IRF9150 Data Sheet February 1999 -25A, -100V, 0.150 Ohm, P-Channel Power MOSFET This P-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits. File Number 2280.3 Features • -25A, -100V • rDS(ON) = 0.150Ω • Single Pulse Avalanche Energy Rated • SOA is Power Dissipation Limited • Nanosecond Switching Speeds • Linear Transfer Characteristics • High Input Impedance Symbol Formerly developmental type TA49230. D Ordering Information PART NUMBER IRF9150 PACKAGE TO-204AE G BRAND IRF9150 S NOTE: When ordering, use the entire part number. Packaging JEDEC TO-204AE DRAIN (FLANGE) SOURCE (PIN 2) GATE (PIN 1) 5-20 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 IRF9150 Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified Drain to Source Breakdown Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID TC = 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Maximum Power Dissipation (Figure 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Pulse Avalanche Energy Rating (Note 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Avalanche Current (Repetitive or Nonrepetitive) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IAR Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL IRF9150 -100 -100 -25 -18 -100 ±20 150 1.2 1300 -25 -55 to 150 UNITS V V A A A V W W/oC mJ A oC 300 oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to TJ = 125oC. Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage BVDSS ID = -250µA, VGS = 0V, (Figure 10) -100 - - V Gate Threshold Voltage VGS(TH) VGS = VDS, ID = -250µA -2 - -4 V VDS = Rated BVDSS, VGS = 0V - - -25 µA VDS = 0.8 x Rated BVDSS, VGS = 0V TC = 125oC - - -250 µA Zero Gate Voltage Drain Current IDSS On-State Drain Current (Note 2) ID(ON) Gate to Source Leakage Current IGSS Drain to Source On Resistance (Note 2) Forward Transconductance (Note 2) Turn-On Delay Time -25 - - A - - ±100 nA ID = -10A, VGS = -10V (Figures 8, 9) - 0.09 0.150 Ω VDS = -10V, ID = -12.5 (Figure 12) 4 10 - S VDD = -50V, ID ≈ -25A, RG = 6.8Ω, RL = 2.0Ω, (Figures 17, 18) MOSFET Switching Times are Essentially Independent of Operating Temperature - 16 24 ns - 110 160 ns td(OFF) - 65 100 ns tf - 46 70 ns - 82 120 nC - 14 - nC - 42 - nC VDS = -25V, VGS = 0V, f = 1MHz (Figure 11) - 2400 - pF - 850 - pF - 400 - pF Measured Between the Contact Screw on the Flange that is Closer to Source and Gate Pins and the Center of Die - 5.0 - nH - 13 - nH - - 0.83 oC/W - - 30 oC/W rDS(ON) gfs td(ON) Rise Time tr Turn-Off Delay Time Fall Time Total Gate Charge (Gate to Source + Gate to Drain) Qg(TOT) Gate to Source Charge Qgs Gate to Drain “Miller” Charge Qgd Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS Internal Drain Inductance LD Internal Source Inductance LS VDS > ID(ON) x rDS(ON)MAX, VGS = 10V VGS = ±20V VGS = -10V, ID = -25A, VDS = 0.8 x Rated BVDSS (Figures 14, 19, 20) Gate Charge is Essentially Indpendent of Operating Temperature Measured From the Source Lead, 6mm (0.25in) From the Flange and the Source Bonding Pad Modified MOSFET Symbol Showing the Internal Devices Inductances D LD G LS S Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA 5-21 Free Air Operation IRF9150 Source to Drain Diode Specifications PARAMETER SYMBOL Continuous Source to Drain Current Pulse Source to Drain Current (Note 3) TEST CONDITIONS MIN TYP MAX - - -25 A - - -100 A TC = 25oC, ISD = 25A, VGS = 0V (Figure 13) - 0.9 1.5 V trr TJ = 25oC, ISD = 25A, dISD/dt = 100A/µs - 150 300 ns QRR TJ = 25oC, ISD = 25A, dISD/dt = 100A/µs 0.3 0.7 1.5 µC ISD Modified MOSFET Symbol Showing the Integral Reverse P-N Junction Diode ISDM UNITS D G S Source to Drain Diode Voltage(Note 2) Reverse Recovery Time Reverse Recovery Charge VSD NOTES: 2. Pulse test: pulse width ≤ 300µs, duty cycle ≤ 2%. 3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3). 4. VDD = 25V, starting TJ = 25oC, L = 3.2mH, RG = 25Ω, peak IAS = 25A See Figures 15, 16. Unless Otherwise Specified -30 1.0 -25 ID, DRAIN CURRENT (A) 1.2 0.8 0.6 0.4 -20 -15 -10 -5 0.2 0 0 0 25 50 75 100 TA , CASE TEMPERATURE (oC) 125 150 25 75 50 150 125 100 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE ZθJC, NORMALIZED TRANSIENT THERMAL IMPEDANCE (oC/W) POWER DISSIPATION MULTIPLIER Typical Performance Curves FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 1 0.5 0.2 0.1 0.1 0.01 10-5 PDM 0.05 0.02 0.01 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 10-4 10-3 10-2 10-1 t1 , RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 5-22 1 10 IRF9150 Typical Performance Curves Unless Otherwise Specified (Continued) -100 VGS = 14V VGS = 12V 10µs 100µs 10 OPERATION IN THIS AREA IS LIMITED BY rDS(ON) 1ms TC = 25oC TJ = MAX RATED SINGLE PULSE 1 ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 100 -80 VGS = 10V -60 VGS = 9V VGS = 8V -40 VGS = 7V VGS = 4V -20 VGS = 5V DC 0 0 VGS = 10V ID, DRAIN CURRENT (A) PULSE DURATION = 80µs -40 VGS = 8V -30 VGS = 7V -20 VGS = 6V -10 VGS = 5V VGS = 4V 0 -1 -2 -4 -3 -40 -50 PULSE DURATION = 80µs VDS ≤ -50V -10 -1.0 125oC 25oC -0.1 -5 -2 0 -4 -6 -8 -10 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 6. SATURATION CHARACTERISTICS FIGURE 7. TRANSFER CHARACTERISTICS 2.2 350 VGS = 10V, ID = -25A NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80µs 300 ON RESISTANCE (Ω) -30 -100 VDS, DRAIN TO SOURCE VOLTAGE (V) rDS(ON), DRAIN TO SOURCE -20 FIGURE 5. OUTPUT CHARACTERISTICS IDS(ON), DRAIN TO SOURCE CURRENT (A) -50 -10 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA 0 VGS = 6V 10ms 100 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 1 PULSE DURATION = 80µs VGS = -10V 250 200 150 VGS = - 20V 100 50 0 0 -20 -40 -60 -80 -100 ID, DRAIN CURRENT (A) FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 5-23 1.8 1.4 1.0 0.6 0.2 -40 0 40 80 120 TJ , JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE IRF9150 Typical Performance Curves Unless Otherwise Specified (Continued) 1.25 5000 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGS 4000 1.15 C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE ID = 250µA 1.05 0.95 3000 CISS 2000 COSS 1000 0.85 CRSS 0.75 -40 0 40 80 120 0 160 -10 0 TJ , JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 25oC 9 150oC 6 3 0 0 -10 -20 -30 -40 -50 10 150oC 25oC 1 0.1 0.3 0.7 0.5 I D , DRAIN CURRENT (A) 0 1.1 1.3 1.5 FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE ID = -25A -5 -10 VDS = -80V VDS = -50V VDS = -20V -15 -20 -25 0 0.9 VSD, SOURCE TO DRAIN VOLTAGE (V) FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT 20 40 60 80 100 120 140 160 Qg(TOT), TOTAL GATE CHARGE (nC) 180 200 FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE 5-24 -50 -40 100 ISD, DRAIN CURRENT (A) 12 -30 FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE PULSE DURATION = 80µs VGS, GATE TO SOURCE (V) gfs, TRANSCONDUCTANCE (S) 15 -20 VDS, DRAIN TO SOURCE VOLTAGE (V) 1.7 IRF9150 Test Circuits and Waveforms VDS tAV L 0 VARY tP TO OBTAIN - RG REQUIRED PEAK IAS + VDD DUT 0V VDD tP VGS IAS IAS VDS tP 0.01Ω BVDSS FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS tON tOFF td(OFF) td(ON) tr 0 RL - DUT VGS + 10% 10% VDS VDD RG tf 90% 90% VGS 0 10% 50% 50% PULSE WIDTH 90% FIGURE 17. SWITCHING TIME TEST CIRCUIT -VDS (ISOLATED SUPPLY) CURRENT REGULATOR FIGURE 18. RESISTIVE SWITCHING WAVEFORMS 0 VDS DUT 12V BATTERY 0.2µF 50kΩ 0.3µF Qgs Qg(TOT) DUT G VGS Qgd D VDD 0 S Ig(REF) IG CURRENT SAMPLING RESISTOR 0 +VDS ID CURRENT SAMPLING RESISTOR FIGURE 19. GATE CHARGE TEST CIRCUIT 5-25 Ig(REF) FIGURE 20. GATE CHARGE WAVEFORMS IRF9150 All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 5-26 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029