IRF350 Data Sheet March 1999 15A, 400V, 0.300 Ohm, N-Channel Power MOSFET Features This is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. They can be operated directly from integrated circuits. • rDS(ON) = 0.300Ω File Number 1826.3 • 15A, 400V • Single Pulse Avalanche Energy Rated • SOA is Power Dissipation Limited • Nanosecond Switching Speeds • Linear Transfer Characteristics Formerly developmental type TA9399. • High Input Impedance Ordering Information PART NUMBER IRF350 PACKAGE TO-204AA • Related Literature - TB334 “Guidelines for Soldering Surface Mount Components to PC Boards” BRAND IRF350 NOTE: When ordering, include the entire part number. Symbol D G S Packaging JEDEC TO-204AA TOP VIEW DRAIN (FLANGE) SOURCE (PIN 2) GATE (PIN 1) 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 IRF350 Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID TC = 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Paackage Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg IRF350 400 400 15 9.0 60 ±20 150 1.2 700 -55 to 150 UNITS V V A A A V W W/oC mJ oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 125oC. TC = 25oC, Unless Otherwise Specified Electrical Specifications MIN TYP MAX UNITS Drain to Source Breakdown Voltage PARAMETER SYMBOL BVDSS VGS = 0V, ID = 250µA, (Figure 10) 400 - - V Gate to Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA 2.0 - 4.0 V - - 25 µA - - 250 µA 15 - - A Zero-Gate Voltage Drain Current IDSS TEST CONDITIONS VDS = Rated BVDSS, VGS = 0V VDS = 0.8 x Rated BVDSS, VGS = 0V, TJ = 125oC On-State Drain Current (Note 2) ID(ON) Gate to Source Leakage Current VGS = ±20V - - ±100 nA VGS = 10V, ID = 8.0A, (Figures 8, 9) - 0.25 0.300 Ω gfs VDS > ID(ON) x rDS(ON)MAX, ID = 8A, (Figure 12) 8 10 - S tD(ON) VDD = 180V, ID ≈ 8.0A, RG = 4.7Ω, RL = 22.5Ω, VGS = 10V, (Figures 17, 18) MOSFET switching times are essentially independent of operating temperature - - 35 ns - - 65 ns - - 150 ns IGSS Drain to Source On Resistance (Note 2) Forward Transconductance (Note 2) Turn-On Delay Time Rise Time rDS(ON) tr Turn-Off Delay Time tD(OFF) Fall Time VDS > ID(ON) x rDS(ON)MAX, VGS = 10V tf Total Gate Charge (Gate to Source + Gate to Drain) Qg Gate to Source Charge Qgs VGS = 10V, ID = 18A, VDS = 0.8 x Rated BVDSS, IG(REF) = 1.5mA (Figures 14, 19, 20) Gate charge is essentially independent of operating temperature - - 75 ns - 79 120 nC - 38 - nC - 41 - nC - 2000 - pF Gate to Drain “Miller” Charge Qgd Input Capacitance CISS Output Capacitance COSS - 400 - pF Reverse Transfer Capacitance CRSS - 100 - pF - 5.0 - nH - 12.5 - nH - 0.83 - oC/W - - 30 oC/W VGS = 0V, VDS = 25V, f = 1.0MHz, (Figure 11) Internal Drain Inductance LD Measured Between the Contact Screw on Header that is Closer to Source and Gate Pins and Center of Die Internal Source Inductance LS Measured From The Source Lead, 6mm (0.25in) From Header to Source Bonding Pad Modified MOSFET Symbol Showing the Internal Devices Inductances D LD G LS S Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA 2 Free Air Operation IRF350 Source to Drain Diode Specifications PARAMETER SYMBOL Continuous Source to Drain Current ISD Pulse Source to Drain Current (Note 3) TEST CONDITIONS MIN TYP MAX UNITS - - 15 A - - 60 A TJ = 25oC, ISD = 15A, VGS = 0V, (Figure 13) - - 1.6 V TJ = 150oC, ISD = 15A, dISD/dt = 100A/µs TJ = 150oC, ISD = 15A, dISD/dt = 100A/µs - 1000 - ns - 6.6 - µC Modified MOSFET Symbol Showing the Integral Reverse P-N Junction Diode ISDM D G S Source to Drain Diode Voltage (Note 2) VSD Reverse Recovery Time trr Reverse Recovered Charge QRR NOTES: 2. Pulse Test: Pulse width ≤ 300µs, duty cycle ≤ 2%. 3. Repetitive Rating: Pulse width is limited by Maximum junction temperature. See Transient Thermal Impedance curve (Figure 3). 4. VDD = 40V, starting TJ = 25oC, L = 5.66µH, RG = 50Ω, peak IAS = 15A. (Figures 15, 16). Typical Performance Curves Unless Otherwise Specified 20 ID, DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 0.2 0 16 12 8 4 0 0 50 100 150 25 50 TC, CASE TEMPERATURE (oC) 75 100 150 125 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 1.0 ZθJC, NORMALIZED THERMAL IMPEDANCE POWER DISSIPATION MULTIPLIER 1.2 0.5 0.2 0.1 0.1 PDM 0.05 0.02 t1 t2t2 0.01 NOTES: DUTY FACTOR: D = t1/t2 TJ = PD x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 0.1 10-2 10-3 t1, RECTANGULAR PULSE DURATION (S) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 3 1 10 IRF350 Typical Performance Curves Unless Otherwise Specified (Continued) 20 100 10µs 100µs 10 1ms 10ms 100ms OPERATION IN THIS REGION IS LIMITED BY rDS(ON) 1 TC = 25oC TJ = MAX RATED SINGLE PULSE DC 16 12 VGS = 4.5V 4 VGS = 4.0V VGS = 3.5V 20 50 100 200 5 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 2 VGS = 5.0V 8 0.1 1.0 0 500 0 FIGURE 4. FORWARD BIAS SAFE OPERATING AREA IDS(ON), DRAIN TO SOURCE CURRENT (A) ID, DRAIN CURRENT (A) PULSE DURATION = 80µs VGS = 10V VGS = 5.0V VGS = 4.5V 6 4 VGS = 4.0V 2 VGS = 3.5V 0 0 1 2 3 4 VDS, DRAIN TO SOURCE VOLTAGE (V) 5 VDS > ID(ON) x rDS(ON)MAX PULSE DURATION = 80µs 10 8 NORMALIZED DRAIN TO SOURCE ON RESISTANCE rDS(ON), DRAIN TO SOURCE ON RESISTANCE (Ω) VGS = 10V VGS = 20V 0.5 0.4 0.3 rDS(ON) MEASURED WITH CURRENT PULSE OF 2.0µs DURATION. INITIAL TJ = 25oC. (HEATING EFFECT OF 2.0µs PULSE IS MINIMAL) TJ = -55oC 2 0 0 10 40 20 50 30 ID, DRAIN CURRENT (A) 60 FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 4 4 5 6 2 3 VGS, GATE TO SOURCE VOLTAGE (V) 1 7 8 70 ID = 8A VGS = 10V 1.8 1.4 1.0 0.6 0.2 0 0 TJ = 25oC 4 2.2 0.2 TJ = 125oC 6 FIGURE 7. TRANSFER CHARACTERISTICS 0.8 0.6 300 100 150 200 250 VDS, DRAIN TO SOURCE VOLTAGE (V) 12 FIGURE 6. SATURATION CHARACTERISTICS 0.7 50 FIGURE 5. OUTPUT CHARACTERISTICS 10 8 PULSE DURATION = 80µs VGS = 5.5V ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) VGS = 6.0V -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 160 IRF350 Typical Performance Curves Unless Otherwise Specified (Continued) 4000 1.15 1.05 0.95 2400 COSS CRSS 800 0.75 -40 0 40 80 120 0 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 0 10 20 30 40 VDS, DRAIN TO SOURCE VOLTAGE (V) 50 FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE 20 16 ISD, SOURCE TO DRAIN CURRENT (A) 2 VDS > ID(ON) x rDS(ON)MAX PULSE DURATION = 80µs TJ = -55oC TJ = 25oC 12 TJ = 125oC 8 4 0 4 8 12 ID, DRAIN CURRENT (A) 16 TJ = 25oC 102 TJ = 150oC 10 1 20 FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT 0 1 2 3 VSD, SOURCE TO DRAIN VOLTAGE (V) FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE ID = 18A 15 VDS = 80V VDS = 200V 10 VDS = 320V 5 0 0 28 56 84 112 140 Qg(TOT), TOTAL GATE CHARGE (nC) FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE 5 TJ = 150oC TJ = 25oC 20 VGS, GATE TO SOURCE VOLTAGE (V) gfs, TRANSCONDUCTANCE (S) CISS 1600 0.85 0 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD 3200 C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.25 4 IRF350 Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN IAS + RG REQUIRED PEAK IAS VDS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + RG - VDD 10% 10% 0 DUT 90% VGS VGS 0 FIGURE 17. SWITCHING TIME TEST CIRCUIT 0.2µF 50% PULSE WIDTH 10% FIGURE 18. RESISTIVE SWITCHING WAVEFORMS VDS (ISOLATED SUPPLY) CURRENT REGULATOR 12V BATTERY 50% VDD Qg(TOT) SAME TYPE AS DUT 50kΩ Qgd 0.3µF VGS Qgs D VDS DUT G 0 IG(REF) S 0 IG CURRENT SAMPLING RESISTOR VDS ID CURRENT SAMPLING RESISTOR FIGURE 19. GATE CHARGE TEST CIRCUIT 6 IG(REF) 0 FIGURE 20. GATE CHARGE WAVEFORMS IRF350 All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 7 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029