INTERSIL IRF9150

IRF9150
Data Sheet
February 1999
-25A, -100V, 0.150 Ohm, P-Channel Power
MOSFET
This P-Channel enhancement mode silicon gate power field
effect transistor is an advanced power MOSFET designed,
tested, and guaranteed to withstand a specified level of
energy in the breakdown avalanche mode of operation. All of
these power MOSFETs are designed for applications such
as switching regulators, switching convertors, motor drivers,
relay drivers, and drivers for high power bipolar switching
transistors requiring high speed and low gate drive power.
These types can be operated directly from integrated
circuits.
File Number
2280.3
Features
• -25A, -100V
• rDS(ON) = 0.150Ω
• Single Pulse Avalanche Energy Rated
• SOA is Power Dissipation Limited
• Nanosecond Switching Speeds
• Linear Transfer Characteristics
• High Input Impedance
Symbol
Formerly developmental type TA49230.
D
Ordering Information
PART NUMBER
IRF9150
PACKAGE
TO-204AE
G
BRAND
IRF9150
S
NOTE: When ordering, use the entire part number.
Packaging
JEDEC TO-204AE
DRAIN
(FLANGE)
SOURCE (PIN 2)
GATE (PIN 1)
5-20
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
IRF9150
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
Drain to Source Breakdown Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
TC = 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Maximum Power Dissipation (Figure 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single Pulse Avalanche Energy Rating (Note 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Avalanche Current (Repetitive or Nonrepetitive) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IAR
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL
IRF9150
-100
-100
-25
-18
-100
±20
150
1.2
1300
-25
-55 to 150
UNITS
V
V
A
A
A
V
W
W/oC
mJ
A
oC
300
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to TJ = 125oC.
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
BVDSS
ID = -250µA, VGS = 0V, (Figure 10)
-100
-
-
V
Gate Threshold Voltage
VGS(TH)
VGS = VDS, ID = -250µA
-2
-
-4
V
VDS = Rated BVDSS, VGS = 0V
-
-
-25
µA
VDS = 0.8 x Rated BVDSS, VGS = 0V TC = 125oC
-
-
-250
µA
Zero Gate Voltage Drain Current
IDSS
On-State Drain Current (Note 2)
ID(ON)
Gate to Source Leakage Current
IGSS
Drain to Source On Resistance (Note 2)
Forward Transconductance (Note 2)
Turn-On Delay Time
-25
-
-
A
-
-
±100
nA
ID = -10A, VGS = -10V (Figures 8, 9)
-
0.09
0.150
Ω
VDS = -10V, ID = -12.5 (Figure 12)
4
10
-
S
VDD = -50V, ID ≈ -25A, RG = 6.8Ω, RL = 2.0Ω, (Figures 17, 18) MOSFET Switching Times are Essentially Independent of Operating Temperature
-
16
24
ns
-
110
160
ns
td(OFF)
-
65
100
ns
tf
-
46
70
ns
-
82
120
nC
-
14
-
nC
-
42
-
nC
VDS = -25V, VGS = 0V, f = 1MHz
(Figure 11)
-
2400
-
pF
-
850
-
pF
-
400
-
pF
Measured Between the
Contact Screw on the
Flange that is Closer to
Source and Gate Pins and
the Center of Die
-
5.0
-
nH
-
13
-
nH
-
-
0.83
oC/W
-
-
30
oC/W
rDS(ON)
gfs
td(ON)
Rise Time
tr
Turn-Off Delay Time
Fall Time
Total Gate Charge
(Gate to Source + Gate to Drain)
Qg(TOT)
Gate to Source Charge
Qgs
Gate to Drain “Miller” Charge
Qgd
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
Internal Drain Inductance
LD
Internal Source Inductance
LS
VDS > ID(ON) x rDS(ON)MAX, VGS = 10V
VGS = ±20V
VGS = -10V, ID = -25A, VDS = 0.8 x Rated BVDSS
(Figures 14, 19, 20) Gate Charge is Essentially
Indpendent of Operating Temperature
Measured From the
Source Lead, 6mm
(0.25in) From the Flange
and the Source
Bonding Pad
Modified MOSFET
Symbol Showing the
Internal Devices
Inductances
D
LD
G
LS
S
Thermal Resistance Junction to Case
RθJC
Thermal Resistance Junction to Ambient
RθJA
5-21
Free Air Operation
IRF9150
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Continuous Source to Drain Current
Pulse Source to Drain Current
(Note 3)
TEST CONDITIONS
MIN
TYP
MAX
-
-
-25
A
-
-
-100
A
TC = 25oC, ISD = 25A, VGS = 0V (Figure 13)
-
0.9
1.5
V
trr
TJ = 25oC, ISD = 25A, dISD/dt = 100A/µs
-
150
300
ns
QRR
TJ = 25oC, ISD = 25A, dISD/dt = 100A/µs
0.3
0.7
1.5
µC
ISD
Modified MOSFET Symbol
Showing the Integral
Reverse P-N Junction
Diode
ISDM
UNITS
D
G
S
Source to Drain Diode Voltage(Note 2)
Reverse Recovery Time
Reverse Recovery Charge
VSD
NOTES:
2. Pulse test: pulse width ≤ 300µs, duty cycle ≤ 2%.
3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD = 25V, starting TJ = 25oC, L = 3.2mH, RG = 25Ω, peak IAS = 25A See Figures 15, 16.
Unless Otherwise Specified
-30
1.0
-25
ID, DRAIN CURRENT (A)
1.2
0.8
0.6
0.4
-20
-15
-10
-5
0.2
0
0
0
25
50
75
100
TA , CASE TEMPERATURE (oC)
125
150
25
75
50
150
125
100
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
ZθJC, NORMALIZED TRANSIENT
THERMAL IMPEDANCE (oC/W)
POWER DISSIPATION MULTIPLIER
Typical Performance Curves
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
1
0.5
0.2
0.1
0.1
0.01
10-5
PDM
0.05
0.02
0.01
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
t1 , RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
5-22
1
10
IRF9150
Typical Performance Curves
Unless Otherwise Specified (Continued)
-100
VGS = 14V
VGS = 12V
10µs
100µs
10
OPERATION IN THIS AREA
IS LIMITED BY rDS(ON)
1ms
TC = 25oC
TJ = MAX RATED
SINGLE PULSE
1
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
100
-80
VGS = 10V
-60
VGS = 9V
VGS = 8V
-40
VGS = 7V
VGS = 4V
-20
VGS = 5V
DC
0
0
VGS = 10V
ID, DRAIN CURRENT (A)
PULSE DURATION = 80µs
-40
VGS = 8V
-30
VGS = 7V
-20
VGS = 6V
-10
VGS = 5V
VGS = 4V
0
-1
-2
-4
-3
-40
-50
PULSE DURATION = 80µs
VDS ≤ -50V
-10
-1.0
125oC
25oC
-0.1
-5
-2
0
-4
-6
-8
-10
VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 6. SATURATION CHARACTERISTICS
FIGURE 7. TRANSFER CHARACTERISTICS
2.2
350
VGS = 10V, ID = -25A
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
PULSE DURATION = 80µs
300
ON RESISTANCE (Ω)
-30
-100
VDS, DRAIN TO SOURCE VOLTAGE (V)
rDS(ON), DRAIN TO SOURCE
-20
FIGURE 5. OUTPUT CHARACTERISTICS
IDS(ON), DRAIN TO SOURCE CURRENT (A)
-50
-10
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
0
VGS = 6V
10ms
100
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
1
PULSE DURATION = 80µs
VGS = -10V
250
200
150
VGS = - 20V
100
50
0
0
-20
-40
-60
-80
-100
ID, DRAIN CURRENT (A)
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
5-23
1.8
1.4
1.0
0.6
0.2
-40
0
40
80
120
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
IRF9150
Typical Performance Curves
Unless Otherwise Specified (Continued)
1.25
5000
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGS
4000
1.15
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
ID = 250µA
1.05
0.95
3000
CISS
2000
COSS
1000
0.85
CRSS
0.75
-40
0
40
80
120
0
160
-10
0
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
25oC
9
150oC
6
3
0
0
-10
-20
-30
-40
-50
10
150oC
25oC
1
0.1
0.3
0.7
0.5
I D , DRAIN CURRENT (A)
0
1.1
1.3
1.5
FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
ID = -25A
-5
-10
VDS = -80V
VDS = -50V
VDS = -20V
-15
-20
-25
0
0.9
VSD, SOURCE TO DRAIN VOLTAGE (V)
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT
20
40
60
80
100 120 140 160
Qg(TOT), TOTAL GATE CHARGE (nC)
180
200
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
5-24
-50
-40
100
ISD, DRAIN CURRENT (A)
12
-30
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
PULSE DURATION = 80µs
VGS, GATE TO SOURCE (V)
gfs, TRANSCONDUCTANCE (S)
15
-20
VDS, DRAIN TO SOURCE VOLTAGE (V)
1.7
IRF9150
Test Circuits and Waveforms
VDS
tAV
L
0
VARY tP TO OBTAIN
-
RG
REQUIRED PEAK IAS
+
VDD
DUT
0V
VDD
tP
VGS
IAS
IAS
VDS
tP
0.01Ω
BVDSS
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
tON
tOFF
td(OFF)
td(ON)
tr
0
RL
-
DUT
VGS
+
10%
10%
VDS
VDD
RG
tf
90%
90%
VGS
0
10%
50%
50%
PULSE WIDTH
90%
FIGURE 17. SWITCHING TIME TEST CIRCUIT
-VDS
(ISOLATED
SUPPLY)
CURRENT
REGULATOR
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
0
VDS
DUT
12V
BATTERY
0.2µF
50kΩ
0.3µF
Qgs
Qg(TOT)
DUT
G
VGS
Qgd
D
VDD
0
S
Ig(REF)
IG CURRENT
SAMPLING
RESISTOR
0
+VDS
ID CURRENT
SAMPLING
RESISTOR
FIGURE 19. GATE CHARGE TEST CIRCUIT
5-25
Ig(REF)
FIGURE 20. GATE CHARGE WAVEFORMS
IRF9150
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
5-26
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029