RFD16N03L, RFD16N03LSM Data Sheet 16A, 30V, 0.025 Ohm, Logic Level, N-Channel Power MOSFETs These are N-Channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. This performance is accomplished through a special gate oxide design which provides full rated conductance at gate bias in the 3V to 5V range, thereby facilitating true on-off power control directly from logic level (5V) integrated circuits. Formerly developmental type TA49030. Ordering InformationS PART NUMBER April 1999 File Number 4013.2 Features • 16A, 30V • rDS(ON) = 0.025Ω • Temperature Compensating PSPICE™ Model • Can be Driven Directly from CMOS, NMOS, and TTL Circuits • Peak Current vs Pulse Width Curve • UIS Rating Curve • 175oC Operating Temperature • Related Literature - TB334 “Guidelines for Soldering Surface Mount Components to PC Boards” Symbol PACKAGE BRAND DRAIN RFD16N03L TO-251AA 16N03L RFD16N03LSM TO-252AA 16N03L NOTE: When ordering, use the entire part number. Add the suffix 9A, to obtain the TO-252AA variant in tape and reel, e.g. RFD16N03LSM9A. GATE SOURCE Packaging JEDEC TO-251AA JEDEC TO-252AA DRAIN (FLANGE) SOURCE DRAIN GATE DRAIN (FLANGE) GATE SOURCE 6-156 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. PSPICE™ is a trademark of MicroSim Corporation. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 RFD16N03L, RFD16N03LSM Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified Drain to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Continuous Drain Current (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC (Figure 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg RFD16N03L, RFD16N03LSM 30 30 ±10 16 Refer to Peak Current Curve Figures 6, 16, 17 90 0.606 -55 to 175 UNITS V V V A 300 260 oC oC W W/oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. LC1. TJ = 25oC to 150oC. Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 13) 30 - - V Gate Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 12) 1 - 2 V - - 1 µA Zero Gate Voltage Drain Current IDSS VDS = 30V, VGS = 0V Gate to Source Leakage Current IGSS VGS = ±10V Drain to Source On Resistance rDS(ON) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time TC = 25oC TC = 150oC Gate Charge at 5V Threshold Gate Charge - 50 µA - ±100 nA ID = 16A, VGS = 5V (Figure 11) - - 0.025 Ω VDD = 15V, ID ≈ 16A, RL = 0.93Ω, VGS = 5V, RGS = 5Ω (Figures 18, 19) - - 120 ns - 15 - ns - 95 - ns td(OFF) - 25 - ns tf - 27 - ns tOFF Total Gate Charge - Qg(TOT) VGS = 0V to 10V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDD = 24V, ID = 16A, RL = 1.5Ω IG(REF) = 0.6mA (Figures 15, 20, 21 VDS = 25V, VGS = 0V, f = 1MHz (Figure 14) - - 80 ns - 50 60 nC - 30 36 nC - 1.5 1.8 nC - 1650 - pF - 575 - pF - 200 - pF Thermal Resistance, Junction to Case RθJC Figure 3 - - 1.65 oC/W Thermal Resistance, Junction to Ambient RθJA TO-251 and TO-252 - - 100 oC/W Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Diode Reverse Recovery Time trr TEST CONDITIONS MIN TYP MAX UNITS ISD = 16A - - 1.5 V ISD = 16A, dISD/dt = 100A/µs - - 75 ns NOTES: 2. Pulse Test: Pulse Width ≤ 300ms, Duty Cycle ≤ 2%. 3. Repetitive Rating: Pulse Width limited by max junction temperature. See Transient Thermal Impedance curve (Figure 3). 6-157 RFD16N03L, RFD16N03LSM Typical Performance Curves Unless Otherwise Specified 20 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 15 10 5 0.2 0 0 0 25 50 75 100 125 TC , CASE TEMPERATURE (oC) 175 150 25 FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE 50 75 100 125 TC, CASE TEMPERATURE (oC) 150 175 FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 0.5 0.2 0.1 PDM 0.1 0.05 t1 0.02 0.01 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 t1 , RECTANGULAR PULSE DURATION (s) 101 100 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 500 TC = 25oC ID, DRAIN CURRENT (A) TJ = MAX RATED 100 100µs 1ms 10 10ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) VDSS MAX = 30V 100ms DC 1 10 1 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA 6-158 50 IDM, PEAK CURRENT CAPABILITY (A) 500 VGS = 10V VGS = 5V FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 175 - TC 150 100 TC = 25oC TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10 10-5 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 FIGURE 5. PEAK CURRENT CAPABILITY 101 RFD16N03L, RFD16N03LSM Typical Performance Curves Unless Otherwise Specified (Continued) 100 VGS = 5V VGS = 10V 100 STARTING TJ = 25oC ID, DRAIN CURRENT (A) IAS, AVALANCHE CURRENT (A) 200 STARTING TJ = 150oC 10 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV=(L/R)ln[(IAS*R)/(1.3*RATED BVDSS-VDD) +1] 75 VGS = 4.5V VGS = 4V 50 VGS = 3.5V 25 PULSE DURATION = 250µs, TC = 25oC VGS = 3V 0 1 0.001 0.01 0.1 1 tAV, TIME IN AVALANCHE (ms) 10 0 100 2.0 3.0 4.0 1.0 VDS, DRAIN TO SOURCE VOLTAGE (V) 5.0 NOTE: Refer to Intersil Application Notes AN9321 and AN9322. 100 175oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V -55oC 75 25oC 50 25 75 ID = 16A ID = 8A 50 ID = 2A 25 TJ = 25oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 0 2.5 0 1.5 3.0 4.5 6.0 VGS, GATE TO SOURCE VOLTAGE (V) 0 7.5 VDD = 15V, IDD = 16A, RL = 0.93Ω 3.5 4.0 5.0 4.5 FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 2.0 tr NORMALIZED DRAIN TO SOURCE ON RESISTANCE 250 3.0 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 8. TRANSFER CHARACTERISTICS 200 SWITCHING TIME (ns) ID = 32A ON RESISTANCE (mΩ) 100 FIGURE 7. SATURATION CHARACTERISTICS rDS(ON), DRAIN TO SOURCE IDS(ON), DRAIN TO SOURCE CURRENT (A) FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING tf 150 td(ON) 100 td(OFF) 50 VGS = 5V, ID = 16A PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX. 1.5 1.0 0.5 0 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 10. SWITCHING TIME vs GATE RESISTANCE 6-159 50 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 200 RFD16N03L, RFD16N03LSM Typical Performance Curves Unless Otherwise Specified (Continued) 2.0 VGS = VDS, ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.5 1.0 0.5 0 -80 -40 1.5 1.0 0.5 0 -80 200 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) ID = 250µA -40 0 40 80 120 160 FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE VDS , DRAIN TO SOURCE VOLTAGE (V) 30 2500 VGS = 0V, f = 1MHz C, CAPACITANCE (pF) 2000 CISS 1500 CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD 1000 COSS 500 CRSS 5 VDD = BVDSS 4 18 3 0.75 BVDSS 0.50 BVDSS 0.25 BVDSS 12 2 RL = 1.875Ω IG(REF) = 0.6mA VGS = 5V 6 20 25 5 10 15 20 VDS, DRAIN TO SOURCE VOLTAGE (V) VDD = BVDSS 24 0 0 0 200 TJ , JUNCTION TEMPERATURE (oC) IG(REF) IG(ACT) t, TIME (s) 1 80 0 IG(REF) IG(ACT) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG VDS IAS VDD VDD - VGS DUT 0V tP IAS 0 0.01Ω tAV FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT 6-160 FIGURE 17. UNCLAMPED ENERGY WAVEFORMS VGS , GATE TO SOURCE VOLTAGE (V) NORMALIZED GATE THRESHOLD VOLTAGE 2.0 RFD16N03L, RFD16N03LSM Test Circuits and Waveforms (Continued) tON tOFF td(ON) VDS td(OFF) tf tr VDS 90% 90% RL VGS + - DUT 10% 10% VDD 90% RGS VGS 50% 10% VGS FIGURE 18. RESISTIVE SWITCHING TEST CIRCUIT 50% PULSE WIDTH FIGURE 19. RESISTIVE SWITCHING WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD DUT IG(REF) VGS = 5V VGS - VGS = 1V 0 Qg(TH) IG(REF) 0 FIGURE 20. GATE CHARGE TEST CIRCUIT 6-161 FIGURE 21. GATE CHARGE WAVEFORMS RFD16N03L, RFD16N03LSM PSPICE Electrical Model .SUBCKT RFD16N03L 2 1 3; rev 12/12/94 CA 12 8 2.55e-9 CB 15 14 2.64e-9 CIN 6 8 1.45e-9 LDRAIN DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DPLCAP 10 5 DPLCAPMOD 5 10 5 51 ESG + 1 9 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD + + - DBODY 21 - MOS1 6 RIN S1A S1B S2A S2B 17 18 MOS2 CIN MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01 RBREAK 17 18 RBKMOD 1 RDRAIN 50 16 RDSMOD 0.14e-3 RGATE 9 20 0.89 RIN 6 8 1e9 RSCL1 5 51 RSCLMOD 1e-6 RSCL2 5 50 1e3 RSOURCE 8 7 RDSMOD 10.31e-3 RVTO 18 19 RVTOMOD 1 11 EBREAK 16 VTO - EVTO 18 20 8 DBREAK RDRAIN 6 8 IT 8 17 1 GATE LGATE RGATE ESCL + 1 1 1 8 1 LDRAIN 2 5 1e-9 LGATE 1 9 3.4e-9 LSOURCE 3 7 3.4e-9 RSCL1 RSCL2 EBREAK 11 7 17 18 33.3 EDS 14 8 5 8 EGS 13 8 6 8 ESG 6 10 6 8 EVTO 20 6 18 2 DRAIN DPLCAP 8 RSOURCE LSOURCE 3 SOURCE 7 S1A 12 S2A 13 8 S1B 14 13 13 15 17 RBREAK S2B 18 RVTO CB CA IT + 6 EGS 8 - + EDS - 14 5 8 19 - VBAT + VBAT 8 19 DC 1 VTO 21 6 0.583 ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/176,6))} .MODEL DBDMOD D (IS = 3.61e-13 RS = 5.06e-3 TRS1 = 3.05e-3 TRS2 = 7.57e-6 CJO = 2.16e-9 TT = 2.18e-8) .MODEL DBKMOD D (RS = 1.66e-1 TRS1 = -2.97e-3 TRS2 = 7.57e-6) .MODEL DPLCAPMOD D (CJO = 0.96e-9 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 2.313 KP = 53.82 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 8.95e-4 TC2 = -1e-7) .MODEL RDSMOD RES (TC1 = 3.92e-3 TC2 = 1.29e-5) .MODEL RSCLMOD RES (TC1 = 2.03e-3 TC2 = 0.45e-5) .MODEL RVTOMOD RES (TC1 = -2.27e-3 TC2 = -5.75e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.82 VOFF= -2.82) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.82 VOFF= -4.82) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.67 VOFF= 2.33) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.33 VOFF= -2.67) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; written by William J. Hepp and C. Frank Wheatley. 6-162 RFD16N03L, RFD16N03LSM All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 6-163 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029