AOT2500L/AOB2500L 150V N-Channel MOSFET General Description Product Summary The AOT2500L/AOB2500L uses Trench MOSFET VDS technology that is uniquely optimized to provide the most ID (at VGS=10V) 150V 152A efficient high frequency switching performance. Both RDS(ON) (at VGS=10V) < 6.5mΩ (< 6.2mΩ∗) conduction and switching power losses are minimized RDS(ON) (at VGS=6V) < 7.6mΩ (<7.3mΩ∗) due to an extremely low combination of RDS(ON), Ciss and Coss. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. 100% UIS Tested 100% Rg Tested TO-263 D2PAK TO220 Top View Bottom View D Top View Bottom View D D D D G G D S S AOT2500L D G G Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage VGS TC=25°C Continuous Drain Current Pulsed Drain Current Continuous Drain Current C Maximum 150 Units V ±20 V A 440 11.5 IDSM TA=70°C S 107 IDM TA=25°C S G 152 ID TC=100°C S AOB2500L A 9.0 Avalanche Current C IAS 65 A Avalanche energy L=0.3mH C TC=25°C EAS 634 mJ Power Dissipation B TC=100°C Power Dissipation A TA=70°C TA=25°C 2.1 Steady-State Steady-State RθJA RθJC W 1.3 TJ, TSTG Symbol t ≤ 10s W 187.5 PDSM Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case 375 PD -55 to 175 Typ 12 48 0.26 °C Max 15 60 0.4 Units °C/W °C/W °C/W * Surface mount package TO263 Rev.1. 0: July 2013 www.aosmd.com Page 1 of 6 AOT2500L/AOB2500L Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage IDSS Conditions Min ID=250µA, VGS=0V 150 Zero Gate Voltage Drain Current Gate-Body leakage current VDS=0V, VGS=±20V Gate Threshold Voltage VDS=VGS,ID=250µA 2.3 5.9 7.6 mΩ VGS=10V, ID=20A TO263 5.1 6.2 mΩ VGS=6V, ID=20A TO263 5.6 7.3 mΩ 1 V 152 A VDS=5V, ID=20A IS=1A,VGS=0V IS Maximum Body-Diode Continuous Current TJ=125°C 70 0.66 DYNAMIC PARAMETERS Ciss Input Capacitance Rg Gate resistance VGS=0V, VDS=75V, f=1MHz VGS=0V, VDS=0V, f=1MHz Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime VGS=10V, VDS=75V, ID=20A VGS=10V, VDS=75V, RL=3.75Ω, RGEN=3Ω tf Turn-Off Fall Time trr Body Diode Reverse Recovery Time Qrr Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs IF=20A, dI/dt=500A/µs 1 mΩ S 6460 pF 586 pF 22 SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qgs V 6.5 Forward Transconductance Output Capacitance nA 3.5 12.3 Diode Forward Voltage Reverse Transfer Capacitance ±100 5.4 gFS Coss 2.8 10.2 VSD Crss µA 5 VGS=10V, ID=20A TO220 VGS=6V, ID=20A TO220 Static Drain-Source On-Resistance Units 1 TJ=55°C IGSS Max V VDS=150V, VGS=0V VGS(th) RDS(ON) Typ pF 2.1 3.2 97 136 Ω nC 22.5 nC 17 nC 18.5 ns 20 ns 67.5 ns 14 ns 90 ns nC 1090 A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating. G. The maximum current limited by package. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev.1. 0: July 2013 www.aosmd.com Page 2 of 6 AOT2500L/AOB2500L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 100 10V 5V 80 VDS=5V 80 6V 60 60 ID(A) ID (A) 4.5V 40 40 20 125°C 20 VGS=4V 25°C 0 0 0 1 2 3 4 2 5 VDS (Volts) Fig 1: On-Region Characteristics (Note E) 4 5 VGS(Volts) Figure 2: Transfer Characteristics (Note E) 6 2.6 Normalized On-Resistance 8 VGS=6V RDS(ON) (mΩ Ω) 3 6 VGS=10V 4 2.4 2.2 VGS=10V ID=20A 2 17 5 2 VGS=6V 10 I =20A 1.8 1.6 1.4 1.2 D 1 0.8 2 0 5 0 10 15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 15 100 125 150 0 175 200 Temperature (°C) 18 Figure 4: On-Resistance vs. Junction Temperature (Note E) 25 50 75 1.0E+02 ID=20A 1.0E+01 40 12 IS (A) RDS(ON) (mΩ Ω) 1.0E+00 125°C 9 1.0E-01 125°C 1.0E-02 6 1.0E-03 25°C 3 25°C 1.0E-04 1.0E-05 0 2 4 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev.1. 0: July 2013 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOT2500L/AOB2500L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 10000 VDS=75V ID=20A 8000 Capacitance (pF) VGS (Volts) 8 6 4 2 Ciss 6000 4000 Coss 2000 Crss 0 0 0 20 40 60 80 Qg (nC) Figure 7: Gate-Charge Characteristics 100 0 150 1000 1000.0 10µs 10µs 100µs RDS(ON) limited 1ms 10ms DC 10.0 1.0 TJ(Max)=175°C TC=25°C 0.1 TJ(Max)=175°C TC=25°C 800 Power (W) 100.0 ID (Amps) 25 50 75 100 125 VDS (Volts) Figure 8: Capacitance Characteristics 17 5 2 10 600 400 200 0.0 0 0.01 0.1 1 10 VDS (Volts) 100 1000 0.0001 0.001 0.01 0.1 0 1 18 10 Pulse Width (s) Figure 10: Single Pulse Power Rating Junction-to-Case (Note F) VGS > or equal to 6V Figure 9: Maximum Forward Biased Safe Operating Area (Note F) Zθ JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC 40 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse RθJC=0.4°C/W 1 PD 0.1 Single Pulse Ton T 0.01 1E-05 0.0001 0.001 0.01 0.1 1 10 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev.1. 0: July 2013 www.aosmd.com Page 4 of 6 AOT2500L/AOB2500L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 400 350 Power Dissipation (W) IAR (A) Peak Avalanche Current 1000 TA=25°C TA=100°C 100 TA=150°C TA=125°C 300 250 200 150 100 50 10 0 1 10 100 1000 Time in avalanche, tA (µ µs) Figure 12: Single Pulse Avalanche capability (Note C) 0 25 50 75 100 125 150 TCASE (°C) Figure 13: Power De-rating (Note F) 175 1000 200 150 100 Power (W) Current rating ID(A) TA=25°C 100 17 5 2 10 10 50 0 0 1 0 25 50 75 100 125 150 TCASE (°C) Figure 14: Current De-rating (Note F) 18100 0.1 1 10 1000 Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) 175 0.001 0.01 Zθ JA Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA 1 40 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse RθJA=60°C/W 0.1 PD 0.01 Single Pulse Ton T 0.001 0.001 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Rev.1. 0: July 2013 www.aosmd.com Page 5 of 6 AOT2500L/AOB2500L Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds Vgs 90% + Vdd DUT VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR = 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds - Isd Vgs Ig Rev.1. 0: July 2013 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6