Si4670DY Datasheet

Si4670DY
Vishay Siliconix
Dual N-Channel 25-V (D-S) MOSFET with Schottky Diode
FEATURES
PRODUCT SUMMARY
VDS (V)
Channel-1
25
Channel-2
25
RDS(on) (Ω)
0.023 at VGS = 10 V
0.028 at VGS = 4.5 V
0.023 at VGS = 10 V
0.028 at VGS = 4.5 V
ID (A)a, e Qg (Typ.)
8.0
8.0
8.0
8.0
5.5
5.5
• Halogen-free According to IEC 61249-2-21
Definition
• TrenchFET® Power MOSFET
• PWM Optimized
• Compliant to RoHS Directive 2002/95/EC
APPLICATIONS
SCHOTTKY PRODUCT SUMMARY
VDS (V)
VSD (V)
Diode Forward Voltage
IF (A)a
25
0.43 V at 1.0 A
2.3
• Synchronous Buck Converter
• Game Machine
• Notebook
SO-8
S 1 /D 2
1
8
G1
2
7
D1
S2
3
6
S 1 /D 2
G2
4
5
S 1 /D 2
D2
D1
D1
Schottky Diode
G1
G2
Top View
Ordering Information: Si4670DY-T1-E3 (Lead (Pb)-free)
Si4670DY-T1-GE3 (Lead (Pb)-free and Halogen-free)
S2
N-Channel MOSFET
S1
N-Channel MOSFET
ABSOLUTE MAXIMUM RATINGS TA = 25 °C, unless otherwise noted
Parameter
Symbol
VDS
Channel-1
Channel-2
Drain-Source Voltage
25
25
Gate-Source Voltage
VGS
± 16
± 16
8.0e
7
8.0e
7
7b, c
7b, c
5.6b, c
30
5.6b, c
30
TC = 25 °C
Continuous Drain Current (TJ = 150 °C)
TC = 70 °C
TA = 25 °C
ID
TA = 70 °C
IDM
Pulsed Drain Current (10 µs Pulse Width)
Source-Drain Current Diode Current
TC = 25 °C
TA = 25 °C
IS
TC = 25 °C
Maximum Power Dissipation
TC = 70 °C
TA = 25 °C
PD
TA = 70 °C
Operating Junction and Storage Temperature Range
V
2.3
2.3
1.5b, c
2.8
1.5b, c
2.8
1.8
1.8
1.8b, c
1.8b, c
1.1b, c
1.1b, c
TJ, Tstg
Unit
A
W
- 55 to 150
°C
THERMAL RESISTANCE RATINGS
Channel-1
Parameter
Maximum Junction-to-Ambientb, d
t ≤ 10 s
Symbol
RthJA
Maximum Junction-to-Foot (Drain)
Steady State
RthJF
Channel-2
Typ.
Max.
Typ.
Max.
57
70
57
70
36
44
36
44
Unit
°C/W
Notes:
a. Based on TC = 25 °C.
b. Surface Mounted on 1" x 1" FR4 board.
c. t = 10 s.
d. Maximum under Steady State conditions is 110 °C/W (Channel-1 and Channel-2).
e. Package limited.
Document Number: 69595
S09-2109-Rev. C, 12-Oct-09
www.vishay.com
1
Si4670DY
Vishay Siliconix
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
Parameter
Symbol
Test Conditions
Min.
Typ.a
Max.
Unit
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
VGS(th) Temperature Coefficient
Gate Threshold Voltage
Gate-Body Leakage
Zero Gate Voltage Drain Current
On-State Drain Currentb
Drain-Source On-State Resistanceb
Forward Transconductanceb
VGS = 0 V, ID = 250 µA
Ch-1
25
VGS = 0 V, ID = 250 µA
Ch-2
25
ΔVDS/TJ
ID = 250 µA
Ch-1
25
ΔVGS(th)/TJ
ID = 250 µA
Ch-1
- 4.7
VDS = VGS, ID = 250 µA
Ch-1
1
2.2
VDS = VGS, ID = 250 µA
Ch-2
1
2.2
VDS = 0 V, VGS = ± 16 V
Ch-1
100
VDS = 0 V, VGS = ± 16 V
Ch-2
100
VDS = 25 V, VGS = 0 V
Ch-1
0.001
VDS
VGS(th)
IGSS
IDSS
ID(on)
RDS(on)
gfs
VDS = 25 V, VGS = 0 V
Ch-2
VDS = 25 V, VGS = 0 V, TJ = 100 °C
Ch-1
VDS = 25 V, VGS = 0 V, TJ = 100 °C
Ch-2
V
0.07
mV/°C
0.5
0.025
5
V
nA
mA
20
VDS ≥ 5 V, VGS = 10 V
Ch-1
20
VDS ≥ 5 V, VGS = 10 V
Ch-2
20
VGS = 10 V, ID = 7 A
Ch-1
0.019
0.023
VGS = 10 V, ID = 7 A
Ch-2
0.019
0.023
VGS = 4.5 V, ID = 6.3 A
Ch-1
0.023
0.028
VGS = 4.5 V, ID = 6.3 A
Ch-2
0.023
0.028
VDS = 10 V, ID = 7 A
Ch-1
23
VDS = 10 V, ID = 7 A
Ch-2
23
Ch-1
680
Ch-2
680
Ch-1
120
Ch-2
180
Ch-1
55
Ch-2
70
VDS = 13 V, VGS = 10 V, ID = 7 A
Ch-1
12
VDS = 13 V, VGS = 10 V, ID = 7 A
Ch-2
12
18
Ch-1
5.5
8.5
Channel-1
VDS = 13 V, VGS = 4.5 V, ID = 7 A
Ch-2
5.5
8.5
Ch-1
2
Channel-2
VDS = 13 V, VGS = 4.5 V, ID = 7 A
Ch-2
2
Ch-1
1.5
Ch-2
1.5
Ch-1
2.5
Ch-2
3.2
A
Ω
S
Dynamica
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Total Gate Charge
Gate-Source Charge
Gate-Drain Charge
Gate Resistance
Ciss
Channel-1
VDS = 13 V, VGS = 0 V, f = 1 MHz
Coss
Crss
Qg
Channel-2
VDS = 13 V, VGS = 0 V, f = 1 MHz
Qgs
Qgd
Rg
f = 1 MHz
pF
18
nC
Ω
Notes:
a. Guaranteed by design, not subject to production testing.
b. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %.
www.vishay.com
2
Document Number: 69595
S09-2109-Rev. C, 12-Oct-09
Si4670DY
Vishay Siliconix
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
Parameter
Symbol
Typ.a
Max.
Ch-1
15
25
Ch-2
15
25
Ch-1
50
75
Ch-2
50
75
Ch-1
20
30
Ch-2
20
30
Ch-1
10
15
Ch-2
10
15
Ch-1
10
15
Ch-2
10
15
Ch-1
12
20
Ch-2
12
20
Ch-1
15
25
Ch-2
15
25
Ch-1
10
15
Ch-2
10
15
Test Conditions
Min.
Unit
Dynamica
td(on)
Turn-On Delay Time
tr
Rise Time
td(off)
Turn-Off Delay Time
tf
Fall Time
td(on)
Turn-On Delay Time
tr
Rise Time
Fall Time
Channel-2
VDD = 13 V, RL = 2.3 Ω
ID ≅ 5.6 A, VGEN = 4.5 V, Rg = 1 Ω
Channel-1
VDD = 13 V, RL = 2.3 Ω
ID ≅ 5.6 A, VGEN = 10 V, Rg = 1 Ω
tf
Channel-2
VDD = 13 V, RL = 2.3 Ω
ID ≅ 5.6 A, VGEN = 10 V, Rg = 1 Ω
IS
TC = 25 °C
td(off)
Turn-Off Delay Time
Channel-1
VDD = 13 V, RL = 2.3 Ω
ID ≅ 5.6 A, VGEN = 4.5 V, Rg = 1 Ω
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
Pulse Diode Forward Current
a
Body Diode Voltage
ISM
VSD
Ch-1
2.3
Ch-2
2.3
Ch-1
30
Ch-2
30
IS = 5.6 A
Ch-1
0.8
1.2
IS = 1 A
Ch-2
0.37
0.43
Ch-1
15
30
Ch-2
15
30
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Channel-1
IF = 5.6 A, dI/dt = 100 A/µs, TJ = 25 °C
Ch-1
8
16
Ch-2
8
16
Reverse Recovery Fall Time
ta
Channel-2
IF = 5.6 A, dI/dt = 100 A/µs, TJ = 25 °C
Ch-1
8.5
Ch-2
8.5
Ch-1
6.5
Ch-2
6.5
Reverse Recovery Rise Time
tb
A
V
ns
nC
ns
Notes:
a. Guaranteed by design, not subject to production testing.
b. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
Document Number: 69595
S09-2109-Rev. C, 12-Oct-09
www.vishay.com
3
Si4670DY
Vishay Siliconix
CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
30
10
VGS = 10 V thru 4 V
8
I D - Drain Current (A)
ID - Drain Current (A)
24
18
VGS = 3 V
12
6
TC = - 55 °C
6
4
TC = 25 °C
2
TC = 125 °C
0
0.0
0.4
0.8
1.2
1.6
0
0.0
2.0
0.5
VDS - Drain-to-Source Voltage (V)
1.0
2.0
2.5
3.0
VGS - Gate-to-Source Voltage (V)
Output Characteristics
Transfer Characteristics
0.035
900
750
Ciss
0.030
C - Capacitance (pF)
RDS(on) - On-Resistance (Ω)
1.5
VGS = 10 V
0.025
VGS = 4.5 V
0.020
600
450
300
Coss
150
0.015
Crss
0
0
6
12
18
24
30
0
5
ID - Drain Current (A)
10
20
25
VDS - Drain-to-Source Voltage (V)
Capacitance
On-Resistance vs. Drain Current
10
1.6
ID = 7 A
ID = 7 A
8
VDS = 13 V
6
VDS = 24 V
4
2
(Normalized)
1.4
R DS(on) - On-Resistance
VGS - Gate-to-Source Voltage (V)
15
VGS = 10 V, 4.5 V
1.2
1.0
0.8
0
0
3
6
9
Qg - Total Gate Charge (nC)
Gate Charge
www.vishay.com
4
12
0.6
- 50
- 25
0
25
50
75
100
125
150
TJ - Junction Temperature (°C)
On-Resistance vs. Junction Temperature
Document Number: 69595
S09-2109-Rev. C, 12-Oct-09
Si4670DY
Vishay Siliconix
CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
0.08
100
R DS(on) - On-Resistance (Ω)
IS - Source Current (A)
ID = 7 A
TJ = 150 °C
10
TJ = 25 °C
0.06
0.04
TA = 125 °C
0.02
TA = 25 °C
0.00
1
0.0
0.2
0.4
0.6
0.8
1.0
0
1.2
2
VSD - Source-to-Drain Voltage (V)
4
6
8
10
VGS - Gate-to-Source Voltage (V)
Source-Drain Diode Forward Voltage
On-Resistance vs. Gate-to-Source Voltage
30
2.0
1.8
25
ID = 250 µA
Power (W)
VGS(th) (V)
20
1.6
1.4
15
10
1.2
5
1.0
- 50
- 25
0
25
50
75
100
125
0
0.001
150
0.01
0.1
1
10
TJ - Temperature (°C)
Time (s)
Threshold Voltage
Single Pulse Power
100
1000
100
IDM Limited
Limited by RDS(on)*
I D - Drain Current (A)
10
100 µs
1
ID(on) Limited
1 ms
10 ms
100 ms
1s
10 s
DC
0.1
TA = 25 °C
Single Pulse
0.01
0.1
BVDSS Limited
1
* VGS
10
100
VDS - Drain-to-Source Voltage (V)
minimum VGS at which RDS(on) is specified
Safe Operating Area, Junction-to-Ambient
Document Number: 69595
S09-2109-Rev. C, 12-Oct-09
www.vishay.com
5
Si4670DY
Vishay Siliconix
CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
3.0
10
2.5
8
Power Dissipation (W)
I D - Drain Current (A)
Package Limited
6
4
2
2.0
1.5
1.0
0.5
0.0
0
0
25
50
75
100
TC - Case Temperature (°C)
Current Derating*
125
150
25
50
75
100
125
150
TC - Case Temperature (°C)
Power Derating
* The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package
limit.
www.vishay.com
6
Document Number: 69595
S09-2109-Rev. C, 12-Oct-09
Si4670DY
Vishay Siliconix
CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
Normalized Effective Transient
Thermal Impedance
1
Duty Cycle = 0.5
0.2
Notes:
0.1
0.1
PDM
t1
0.05
t2
1. Duty Cycle, D =
0.02
t1
t2
2. Per Unit Base = RthJA = 90 °C/W
3. TJM - TA = PDMZthJA(t)
Single Pulse
4. Surface Mounted
0.01
10-4
10-3
10-2
10-1
1
Square Wave Pulse Duration (s)
100
10
1000
Normalized Thermal Transient Impedance, Junction-to-Ambient
1
Normalized Effective Transient
Thermal Impedance
Duty Cycle = 0.5
0.2
0.1
0.1
0.05
0.02
Single Pulse
0.01
10-4
10-3
10-2
10-1
Square Wave Pulse Duration (s)
1
10
Normalized Thermal Transient Impedance, Junction-to-Foot
Document Number: 69595
S09-2109-Rev. C, 12-Oct-09
www.vishay.com
7
Si4670DY
Vishay Siliconix
CHANNEL-2 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
30
10
VGS = 10 V thru 4 V
8
I D - Drain Current (A)
ID - Drain Current (A)
24
18
VGS = 3 V
12
6
TC = - 55 °C
6
4
TC = 25 °C
2
TC = 125 °C
0
0.0
0.4
0.8
1.2
1.6
0
0.0
2.0
0.5
1.0
VDS - Drain-to-Source Voltage (V)
2.5
3.0
Transfer Characteristics
1000
0.035
800
0.030
VGS = 10 V
0.025
VGS = 4.5 V
0.020
Ciss
C - Capacitance (pF)
RDS(on) - On-Resistance (Ω)
2.0
VGS - Gate-to-Source Voltage (V)
Output Characteristics
600
400
Coss
Crss
200
0.015
0
0
6
12
18
24
30
0
5
ID - Drain Current (A)
10
15
20
25
VDS - Drain-to-Source Voltage (V)
Capacitance
On-Resistance vs. Drain Current
10
1.6
ID = 7 A
ID = 7 A
8
VDS = 13 V
6
VDS = 24 V
4
2
(Normalized)
1.4
R DS(on) - On-Resistance
VGS - Gate-to-Source Voltage (V)
1.5
VGS = 10 V, 4.5 V
1.2
1.0
0.8
0
0
3
6
9
Qg - Total Gate Charge (nC)
Gate Charge
www.vishay.com
8
12
0.6
- 50
- 25
0
25
50
75
100
125
150
TJ - Junction Temperature (°C)
On-Resistance vs. Junction Temperature
Document Number: 69595
S09-2109-Rev. C, 12-Oct-09
Si4670DY
Vishay Siliconix
CHANNEL-2 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
100
0.08
R DS(on) - On-Resistance (Ω)
I S - Source Current (A)
ID = 7 A
TJ = 150 °C
10
TJ = 25 °C
1
0.1
0.06
0.04
TA = 125 °C
0.02
0.01
TA = 25 °C
0.00
0.001
0.0
0.2
0.4
0.6
0.8
0
1.0
2
8
10
On-Resistance vs. Gate-to-Source Voltage
10-1
2.0
1.8
10-2
ID = 250 µA
I R - Reverse Current (A)
VGS(th) (V)
6
VGS - Gate-to-Source Voltage (V)
VSD - Source-to-Drain Voltage (V)
Source-Drain Diode Forward Voltage
1.6
1.4
1.2
1.0
- 50
4
VR = 25 V
VR = 10 V
10-3
10-4
10-5
10-6
- 25
0
25
50
75
100
125
150
0
25
TJ - Temperature (°C)
50
75
100
125
150
TJ - Junction Temperature (°C)
Threshold Voltage
Reverse Current vs. Junction Temperature
100
30
IDM Limited
Limited by RDS(on)*
25
I D - Drain Current (A)
10
Power (W)
20
15
10
100 µs
1
ID(on) Limited
1 ms
10 ms
100 ms
1s
10 s
DC
0.1
5
TA = 25 °C
Single Pulse
0
0.001
0.01
0.1
1
10
100
1000
0.01
0.1
1
Time (s)
Single Pulse Power
BVDSS Limited
* VGS
10
100
VDS - Drain-to-Source Voltage (V)
minimum VGS at which RDS(on) is specified
Safe Operating Area, Junction-to-Ambient
Document Number: 69595
S09-2109-Rev. C, 12-Oct-09
www.vishay.com
9
Si4670DY
Vishay Siliconix
CHANNEL-2 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
3.0
10
2.5
8
Power Dissipation (W)
I D - Drain Current (A)
Package Limited
6
4
2
2.0
1.5
1.0
0.5
0.0
0
0
25
50
75
100
TC - Case Temperature (°C)
Current Derating*
125
150
25
50
75
100
125
150
TC - Case Temperature (°C)
Power Derating
* The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package
limit.
www.vishay.com
10
Document Number: 69595
S09-2109-Rev. C, 12-Oct-09
Si4670DY
Vishay Siliconix
CHANNEL-2 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
Normalized Effective Transient
Thermal Impedance
1
Duty Cycle = 0.5
0.2
Notes:
0.1
0.1
PDM
t1
0.05
t2
1. Duty Cycle, D =
0.02
t1
t2
2. Per Unit Base = RthJA = 90 °C/W
3. TJM - TA = PDMZthJA(t)
Single Pulse
4. Surface Mounted
0.01
10-4
10-3
10-2
10-1
1
Square Wave Pulse Duration (s)
100
10
1000
Normalized Thermal Transient Impedance, Junction-to-Ambient
1
Normalized Effective Transient
Thermal Impedance
Duty Cycle = 0.5
0.2
0.1
0.1
0.05
0.02
Single Pulse
0.01
10-4
10-3
10-2
10-1
Square Wave Pulse Duration (s)
1
10
Normalized Thermal Transient Impedance, Junction-to-Foot
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see www.vishay.com/ppg?69595.
Document Number: 69595
S09-2109-Rev. C, 12-Oct-09
www.vishay.com
11
Package Information
Vishay Siliconix
SOIC (NARROW): 8-LEAD
JEDEC Part Number: MS-012
8
6
7
5
E
1
3
2
H
4
S
h x 45
D
C
0.25 mm (Gage Plane)
A
e
B
All Leads
q
A1
L
0.004"
MILLIMETERS
INCHES
DIM
Min
Max
Min
Max
A
1.35
1.75
0.053
0.069
A1
0.10
0.20
0.004
0.008
B
0.35
0.51
0.014
0.020
C
0.19
0.25
0.0075
0.010
D
4.80
5.00
0.189
0.196
E
3.80
4.00
0.150
e
0.101 mm
1.27 BSC
0.157
0.050 BSC
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.50
0.93
0.020
0.037
q
0°
8°
0°
8°
S
0.44
0.64
0.018
0.026
ECN: C-06527-Rev. I, 11-Sep-06
DWG: 5498
Document Number: 71192
11-Sep-06
www.vishay.com
1
Application Note 826
Vishay Siliconix
RECOMMENDED MINIMUM PADS FOR SO-8
0.172
(4.369)
0.028
0.022
0.050
(0.559)
(1.270)
0.152
(3.861)
0.047
(1.194)
0.246
(6.248)
(0.711)
Recommended Minimum Pads
Dimensions in Inches/(mm)
Return to Index
APPLICATION NOTE
Return to Index
www.vishay.com
22
Document Number: 72606
Revision: 21-Jan-08
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000