR CL = 30 pF tR V IL CONFIDENTIAL VIH Unit Min Max tCYCP + 10 - ns tCYCP + 10 - ns - 5 ns - 5 ns tSHSL SCK 144 Value Condition tF tSLSH VIH V IL Remarks V IL VIH S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 14.4.13 External Input Timing (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Pin Name Conditions Value Min Max Unit ADTGx FRCKx A/D converter trigger input - 2tCYCP*1 - ns - 2tCYCP*1 - ns - ns 500(*2) - ns 500(*3) - ns ICxx Input pulse width tINH, tINL DTTIxX NMIX WKUPx Free-run timer input clock Input capture 2tCYCP + INT00 to INT15, Remarks - - 100(*1) Waveform generator External interrupt, NMI Deep standby wake up (*1): tCYCP indicates the APB bus clock cycle time except stop when in Stop mode, in timer mode. About the APB bus number which the Multi-function Timer and External interrupt are connected to, see 10. Block Diagram in this data sheet. (*2): When in STOP mode, in timer mode. (*3): When in deep standby RTC mode, in deep standby Stop mode. April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 145 D a t a S h e e t 14.4.14 Quadrature Position/Revolution Counter Timing (VCC = AVCC = 2.7V to 3.6V, VSS = AVSS = 0V, TA = -40°C to +105°C) Parameter Value Symbol Conditions AIN pin H width tAHL - AIN pin L width tALL - BIN pin H width tBHL - BIN pin L width tBLL - tAUBU PC_Mode2 or PC_Mode3 tBUAD PC_Mode2 or PC_Mode3 tADBD PC_Mode2 or PC_Mode3 tBDAU PC_Mode2 or PC_Mode3 tBUAU PC_Mode2 or PC_Mode3 tAUBD PC_Mode2 or PC_Mode3 tBDAD PC_Mode2 or PC_Mode3 tADBU PC_Mode2 or PC_Mode3 ZIN pin H width tZHL QCR:CGSC=0 ZIN pin L width tZLL QCR:CGSC=0 tZABE QCR:CGSC=1 tABEZ QCR:CGSC=1 BIN rising time from AIN pin H level AIN falling time from BIN pin H level BIN falling time from AIN pin L level AIN rising time from BIN pin L level AIN rising time from BIN pin H level BIN falling time from AIN pin H level AIN falling time from BIN pin L level BIN rising time from AIN pin L level AIN/BIN rising and falling time from determined ZIN level Determined ZIN level from AIN/BIN rising and falling time Min Max 2tCYCP* - Unit ns *: tCYCP indicates the APB bus clock cycle time except when in Stop mode, in timer mode. About the APB bus number which Quadrature Position/Revolution Counter is connected to, see 10. Block Diagram in this data sheet. tALL tAHL AIN tAUBU tADBD tBUAD tBDAU BIN tBHL 146 CONFIDENTIAL tBLL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t tBLL tBHL BIN tBUAU tBDAD tAUBD tADBU AIN tAHL tALL ZIN ZIN AIN/BIN April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 147 D a t a S h e e t 14.4.15 I2C Timing Standard Mode, Fast Mode (VCC = 2.7V to 3.6, VSS = 0V) Parameter Symbol Conditions Standard Mode Fast Mode Unit Min Max Min Max fSCL 0 100 0 400 kHz tHDSTA 4.0 - 0.6 - μs SCL clock L width tLOW 4.7 - 1.3 - μs SCL clock H width tHIGH 4.0 - 0.6 - μs tSUSTA 4.7 - 0.6 - μs SCL clock frequency (Repeated) START condition hold time SDA ↓ → SCL ↓ (Repeated) Start condition setup time SCL ↑ → SDA ↓ Data hold time SCL ↓ → SDA ↓ ↑ Data setup time SDA ↓ ↑ → SCL ↑ STOP condition setup time SCL ↑ → SDA ↑ Bus free time between Stop condition and Start condition CL = 30 pF, tHDDAT *1 R = (Vp/IOL) *2 0 3.45 *3 0 0.9 μs tSUDAT 250 - 100 - ns tSUSTO 4.0 - 0.6 - μs tBUF 4.7 - 1.3 - μs *4 - ns *4 - ns 2 MHz ≤ tCYCP<40 MHz 40 MHz ≤ Noise filter Remarks tSP tCYCP<60 MHz 60 MHz ≤ tCYCP<80 MHz 80 MHz ≤ tCYCP ≤ 100 MHz *4 - 2 tCYCP *4 - 4 tCYCP 2 tCYCP 4 tCYCP *5 *4 - 6 tCYCP *4 - 8 tCYCP 6 tCYCP 8 tCYCP *4 - ns *4 - ns *1: R and CL represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current. *2: The maximum tHDDAT must satisfy that it does not extend at least L period (tLOW) of device's SCL signal. 2 2 *3: A Fast mode I C bus device can be used on a Standard mode I C bus system as long as the device satisfies the requirement of tSUDAT ≥ 250 ns. *4: tCYCP is the APB bus clock cycle time. 2 About the APB bus number that I C is connected to, see 10. Block Diagram in this data sheet. When the standard mode is used, please set to 2 MHz or more peripheral bus clock. When fast mode is used, please set to 8MHz or more peripheral bus clock. *5: The noise filter time can be changed by register settings. Change the number of the noise filter steps according to APB bus clock frequency. 148 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Fast Mode Plus (Fm+) (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Conditions Fast Mode Plus (Fm+)*6 Unit Min Max fSCL 0 1000 kHz tHDSTA 0.26 - μs SCL clock L width tLOW 0.5 - μs SCL clock H width tHIGH 0.26 - μs 0.26 - μs SCL clock frequency (Repeated) Start condition hold time SDA ↓ → SCL ↓ (Repeated) Start condition setup time SCL ↑ → SDA ↓ Data hold time SCL ↓ → SDA ↓ ↑ Data setup time SDA ↓ ↑ → SCL ↑ Stop condition setup time SCL ↑ → SDA ↑ tSUSTA Remarks CL = 30 pF, *1 0 0.45 *2, *3 μs tSUDAT 50 - ns tSUSTO 0.26 - μs tBUF 0.5 - μs *4 - ns *4 - ns tHDDAT Bus free time between Stop condition and Start condition R = (Vp/IOL) 60 MHz ≤ Noise filter tSP tCYCP<80 MHz 80 MHz ≤ tCYCP ≤100 MHz 6 tCYCP *5 8 tCYCP *1: R and CL represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current. *2: The maximum tHDDAT must satisfy that it does not extend at least L period (t LOW) of device's SCL signal. 2 2 *3: A Fast mode I C bus device can be used on a Standard mode I C bus system as long as the device satisfies the requirement of "tSUDAT ≥ 250 ns". *4: tCYCP is the APB bus clock cycle time. 2 About the APB bus number that I C is connected to, see 10. Block Diagram in this data sheet. To use fast mode plus (Fm+), set the peripheral bus clock at 64 MHz or more. *5: The noise filter time can be changed by register settings. Change the number of the noise filter steps according to APB bus clock frequency. 2 *6: When using fast mode plus (Fm+), set the I/O pin to the mode corresponding to I C Fm+ in the EPFR register. See Chapter 12 : I/O Port in "FM4 Family Peripheral Manual Main part (MN709-00001)" for the details. SDA SCL April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 149 D a t a S h e e t 14.4.16 ETM Timing (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Data hold tETMH TRACECLK Pin Name TRACECLK, TRACED[3:0] 1/tTRACE frequency Conditions - Value Unit Min Max 2 15 ns 32 MHz - ns - Remarks TRACECLK TRACECLK tTRACE clock cycle - 31.25 Note: − When the external load capacitance CL= 30 pF. HCLK TRACECLK TRACED[3:0] 150 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 14.4.17 JTAG Timing (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol TMS, TDI setup time tJTAGS TMS, TDI hold time tJTAGH TDO delay time tJTAGD Pin Name TCK, TMS, TDI TCK, TMS, TDI TCK, TDO Conditions Value Unit Min Max - 15 - ns - 15 - ns - - 45 ns Remarks Note: − When the external load capacitance CL= 30 pF. TCK TMS/TDI TDO April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 151 D a t a S h e e t 14.4.18 I2S Timing Master Mode Timing (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Output frequency Output clock pulse width I2SCK→I2SWS delay time I2SCK→I2SDO delay time* I2SDI→I2SCK Symbol Pin Name Conditions tMCYC I2SCK - tMHW Min Max Unit - 12.288 MHz 45 55 % 45 55 % I2SCK - tDFS I2SCK, I2SWS - 0 24.0 ns tDDO I2SCK, I2SDO - 0 24.0 ns - 25.0 - ns - 0 - ns - - 5 ns - - 5 ns tMLW tHSDI setup time Value Remarks I2SCK, I2SDI I2SDI→I2SCK tHDI hold time Input signal rising time tRI Input signal falling time tFI I2SDI *: Except for the first bit of transmission frame Notes: − − 152 CONFIDENTIAL When the external load capacitance CL = 20 pF When I2SWS=48 kHz, I2MCLK=256 × I2SWS Frame synchronization signal (I2SWS) is settable to 48 kHz, 32 kHz, 16 kHz. 2 See Chapter 7-2: I S(Inter-IC Sound bus)Interface in FM4 Family Peripheral Manual Communication part (MN709-00004) for the details. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t t MCYC tMHW I2SCK (CPOL=0) tMLW I2SCK (CPOL=1) tDFS I2SWS (FSPH=0, FSLN=0) tDFS tDFS tDFS I2SWS (FSPH=1, FSLN=0) tDFS tDFS I2SWS (FSPH=0, FSLN=1) tDFS tDFS I2SWS (FSPH=1, FSLN=1) tDDO I2SDO tSDI tHDI tSDI tHDI I2SDI (SMPL=0) tSDI tHDI I2SDI (SMPL=1) Note: − I2SDI 2 See Chapter 7-2: I S(Inter-IC Sound bus)Interface in FM4 Family Peripheral Manual Communication part (MN709-00004) for the details of CPOL, FSPH, FSLIN, SMPL . 0. 8×VCC 0. 8×VCC 0.2×V CC t FI April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 0. 8×VCC 0.2×V CC tRI 153 D a t a S h e e t Slave Mode Timing (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Input frequency Conditions tSCYC I2SCK - I2SCK - tSFI I2SCK, I2SWS tHFI I2SCK, I2SWS tSLW I2SWS→I2SCK Setup time I2SWS→I2SCK Hold time I2SCK↑→I2SDO tDDO *1 Value Unit Min Max - 12.288 MHz 45 55 % 45 55 % - 8 - ns - 0 - ns - 0 32 ns - 0 32 ns - 8 - ns - 0 - ns Remarks I2SCK, I2SDO I2SCK↑→I2SDO Delay Time Pin Name tSHW Input clock pulse width Delay time Symbol tDFB1 *2 I2SDI→I2SCK↓ tSDI Setup time I2SCK, I2SDI I2SDI→I2SCK↓ tHDI Hold time Input signal rising time tRI I2SCK, - - 5 ns Input signal falling time tFI I2SWS,I2SDI - - 5 ns *1: Except for the first bit of transmission frame *2: When FSPH register 1. Notes: − − 154 CONFIDENTIAL When the external load capacitance CL = 20 pF When I2SWS=48 kHz, I2MCLK=256 × I2SWS Frame synchronization signal (I2SWS) is settable to 48 kHz, 32 kHz, 16 kHz. 2 See Chapter 7-2: I S(Inter-IC Sound bus)Interface in FM4 Family Peripheral Manual Communication part (MN709-00004) for the details. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t tSCYC tSHW I2SCK (CPOL=0) tSLW I2SCK (CPOL=1) tSFI tHFI I2SWS (FSPH=0, FSLN=0) tSFI tHFI I2SWS (FSPH=1, FSLN=0) tSFI I2SWS (FSPH=0, FSLN=1) tSFI I2SWS (FSPH=1, FSLN=1) tDDO tDFB1 1 I2SDO tSDI tHDI tSDI tHDI I2SDI (SMPL=0) tSDI tHDI I2SDI (SMPL=1) Notes: I2SCK I2SWS I2SDI − See Chapter 7-2: I S(Inter-IC Sound bus)Interface in FM4 Family Peripheral Manual Communication part (MN709-00004) for the details of FSPH, FSLN, SMPL − I2SCK input is selectable polarity by CPOL bit of CNTREG register 2 0. 8×VCC 0. 8×VCC 0.2×V CC t FI April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 0. 8×VCC 0.2×V CC tRI 155 D a t a S h e e t ・I2SMCLK Input Characteristics (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Symbol Pin Name Conditions Input frequency fCHS I2SCK Input clock cycle tCYLHS - - - Input clock pulse width Input clock rising time and tCFS falling time tCRS Unit Max - - 25 MHz - 40 - ns 45 55 % - 5 ns PWHS/tCYLHS PWLS/tCYLHS - Value Min - Remarks When using external clock When using external clock tCYLHS 0.8×VCC I2SMCLK 0.8×VCC 0.8×VCC 0.2×VCC PWHS 0.2×VCC PWLS tCFS tCRS ・I2SMCLK Output Characteristics (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Input frequency 156 CONFIDENTIAL Symbol Pin Name Conditions fCHS I2SCK - Value Min Max - 12.288 Unit Remarks MHz S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 14.4.19 GDC:Panel Output Timing (VCC = 3.0V to 3.6V, VSS = 0V, TA = -40℃ to +85℃) Parameter Output frequency PNL_DCLK↓→PNL_PD[23:0] Output delay time PNL_DCLK↓→PNL_LH_SYNC Output delay time PNL_DCLK↓→PNL_FV_SYNC Output delay time PNL_DCLK↓→PNL_LE Output delay time PNL_DCLK↓→PNL_DEN Output delay time PNL_DCLK↓→PNL_PWE Output delay time Symbol Pin Name Conditions tCYCPNGE PNL_DCLK tPDOPDGE Value Unit Min Max - - 40 MHz PNL_PD[23:0] - -4.5 4.5 ns tHDOPDGE PNL_LH_SYNC - -4.5 4.5 ns tVDOPDGE PNL_FV_SYNC - -4.5 4.5 ns tLDOPDGE PNL_LE - -4.5 4.5 ns tDDOPDGE PNL_DEN - -4.5 4.5 ns tPDOPDGE PNL_PWE -4.5 4.5 ns tCYCPNGE PNL_DCLK PNL_PD[23:0] tPDOPDGE PNL_LHSYNC tHDOPDGE PNL_FVSYNC tVDOPDGE PNL_LE tLDOPDGE PNL_DEN tDDOPDGE PNL_PWE tPDOPDGE April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 157 D a t a S h e e t 14.4.20 GDC: SDRAM-IF Timing (VCC = 3.0V to 3.6V, VSS = 0V, TA = -40℃ to +85℃) Parameter Symbol Pin Name Output frequency tCYCSD GE_SDCLK Address delay time tAOSD Bank address delay time tBAOSD GE_SDCLK↑→ Data output delay time tDOSD GE_SDCLK↑→ Data output Hi-Z time tDOZSD GE_SDDQM[3:0] delay time tWROSD GE_SDCSX delay time tSCSSD GE_SDRASX delay time tRASSD GE_SDCASX delay time tCASSD GE_SDWEX delay time tSWESD GE_SDCKE delay time tCKESD Data setup time tDSSD Data hold time tDHSD 158 CONFIDENTIAL GE_SDCLK GE_SDA[11:0] GE_SDCLK GE_SDBA[1:0] GE_SDCLK GE_SDDQ[31:0] GE_SDCLK GE_SDDQ[31:0] GE_SDCLK GE_SDDQM[3:0] GE_SDCLK GE_SDCSX GE_SDCLK GE_SDRASX GE_SDCLK GE_SDCASX GE_SDCLK GE_SDWEX GE_SDCLK GE_SDCKE GE_SDCLK GE_SDDQ[31:0] GE_SDCLK GE_SDDQ[31:0] Value Unit Min Max - 80 MHz 1 5 ns 1 5 ns 1 5 ns 1 5 ns 1 5 ns 1 5 ns 1 5 ns 1 5 ns 1 5 ns 1 5 ns 4 - ns 0 - ns S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t tCYCSD GE_SDCLK tAOSD Address GE_SDA[11:0] tBAOSD Address GE_SDBA[1:0] tWROSD GE_SDDQM[3:0] tSCSSD GE_SDCSX tRASSD GE_SDRASX tCASSD GE_SDCASX tSWESD GE_SDWEX tCKESD GE_SDCKE tDSSD GE_SDRASX RD tDOSD GE_SDRASX April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL tDHSD tDOZSD WD 159 D a t a S h e e t 14.4.21 GDC: High-Speed Quad SPI Timing (VCC = 3.0V to 3.6V, VSS = 0V, TA = -40℃ to +85℃) Parameter Serial clock frequency Symbol Pin Name tSCYCM GE_SPCK Value Conditions Unit Min Max - 80 MHz tOSLSK02 1.5×tSCYCM – 4.25 - ns tOSLSK13 tSCYCM – 4.25 - ns tSCYCM - ns 1.5×tSCYCM - ns -1.25 4.25 ns 4 - ns 0.5×tSCYCM - ns Enabled CS→ CLK Starting Time (mode0/mode2) Enabled CS→ CLK Starting Time (mode1/mode3) GE_SPCK, GE_SPCSX_0 CLK Last→ Disabled CS Time tOSKSL02 CL=20 pF (mode0/mode2) CLK Last→ Disabled CS Time tOSKSL13 (mode1/mode3) SIO Data output time GE_SPCK, tOSDAT GE_SPDQ0, SIO Setup tDSSET SIO Hold tSDHOLD GE_SPDQ1, GE_SPDQ2, GE_SPDQ3 Note: − See Chapter 8-3: High-Speed Quad SPI controller in FM4 Family Peripheral Manual Communication part (MN709-00004) for the detail of RTM mode. GE_SPCSX_0 tSCYCM mode 0 mode 2 t OSLSK02 GE_SPCK t OSKSL02 mode 1 mode 3 t OSKSL13 t OSLSK13 GE_SPDQ0, GE_SPDQ1, GE_SPDQ2, GE_SPDQ3 input t DSSET t SDHOLD output t OSDAT 160 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 14.4.22 GDC: HyperBus I/F Timing HyperFlash Write (VCC = 3.0V to 3.6V, VSS = 0V, TA = -40°C to +85°C) Parameter Symbol Hyper Bus clock cycle Pin Name Value Conditions Unit Min Max tCKCYC GE_HBCK 10 - ns tCSS GE_HBCSX_1 GE_HBCSX_0 3 - ns tDSV GE_HBRWDS - 8 ns 0.8 - ns 0.8 - ns 0 - ns - 7 ns 8 - ns CS↑↓→CK↑ Chip Select setup time CS↓→RDS↓ Chip select active to RDS valid(Low) DQ → CK↑↓ Input setup time CK↑↓→ DQ Input hold time CK↓ → CS↑ Chip select hold time CS↑→ RDS(Hi-z) Chip select Inactive to RDS High-Z CS↑ → CS↓ Chip select HIGH between operation GE_HBDQ7GE_HBDQ0 GE_HBDQ7GE_HBDQ0 GE_HBCSX_1 GE_HBCSX_0 GE_HBCSX_1 GE_HBCSX_0 GE_HBCSX_1 GE_HBCSX_0 tIS tIH tCSH tDSZ tCSHI CL=30 pF tCSHI GE_HBCSX_0,1 VOH VOL tCKCYC tCSS VOH GE_HBCK tCSH tCSS VOL tDSV tDSZ GE_HBRWDS tIS GE_HBDQ7-0 CA0 47-40 CA0 39-32 CA1 31-24 CA1 23-16 tIH VIH CA2 15-8 CA2 7-0 Dn 15-8 Dn 7-0 VIL April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 161 D a t a S h e e t HyperFlash Read (VCC = 3.0V to 3.6V, VSS = 0V, TA = -40°C to +85°C) Parameter Hyper Bus clock cycle Symbol Pin Name tRDSCYC Read initial Access Time CS↑↓→CK↑ Chip Select setup time CS↓ → RDS↓ Chip select active to RDS valid (Low) DQ → CK↑↓ Input setup time CK↑↓→ DQ Input hold time CK↓ → CS↑ Chip select hold time CS↑ → RDS(Hi-Z) Chip select Inactive to RDS High-Z CK↑↓ → DQ (Low Z) Clock to DQs Low Z RDS↑↓→ DQ (valid) RDS transition to DQ valid RDS↑↓→ DQ (invalid) RDS transition to DQ invalid CS↑→ DQ (Hi-Z) Chip select Inactive to DQs High-Z CK↑↓→ RDS↑↓ CK transition to RDS transition CS↑→ CS↓ Chip select HIGH between Operation Value Conditions Unit Min Max GE_HBCK 10 - ns tACC GE_HBCK - 120 ns tCSS GE_HBCSX_1 GE_HBCSX_0 3 - ns tDSV GE_HBRWDS - 8 ns 0.8 - ns 0.8 - ns 0 - ns - 7 ns 0 - ns -0.8 +0.8 ns -0.8 +0.8 ns - 7 ns GE_HBDQ7GE_HBDQ0 GE_HBDQ7GE_HBDQ0 GE_HBCSX_1 GE_HBCSX_0 tIS tIH tCSH tDSZ CL=30pF GE_HBRWDS GE_HBDQ7GE_HBDQ0 GE_HBDQ7GE_HBDQ0 GE_HBDQ7GE_HBDQ0 GE_HBDQ7GE_HBDQ0 tDQLZ tDSS tDSH tOZ tCKDS GE_HBRWDS 1 7 ns tCSHI GE_HBCSX_1 GE_HBCSX_0 8 - ns tCSHI tACC GE_HBCSX_0,1 VOH VOL tCSH tCSS GE_HBCK VOL tDSV tDQLZ tCKDS tRDSCYC tIH tIS tDSH VIH CA0 47-40 CA0 39-32 CA1 31-24 CA1 23-16 CA2 15-8 VIL 162 CONFIDENTIAL tDSZ tOZ VOH GE_HBRWDS GE_HBDQ7-0 tCSS VOH tDSS VOH CA2 7-0 Dn 15-8 Dn 7-0 Dn+1 15-8 Dn+1 7-0 VOL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 14.5 12-bit A/D Converter Electrical Characteristics for the A/D Converter (VCC = AVCC = 2.7V to 3.6V, VSS = AVSS = AVRL = 0V) Parameter Symbol Pin Name Resolution - Integral Nonlinearity - Differential Nonlinearity - Zero transition voltage VZT Full-scale transition voltage VFST Value Typ - - - 12 bit - - 4.5 - + 4.5 LSB - - 2.5 - + 2.5 LSB - 15 - + 15 mV AN00 to AVRH – 15 - AVRH + 15 mV AN00 to AN23 Max Unit Min Remarks AVRH=2.7 V to 3.6 V AN23 AVCC - 15 - AVCC + 15 mV Conversion time - - 1.0*1 - - μs Sampling time *2 tS - 0.3 - 10 μs tCCK - 50 - 1000 ns tSTT - - - 1.0 μs - AVCC - 0.30 0.45 mA A/D 1unit operation - 0.1 9.5 μA When A/D stop - 0.66 1.18 mA - 0.2 3.2 μA Compare clock cycle*3 State transition time to operation permission Power supply current (analog + digital) Reference power supply current(AVRH) - AVRH Analog input capacity CAIN - - - 12.05 pF Analog input resistance RAIN - - - 1.8 kΩ - - - 4 LSB - - 5 μA AN00 to AVSS - AVRH V AN23 AVSS - AVCC V - AVRH 2.7 - AVCC V - AVRL AVSS - AVSS V Interchannel disparity Analog port input leak current Analog input voltage Reference voltage - AN00 to AN23 A/D 1unit operation AVRH=3.3 V When A/D stop tCCK ≥ 50 ns *1: The conversion time is the value of sampling time (tS) + compare time (tC). Ensure that it satisfies the value of sampling time (tS) and compare clock cycle (tCCK). For setting of sampling time and compare clock cycle, see Chapter 1-1: A/D Converter in FM4 Family Peripheral Manual Analog Macro Part (MN709-00003). The register setting of the A/D converter is reflected by the APB bus clock timing. For more information about the APB bus signal to which the A/D converter is connected, see 10. Block Diagram in this data sheet. The sampling clock and compare clock are set at base clock (HCLK). *2: A necessary sampling time changes by external impedance. Ensure that it set the sampling time to satisfy (Equation 1). *3: The compare time (tC) is the value of (Equation 2). April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 163 D a t a S h e e t AN00 to AN23 Analog input pin Analog signal source REXT Comparator RAIN C AIN Cin (Equation 1) tS ≥ (RAIN + REXT) × CAIN × 9 tS: Sampling time RAIN: Input resistance of A/D = 1.8 kΩ CAIN: Input capacity of A/D = 12.05 pF REXT: Output impedance of external circuit (Equation 2) tC = tCCK × 14 164 CONFIDENTIAL tC: Compare time tCCK: Compare clock cycle S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Definition of 12-bit A/D Converter Terms Resolution: Integral Nonlinearity: Analog variation that is recognized by an A/D converter. Deviation of the line between the zero-transition point (0b000000000000 ←→ 0b000000000001) and the full-scale transition point (0b111111111110 ←→ 0b111111111111) from the actual conversion characteristics. Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB. Integral Nonlinearity Differential Nonlinearity 0xFFF Actual conversion characteristics 0xFFE Actual conversion characteristics 0x(N+1) {1 LSB(N-1) + VZT} VFST VNT 0x004 (Actually-measured value) 0x003 0x002 (Actuallymeasured value) Digital output Digital output 0xFFD 0xN Ideal characteristics V(N+1)T 0x(N-1) (Actually-measured value) Actual conversion characteristics Ideal characteristics VNT (Actually-measured value) 0x(N-2) 0x001 VZT (Actually-measured value) AVss Actual conversion characteristics AVRH AVss AVRH Analog input Integral Nonlinearity of digital output N = Differential Nonlinearity of digital output N = 1LSB = N: VZT: VFST : VNT: VNT - {1LSB × (N - 1) + VZT} 1LSB V(N + 1) T - VNT 1LSB [LSB] - 1 [LSB] VFST - VZT 4094 A/D converter digital output value. Voltage at which the digital output changes from 0x000 to 0x001. Voltage at which the digital output changes from 0xFFE to 0xFFF. Voltage at which the digital output changes from 0x(N − 1) to 0xN. April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL Analog input 165 D a t a S h e e t 14.6 USB Characteristics (VCC = AVCC = 3.0V to 3.6V, VSS = AVSS = 0V) Parameter Symbol Pin Name Conditions Value Min Max Unit Remarks Input H level voltage VIH - 2.0 VCC + 0.3 V *1 Input Input L level voltage VIL - VSS - 0.3 0.8 V *1 characteristics Differential input sensitivity VDI - 0.2 - V *2 Different common mode range VCM - 0.8 2.5 V *2 2.8 3.6 V *3 0.0 0.3 V *3 External pull-up Output H level voltage VOH resistance = 15kΩ External pull-up Output L level voltage Output Crossover voltage characteristics Rising time Falling time VOL UDP0/ resistance = UDM0 15kΩ VCRS - 1.3 2.0 V *4 tFR Full-Speed 4 20 ns *5 tFF Full-Speed 4 20 ns *5 Rising/falling time matching tFRFM Full-Speed 90 111.11 % *5 Output impedance ZDRV Full-Speed 28 44 Ω *6 tLR Low-Speed 75 300 ns *7 tLF Low-Speed 75 300 ns *7 tLRFM Low-Speed 80 125 % *7 Rising time Falling time Rising/falling time matching Minimum differential input sensitivity [V] *1: The switching threshold voltage of Single-end-receiver of USB I/O buffer is set as within VIL (Max) = 0.8 V, VIH (Min) = 2.0 V (TTL input standard). There are some hysteresis to lower noise sensitivity. *2: Use differential-Receiver to receive USB differential data signal. Differential-receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V to the local ground reference level. Above voltage range is the common mode input voltage range. Common mode input voltage [V] *3: The output drive capability of the driver is below 0.3 V at Low-state (VOL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or above (to the VSS and 15 kΩ load) at High-State (VOH). *4: The cross voltage of the external differential output signal (D + /D − ) of USB I/O buffer is within 1.3 V to 2.0 V. 166 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t D+ Max 2.0 V Min 1.3 V D- VCRS specified range *5: They indicate Rising time (tFR) and Falling time (tFF) of the Full-speed differential data signal. They are defined by the time between 10 % and 90 % of the output signal voltage. For Full-speed buffer, tFR/tFF ratio is regulated as within ± 10 % to minimize RFI emission. D+ 90% D- 90% 10% 10% tFR Rising time tFF Falling time Full-speed Buffer Rs=27Ω TxD+ CL=50pF Rs=27Ω TxDCL=50pF 3-State Enable April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 167 D a t a S h e e t *6: USB Full-speed connection is performed via twist pair cable shield with 90 Ω ± 15 % characteristic impedance (Differential Mode). USB standard defines that output impedance of USB driver must be in range from 28 Ω to 44 Ω. So, discrete series resistor (Rs) addition is defined in order to satisfy the above definition and keep balance. When using this USB I/O, use it with 25 Ω to 30 Ω (recommendation value 27 Ω) Series resistor Rs. 28Ω to 44Ω Equiv. Imped. 28Ω to 44Ω Equiv. Imped. Mount it as external resistance. Rs series resistor 25 Ω to 30 Ω Series resistor of 27 Ω (recommendation value) must be added. And, use "resistance with an uncertainty of 5% by E24 sequence". *7: They indicate rising time (tLR) and Falling time (tLF) of the Low-speed differential data signal. They are defined by the time between 10 % and 90 % of the output signal voltage. D+ 90% D- 90% 10% 10% tLR Rising time tLF Falling time Note: − 168 CONFIDENTIAL See Low-speed load (Compliance load) for conditions of external load. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Low-speed load (Upstream port load) - Reference 1 CL = 50pF to 150pF CL = 50pF to 150pF Low-speed load (Downstream port load) - Reference 2 CL = 200pF to 600pF CL = 200pF to 600pF Low-speed load (Compliance load) CL = 200pF to 450pF CL = 200pF to 450pF April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 169 D a t a S h e e t 14.7 Low-Voltage Detection Characteristics 14.7.1 Low-Voltage Detection Reset Parameter Symbol Conditions Detected voltage VDL Released voltage VDH 14.7.2 Value Unit Min Typ Max - 2.46 2.55 2.64 V - 2.51 2.60 2.69 V Remarks When voltage drops When voltage rises Interrupt of Low-Voltage Detection Parameter Symbol Conditions Value Unit Min Typ Max 2.80 2.90 3.00 V Detected voltage VDL Released voltage VDH 2.90 3.00 3.11 V Detected voltage VDL 2.99 3.10 3.21 V Released voltage VDH 3.09 3.20 3.31 V Detected voltage VDL 3.18 3.30 3.42 V Released voltage VDH 3.28 3.40 3.52 V LVD stabilization wait time tLVDW - - 4800×tCYCP* μs SVHI = 00111 SVHI = 00100 SVHI = 01100 - Remarks When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises *: tCYCP indicates the APB2 bus clock cycle time. 170 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 14.8 MainFlash Memory Write/Erase Characteristics (VCC = 2.7V to 3.6V) Parameter Value Unit Min Typ Max Large Sector - 0.7 3.7 s Small Sector - 0.3 1.1 s - 12 Sector erase time Remarks Includes write time prior to internal erase Write cycles ≤ 100 times Half word (16-bit) write time 100 Write cycles > 100 times Chip erase time μs Not including system-level overhead time s Includes write time prior to internal erase 200 - 6.6 31 Write Cycles and Data Hold Time Erase/Write Cycles (cycle) Data Hold Time (year) 1,000 20* 10,000 10* 100,000 5* *: This value comes from the technology qualification (using Arrhenius equation to translate high temperature acceleration test result into average temperature value at + 85°C) . 14.9 VFLASH Memory Write/Erase Characteristics (VCC = 2.7V to 3.6V) Parameter Value Unit Min Typ Max - 50 450 ms Block Erase Time (64 KB) - 500 2000 ms Page Program Time - 0.7 3 ms Chip erase time - 11.2 64 s Sector erase time (4 KB) Remarks Erase Endurance Value Parameter Erase per sector Unit Min Typ Max 100k - - Remarks cycle *: Data retention of 20 years is based on 1k erase cycle or less. April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 171 D a t a S h e e t 14.10 Standby Recovery Time 14.10.1 Recovery Cause: Interrupt/WKUP The time from recovery cause reception of the internal circuit to the program operation start is shown. Recovery Count Time (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Value Symbol Sleep mode Unit Max* Typ Remarks μs HCLK×1 High-speed CR Timer mode 40 80 μs Low-speed CR timer mode 450 900 μs Sub timer mode 896 1136 μs 316 581 μs 270 540 μs 365 667 μs 365 667 μs Main Timer mode PLL Timer mode RTC mode tICNT Stop mode (High-speed CR /Main/PLL run mode return) RTC mode Stop mode (Low-speed CR/sub run mode return) Deep standby RTC mode Deep standby Stop mode without RAM retention with RAM retention *: The maximum value depends on the built-in CR accuracy. Example of standby recovery operation (when in external interrupt recovery*) Ext.INT Interrupt factor accept Active tICNT CPU Operation Interrupt factor clear by CPU Start *: External interrupt is set to detecting fall edge. 172 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Example of Standby Recovery Operation (when in Internal Resource Interrupt Recovery*) Internal Resource INT Interrupt factor accept Active tICNT CPU Operation Interrupt factor clear by CPU Start *: Depending on the standby mode, interrupt from the internal resource is not included in the recovery cause. Notes: − The return factor is different in each Low-Power consumption modes. See Chapter 6: The return factor from each low power consumption modes in “FM4 Family Peripheral Manual Main Part (MN709-00001). − When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode" in "FM4 Family Peripheral Manual Main part (MN709-00001). April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 173 D a t a S h e e t 14.10.2 Recovery Cause: Reset The time from reset release to the program operation start is shown. Recovery Count Time (VCC = 2.7V to 3.6V, VSS = 0V) Parameter Value Symbol Sleep mode Unit Typ Max* 155 266 μs 155 266 μs 315 567 μs 315 567 μs 315 567 μs 336 667 μs 336 667 μs Remarks High-speed CR Timer mode Main Timer mode PLL Timer mode Low-speed CR timer mode tRCNT Sub timer mode RTC mode Stop mode Deep standby RTC mode Deep standby Stop mode without RAM retention with RAM retention *: The maximum value depends on the built-in CR accuracy. Example of Standby Recovery Operation (when in INITX Recovery) INITX Internal RST RST Active Release tRCNT CPU Operation 174 CONFIDENTIAL Start S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Example of Standby Recovery Operation (when in Internal Resource Reset Recovery*) Internal Resource RST Internal RST RST Active Release tRCNT CPU Operation Start *: Depending on the Low-Power consumption mode, the reset issue from the internal resource is not included in the recovery cause. Notes: − The return factor is different in each low power consumption mode. See Chapter 6: The return factor from each low power consumption modes in “FM4 Family Peripheral Manual Main Part (MN709-00001). − The recovery process is unique for each operating mode. See Chapter 6: Low Power Consumption mode in FM4 Family Peripheral Manual Main Part (MN709-00001) − When the power-on reset/low-voltage detection reset, they are not included in the return factor. See 14.4.8 Power-on Reset Timing. − In recovering from reset, CPU changes to High-speed Run mode. In the case of using the main clock and PLL clock, they need further main clock oscillation stabilization wait time and oscillation stabilization wait time of Main PLL clock. − Internal resource reset indicates Watchdog reset and CSV reset. April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 175 D a t a S h e e t 15. Ordering Information Part Number Package S6E2D55G0AGV20000 Plastic・LQFP (0.5 mm pitch), 120 pin S6E2D55GJAMV20000 (FPT-120P-M21) S6E2D55J0AGV20000 S6E2D55G0AGB30000 S6E2D55G0AGZ20000 176 CONFIDENTIAL Plastic・LQFP (0.5 mm pitch), 176 pin (FPT-176P-M07) Plastic・PFBGA (0.5 mm pitch), 161 pin (FDJ161) Plastic・Ex-LQFP (0.5 mm pitch), 120 pin (LEM120) S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 16. Package Dimensions 120-pin plastic LQFP Lead pitch 0.50 mm Package width × package length 16.0 × 16.0 mm Lead shape Gullwing Sealing method Plastic mold Mounting height 1.70 mm MAX Weight 0.88 g Code (Reference) P-LFQFP120-16×16-0.50 (FPT-120P-M21) 120-pin plastic LQFP (FPT-120P-M21) Note 1) * : These dimensions do not include resin protrusion. Resin protrusion is +0.25(.010) MAX(each side). Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder. 18.00±0.20(.709±.008)SQ * 16.00 +0.40 –0.10 .630 +.016 –.004 SQ 90 61 60 91 0.08(.003) Details of "A" part 1.50 .059 +0.20 –0.10 +.008 –.004 (Mounting height) INDEX 120 LEAD No. 31 1 30 0.50(.020) C 0.22±0.05 (.009±.002) 0.08(.003) M 2002-2010 FUJITSU SEMICONDUCTOR LIMITED F120033S-c-4-7 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 0~8° "A" 0.145 .006 +0.05 –0.03 +.002 –.001 0.60±0.15 (.024±.006) 0.10±0.05 (.004±.002) (Stand off) 0.25(.010) Dimensions in mm (inches). Note: The values in parentheses are reference values. 177 D a t a S h e e t 176-pin plastic LQFP Lead pitch 0.50 mm Package width × package length 24.0 × 24.0 mm Lead shape Gullwing Sealing method Plastic mold Mounting height 1.70 mm MAX Code (Reference) P-LQFP-0176-2424-0.5 0 (FPT-176P-M07) 176-pin plastic LQFP (FPT-176P-M07) Note 1) * : Values do not include resin protrusion. Resin protrusion is +0.25(.010)Max(each side). Note 2) Pins width and pins thickness include plating thickness Note 3) Pins width do not include tie bar cutting remainder. 26.00±0.20(1.024±.008)SQ *24.00±0.10(.945±.004)SQ 132 0.145±0.055 (.006±.002) 89 133 88 0.08(.003) Details of "A" part +0.20 1.50 –0.10 +.008 (Mounting height) .059 –.004 0°~8° 0.10±0.10 (.004±.004) (Stand off) INDEX 176 LEAD No. 45 1 44 0.50(.020) C 0.22±0.05 (.009±.002) 2004-2010 FUJITSU SEMICONDUCTOR LIMITED F176013S-c-1-3 178 CONFIDENTIAL 0.08(.003) "A" 0.50±0.20 (.020±.008) 0.60±0.15 (.024±.006) 0.25(.010) M Dimensions in mm (inches). Note: The values in parentheses are reference values. S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t Package Type Package Code PFBGA 161 FDJ 161 April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 179 D a t a S h e e t Package Type Package Code Ex-LQFP 120 LEM 120 180 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t 17. Major Changes Page Section Change Results Revision 0.1 - - Initial release Revision 1.0 1, 3 13, 14 Title 3. Product Lineup 15 4. Packages 176 15. Ordering Information Deleted the following products. S6E2D55JAA/ S6E2D55GAA Added the following description: 6 2. Features External Bus Interface Maximum area size : Up to 256 Mbytes Modified the following description: 0x6000_0000 to 0xDFFF_FFFF to 0x6000_0000 to 0x7FFF_FFFF 7 2. Features 13 3. Product Lineup 8 2. Features 15 4. Packages 16 5. Pin Assignment 20 to 52 6. Pin Descriptions 81 14.2. Recommended Operating 176 15. Ordering Information Added that CAN-FD Interface supported non-CAN FD. Modified the ch. Number of I2C ( ch.7→ch.4) Added the Ex_LQFP(TEQFP)(LEM120) 53 7. I/O Circuit Type Modified the Type-A Circuit 54,55,58 7. I/O Circuit Type Added the comment in TypeD/E/F/G/N 59 7. I/O Circuit Type 67 10. Block Diagram 68 12. Memory Map 80 14.2. Recommended Operating 163 14.5 12-bit A/D Converter 82 14.2. Recommended Operating 84 to 93 93 95 97 163 170 14.3.1 Current Rating 14.3.1 Current Rating Table 14-11 14.4 AC Characteristics 14.4.1 Main Clock Input 14.4 AC Characteristics 14.4.5 Operating Conditions 14.5 12-bit A/D Converter 14.7.2 Interrupt of Low-Voltage Detection 171 14.9 VFLASH Memory 176 15. Ordering Information 179, 180 16. Package Dimensions April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL Modified theType-Q Remarks CMOS level output → CMOS level hysteresis input Deleted the following products. S6E2D55JAA/ S6E2D55GAA Modified the External Device Area / GDC Area Added the AVRL in Analog reference voltage. Modified the TBD in Current Value Added the Note Modified the TBD in Max spec Added the comment of VFLASH memory Added the VFLASH memory current Added the Master clock Modified the I2S PLL frequency (307.2→384) Modified the GDC clock frequency (400→160) Modified the Spec Modified the comment of Conversion time Modified the max value in LVD stabilization wait time. (6000→4800) Added the new Modified the Part Number (S6E2D55G0AGB10000→S6E2D55G0AGB30000) Added the Package (Ex_LQFP) Added the FDJ161/LEM120 181 D a t a S h e e t 182 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015 D a t a S h e e t April 21, 2015, S6E2D5_DS709-00021-1v0-E CONFIDENTIAL 183 D a t a S h e e t Colophon The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products. Trademarks and Notice The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of the information in this document. ® ® ® TM TM Copyright © 2015 Cypress All rights reserved. Spansion , the Spansion logo, MirrorBit , MirrorBit Eclipse , ORNAND , TM TM Easy DesignSim , Traveo and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. Other names used are for informational purposes only and may be trademarks of their respective owners. 184 CONFIDENTIAL S6E2D5_DS709-00021-1v0-E, April 21, 2015