RFD8P06LE, RFD8P06LESM, RFP8P06LE Data Sheet July 1999 8A, 60V, 0.300 Ohm, ESD Rated, Logic Level, P-Channel Power MOSFET • 8A, 60V Formerly developmental type TA49203. • rDS(ON) = 0.300Ω • 2kV ESD Protected • Temperature Compensating PSPICE® Model • PSPICE Thermal Model • Peak Current vs Pulse Width Curve • UIS Rating Curve • 175oC Operating Temperature Ordering Information PACKAGE 4273.1 Features These products are P-Channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. These transistors can be operated directly from integrated circuits. PART NUMBER File Number Symbol BRAND D RFD8P06LE TO-251AA F8P6LE RFD8P06LESM TO-252AA F8P6LE RFP8P06LE TO-220AB FP8P06LE G NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-252AA variant in the tape and reel, i.e., RFD8P06LESM9A. S Packaging JEDEC TO-251AA DRAIN (FLANGE) JEDEC TO-252AA SOURCE DRAIN GATE DRAIN (FLANGE) GATE SOURCE JEDEC TO-220AB SOURCE DRAIN GATE DRAIN (FLANGE) 7-11 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. PSPICE® is a registered trademark of MicroSim Corporation. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 RFD8P06LE, RFD8P06LESM, RFP8P06LE Absolute Maximum Ratings TC = 25oC Unless Otherwise Specified RFD8P06LE, RFD8P06LESM, RFP8P06LE -60 -60 Drain to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDS Drain to Gate Voltage (RGS = 20kΩ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Continuous Drain Current TC = 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID TC = 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Dissipation Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Pulse Avalanche Energy Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL (0.063in (1.6mm) from case for 10s) UNITS V V -8 -6.3 See Figure 5 ±10 48 0.32 See Figure 6 -55 to 175 300 A A V W W/oC oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications TC = 25oC Unless Otherwise Specified MIN TYP MAX UNITS Drain to Source Breakdown Voltage PARAMETER BVDSS ID = 250µA, VGS = 0V (Figure 11) -60 - - V Gate Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 12) -1 - -2 V - - -1 µA - - -50 µA Zero Gate Voltage Drain Current Gate to Source Leakage Current On Resistance (Note 1) SYMBOL IDSS IGSS rDS(ON) Turn-On Time tON Turn-On Delay Time Turn-Off Delay Time Fall Time Turn-Off Time VDS =- 60V, VGS = 0V TJ = 25oC TJ = 150oC VGS = ±10V - - ±10 µA ID = 8A, VGS = -5V (Figure 9, 10) - - 0.300 Ω ID = 8A, VGS = -4.5V (Figure 9, 10) - - 0.330 Ω VDD = -30V, ID ≅ 8A, RGS = 9.1Ω, RL = 3.75Ω (Figure 13) - - 90 ns - 10 - ns tr - 50 - ns td(OFF) - 30 - ns tf - 20 - ns td(ON) Rise Time TEST CONDITIONS tOFF Total Gate Charge Qg(TOT) VGS = 0 to -10V Gate Charge at -5V Qg(-5) VGS = 0 to -5V Threshold Gate Charge Qg(TH) VGS = 0 to -1V VDD = -48V, ID ≅ 8A, RL = 6Ω Ig(REF) = -0.2mA (Figure 14) VDS =- 25V, VGS = 0V, f = 1MHz (Figure 15) - - 75 ns - 25 30 nC - 15 18 nC - 1.2 1.5 nC - 675 - pF - 175 - pF Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS - 50 - pF Thermal Resistance Junction to Case RθJC - - 3.125 oC/W Thermal Resistance Junction to Ambient RθJA - - 100 oC/W 80 oC/W TO-251AA, TO-252AA TO-220AB Source to Drain Diode Specifications TC = 25oC Unless Otherwise Specified PARAMETER Source to Drain Diode Voltage (Note 1) Reverse Recovery Time SYMBOL VSD trr NOTE: 2. Pulse Test: Pulse width ≤300µs, Duty Cycle ≤2%. 7-12 TEST CONDITIONS TJ = 25oC, ISD =- 8A, VGS = 0V TJ = 25oC, ISD =- 8A, dISD/dt = 100A/µs MIN TYP MAX UNITS - - -1.5 V - - 125 ns RFD8P06LE, RFD8P06LESM, RFP8P06LE Typical Performance Curves Unless Otherwise Specified POWER DISSIPATION MULTIPLIER 1.2 -10 ID, DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 0.2 25 125 50 75 100 TC , CASE TEMPERATURE (oC) 175 150 -6 -4 -2 0 25 0 0 -8 50 75 150 125 100 175 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2.0 ZθJC, NORMALIZED THERMAL IMPEDANCE 1.0 0.5 0.2 0.1 PDM 0.1 0.05 0.02 0.01 t1 t2 SINGLE PULSE 0.01 10-5 10-4 NOTES:DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC+ TC 10-3 10-2 10-1 101 100 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE -102 TC = 25oC, TJ = MAX RATED 100µs -10 1ms 10ms 100ms DC -1 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) -0.1 -1 VDS(MAX) = -60V -10 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA 7-13 IDM , PEAK CURRENT (A) ID , DRAIN CURRENT (A) -100 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT CAPABILITY AS FOLLOWS: VGS = -10V VGS = -5V -10 -5 -100 175 – T C I = I 25 ------------------------ 150 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10-5 10-4 10-3 10-2 10-1 t, PULSE WIDTH (ms) 100 FIGURE 5. PEAK CURRENT CAPABILITY 101 RFD8P06LE, RFD8P06LESM, RFP8P06LE Typical Performance Curves Unless Otherwise Specified -30 PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX -25 TC = 25oC STARTING TJ = 25oC ID, DRAIN CURRENT (A) IAS , AVALANCHE CURRENT (A) -30 -10 VGS = -10V -20 If R = 0 tAV = (L) (IAS) / (1.3RATED BVDSS - VDD) -1 0.1 VGS = -4.5V -10 VGS = -4V -5 If R ≠ 0 tAV = (L/R) ln [(IAS*R) / (1.3 RATED BVDSS - VDD) + 1] 0.01 VGS = -5V -15 STARTING TJ = 150oC 1 VGS = -3V 0 10 0 -1.5 tAV, TIME IN AVALANCHE (ms) -3.0 -6.0 -4.5 -7.5 VDS, DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 7. SATURATION CHARACTERISTICS 600 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = -15V -25 -55oC 25oC -20 175oC -15 -10 -5 rDS(ON), ON-STATE RESISTANCE (mΩ) ID(ON), ON-STATE DRAIN CURRENT (A) -30 0 0 -1.5 -3.0 -4.5 -6.0 VGS, GATE TO SOURCE VOLTAGE (V) -7.5 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED ON RESISTANCE 1.75 1.50 1.25 1.00 0.75 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 7-14 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 200 -2.0 2.0 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 2.00 VGS = -5V, ID = -8A 0 300 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 2.25 -40 400 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 8. TRANSFER CHARACTERISTICS 0.50 -80 ID = -8A ID = -4A ID = -2A ID = -1A 500 200 ID = -250µA 1.15 1.1 1.05 1.0 0.95 0.9 -80 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE RFD8P06LE, RFD8P06LESM, RFP8P06LE Typical Performance Curves 125 VGS = VDS, ID = -250µA SWITCHING TIME (ns) NORMALIZED GATE THRESHOLD VOLTAGE 1.4 Unless Otherwise Specified 1.2 1.0 0.8 VDD = -30V, ID = -8A, RL= 3.75Ω tr 100 75 td(OFF) 50 tf 25 td(ON) 0 0.6 -80 -40 200 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE -3.75 RL = 7.5Ω IG(REF) = -0.20mA -30 -15 -2.50 0.75 BVDSS 0.75 BVDSS 0.50 BVDSS 0.50 BVDSS 0.25 BVDSS 0.25 BVDSS -1.25 VGS = -5V 0 20 IG(REF) IG(ACT) t, TIME ( µs) 80 CISS 600 400 COSS 200 CRSS 0.00 IG(REF) VGS = 0V, f = 0.1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD 800 C, CAPACITANCE (pF) VDD = BVDSS -45 50 1000 VGS , GATE TO SOURCE VOLTAGE (V) VDD =BVDSS 20 30 40 10 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 13. SWITCHING TIME AS A FUNCTION OF GATE RESISTANCE -5.00 -60 VDS , DRAIN TO SOURCE VOLTAGE (V) 0 0 0 IG(ACT) -10 -20 -30 -40 -50 VDS , DRAIN TO SOURCE VOLTAGE (V) -60 NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 14. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT FIGURE 15. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE Test Circuits and Waveforms VDS tAV L VARY tP TO OBTAIN REQUIRED PEAK IAS 0 - RG VDD + 0V DUT tP IAS FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT 7-15 IAS VDS tP 0.01Ω -VGS VDD BVDSS FIGURE 17. UNCLAMPED ENERGY WAVEFORMS RFD8P06LE, RFD8P06LESM, RFP8P06LE Test Circuits and Waveforms (Continued) tON tOFF td(OFF) td(ON) tf tr 0 RL 10% 10% + VDS 0V 0 10% DUT RGS 90% 90% 50% -VGS VGS FIGURE 18. SWITCHING TIME TEST CIRCUIT VDS 90% FIGURE 19. RESISTIVE SWITCHING WAVEFORMS VDS Qg(TH) 0 RL 50% PULSE WIDTH VGS= -1V VGS= -5V -VGS VGS - Qg(-5) VDD + VGS= -10V VDD DUT Qg(TOT) -IG(REF) 0 Ig(REF) FIGURE 20. GATE CHARGE TEST CIRCUIT 7-16 FIGURE 21. GATE CHARGE WAVEFORMS RFD8P06LE, RFD8P06LESM, RFP8P06LE PSpice Electrical Model .SUBCKT RFD8P06LE 2 1 3 REV 7/29/96 LDRAIN ESG - 10 CA 12 8 1.50e-9 CB 15 14 1.50e-9 CIN 6 8 6.30e-10 DRAIN 2 5 + 8 6 RLDRAIN RSLC1 51 + RSLC2 DBODY 5 7 DBDMOD DBREAK 7 11 DBKMOD DESD1 91 9 DESD1MOD DESD2 91 7 DESD2MOD DPLCAP 10 6 DPLCAPMOD 5 51 EBREAK + 17 18 - ESLC - 50 DPLCAP EBREAK 5 11 17 18 -67.9 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 5 10 8 6 1 EVTHRES 21 6 19 8 1 EVTEMP 6 20 18 22 1 LGATE EVTHRES + 19 8 EVTEMP RGATE GATE 1 9 - 20 21 MWEAK 11 MMED DBREAK MSTRO DESD1 91 DESD2 LDRAIN 2 5 1e-10 LGATE 1 9 2.92e-9 LSOURCE 3 7 2.92e-9 16 6 18 + 22 RLGATE IT 8 17 1 DBODY RDRAIN LSOURCE CIN 8 SOURCE 3 7 RSOURCE RLSOURCE MSTRONG 16 6 8 8 MstrongMOD MMED 16 6 8 8 MmedMOD MWEAK 16 21 8 8 MweakMOD RBREAK 17 18 RBKMOD 1 RDRAIN 50 16 RDSMOD 95e-3 RGATE 9 20 2.89 RIN 6 8 1e9 RSCL1 5 51 RSCLMOD 1e-6 RSCL2 5 50 1e3 RSOURCE 8 7 RSourceMOD 97e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A 12 S2A 13 8 14 13 S1B 17 18 RVTEMP S2B 13 CA RBREAK 15 CB 6 8 EGS - 19 - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESCL 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/26,7))} .MODEL DBDMOD D (IS=2.5e-12 RS=4e-2 IKF=0.01 N=0.97 TIKF=0.012 TRS1=0.8e-4 TRS2=-5e-6 CJO=5.25e-10 VJ=0.75 M=0.41 TT=7.50e-8) .MODEL DBKMOD D (IKF=5 N=0.75 RS=0.245 TRS1=1e-3 TRS2=1.6e-4) .MODEL DESD1MOD D (BV=16.4 TBV1=-1.25e-3 TBV2=5.79e-7 RS=36 NBV=50 IBV=7e-6) .MODEL DESD2MOD D (BV=16.2 TBV1=-8.3e-4 TBV2=8.9e-7 NBV=50 IBV=7e-6) .MODEL DPLCAPMOD D (CJO=4.25e-10 IS=1e-30 N=10 VJ=0.499 M=0.561) .MODEL MSTRONGMOD PMOS (VTO=-1.91 KP=11.55 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL MMEDMOD PMOS (VTO=-1.51 KP=0.95 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL MWEAKMOD PMOS (VTO=-1.18 KP=0.03 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL RBKMOD RES (TC1=1.045e-3 TC2=-3.5e-7) .MODEL RDSMOD RES (TC1=0.92e-2 TC2=1.55e-5) .MODEL RSOURCEMOD RES (TC1=2e-3 TC2=0.5e-6) .MODEL RSCLMOD RES (TC1=2e-3 TC2=0) .MODEL RVTHRESMOD RES (TC1=-2.5e-3 TC2=0) .MODEL RVTEMPMOD RES (TC1=-1.55e-3 TC2=7.5e-6) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=5.25 VOFF=1.75) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=1.75 VOFF=5.25) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.5 VOFF=-0.5) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=0.5) .ENDS NOTE: For further discussion of the PSPICE model consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global Temperature Options; authored by William J. Hepp and C. Frank Wheatley. 7-17 RFD8P06LE, RFD8P06LESM, RFP8P06LE PSpice Thermal Model 7 JUNCTION REV 7/29/96 RFP8P06LE CTHERM1 7 6 1.3e-4 CTHERM2 6 5 4.5e-4 CTHERM3 5 4 1e-3 CTHERM4 4 3 2e-3 CTHERM5 3 2 1.5e-2 CTHERM6 2 1 0.55 RTHERM1 CTHERM1 6 RTHERM1 7 6 3.0e-2 RTHERM2 6 5 5.0e-2 RTHERM3 5 4 0.1 RTHERM4 4 3 1.15 RTHERM5 3 2 1.20 RTHERM6 2 1 0.55 RTHERM2 CTHERM2 5 RTHERM3 RFD8P06LE, RFD8P06LESM CTHERM1 7 6 1.3e-4 CTHERM2 6 5 4.5e-4 CTHERM3 5 4 1e-3 CTHERM4 4 3 2e-3 CTHERM5 3 2 1.5e-2 CTHERM6 2 1 0.12 CTHERM3 4 RTHERM4 RTHERM1 7 6 3.0e-2 RTHERM2 6 5 5.0e-2 RTHERM3 5 4 0.1 RTHERM4 4 3 1.15 RTHERM5 3 2 1.20 RTHERM6 2 1 0.55 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 1 CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 7-18 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029