Si4914BDY Datasheet

Si4914BDY
Vishay Siliconix
Dual N-Channel 30-V (D-S) MOSFET with Schottky Diode
FEATURES
PRODUCT SUMMARY
VDS (V)
Channel-1
30
Channel-2
RDS(on) (Ω)
ID (A)a Qg (Typ.)
0.021 at VGS = 10 V
8.4
0.027 at VGS = 4.5 V
7.4
0.020 at VGS = 10 V
8d
0.025 at VGS = 4.5 V
8d
6.7
• Halogen-free According to IEC 61249-2-21
Definition
• LITTLE FOOT® Plus Integrated Schottky
• 100 % Rg and UIS Tested
• Compliant to RoHS Directive 2002/95/EC
7.0
APPLICATIONS
• Notebook PC
- System Power dc-to-dc
SCHOTTKY PRODUCT SUMMARY
VDS (V)
VSD (V)
Diode Forward Voltage
IF (A)
30
0.50 V at 1.0 A
2.0
D1
SO-8
G1
D1
1
8
G1
D1
2
7
S1/D2
G2
3
6
S1/D2
S2
4
5
S1/D2
N-Channel 1
MOSFET
S1/D2
Schottky Diode
G2
Top View
N-Channel 2
MOSFET
Ordering Information: Si4914BDY-T1-E3 (Lead (Pb)-free)
Si4914BDY-T1-GE3 (Lead (Pb)-free and Halogen-free)
S2
ABSOLUTE MAXIMUM RATINGS TA = 25 °C, unless otherwise noted
Parameter
Symbol
Channel-1
Channel-2
Drain-Source Voltage
VDS
30
Gate-Source Voltage
VGS
20
TC = 25 °C
Continuous Drain Current (TJ = 150 °C)a, b
TC = 70 °C
TA = 25 °C
TA = 70 °C
IDM
Pulsed Drain Current (10 µs Pulse Width)
Continuous Source-Drain Diode Current
TC = 25 °C
TA = 25 °C
ISM
PulseD Source-Drain Current
Single-Pulse Avalanche Current
Single-Pulse Avalanche Energy
IS
L = 0.1 mH
Maximum Power Dissipationa, b
TC = 70 °C
TA = 25 °C
7.4
7.4b, c
5.3b, c
5.7b, c
40
40
2.4
2.8
1.0b, c
1.1b, c
40
40
IAS
15
11.2
PD
TA = 70 °C
Operating Junction and Storage Temperature Range
6.7
6.7b, c
EAS
TC = 25 °C
TJ, Tstg
V
8d
8.4
ID
3.1
1.7
2.0
b, c
2.0b, c
1.1b, c
1.2b, c
- 55 to 150
A
mJ
2.7
1.7
Unit
W
°C
Notes:
a. Based on TC = 25 °C.
b. Surface Mounted on 1" x 1" FR4 board.
c. t = 10 s.
d. Package limited.
Document Number: 69654
S09-2109-Rev. E, 12-Oct-09
www.vishay.com
1
Si4914BDY
Vishay Siliconix
THERMAL RESISTANCE RATINGS
Channel-1
Typ.
Max.
Typ.
Max.
t ≤ 10 s
RthJA
59
70
52
62.5
Steady State
RthJF
36
45
32
40
Maximum Junction-to-Ambienta
Maximum Junction-to-Foot (Drain)
Channel-2
Symbol
Parameter
Unit
°C/W
Notes:
a. Surface Mounted on 1" x 1" FR4 board.
b. Maximum under Steady State conditions is 120 °C/W for Channel 1 and 115 °C/W for Channel 2.
MOSFET SPECIFICATIONS TJ = 25 °C, unless otherwise noted
Parameter
Symbol
Test Conditions
Min.
Typ.a
Max.
Unit
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
VGS(th) Temperature Coefficient
Gate Threshold Voltage
Gate-Body Leakage
VDS
ΔVDS/TJ
ΔVGS(th)/TJ
VGS = 0 V, ID = 250 µA
ID = 250 µA
VGS(th)
VDS = VGS, ID = 250 µA
IGSS
VDS = 0 V, VGS = 20 V
VDS = 30 V, VGS = 0 V
Zero Gate Voltage Drain Current
IDSS
VDS = 30 V, VGS = 0 V, TJ = 85 °C
On-State Drain Currentb
Drain-Source On-State Resistanceb
Forward Transconductanceb
Diode Forward Voltageb
ID(on)
RDS(on)
gfs
VSD
Ch-1
30
Ch-2
30
Ch-1
V
35
Ch-1
mV/°C
- 6.2
Ch-1
1.2
2.7
Ch-2
1.2
2.7
Ch-1
100
Ch-2
100
Ch-1
1
Ch-2
100
Ch-1
15
Ch-2
V
nA
µA
10000
VDS = 5 V, VGS = 10 V
Ch-1
20
Ch-2
20
VGS = 10 V, ID = 8 A
Ch-1
0.0165
0.021
VGS = 10 V, ID = 8 A
Ch-2
0.0155
0.020
VGS = 4.5 V, ID = 6 A
Ch-1
0.0215
0.027
VGS = 4.5 V, ID = 6 A
Ch-2
0.020
0.025
VDS = 15 V, ID = 8 A
Ch-1
29
VDS = 15 V, ID = 8 A
Ch-2
33
IS = 1.7 A, VGS = 0 V
Ch-1
0.77
1.1
IS = 1 A, VGS = 0 V
Ch-2
0.46
0.5
A
Ω
S
V
Dynamica
Total Gate Charge
Gate-Source Charge
Gate-Drain Charge
Gate Resistance
www.vishay.com
2
Qg
Ch-1
6.7
10.5
Channel-1
VDS = 15 V, VGS = 4.5 V, ID = 8 A
Ch-2
7.0
11.0
Ch-1
2.8
Channel-2
VDS = 15 V, VGS = 4.5 V, ID = 8 A
Ch-2
2.8
Ch-1
2.0
Ch-2
2.0
Ch-1
2.9
6.0
Ch-2
2.0
4.0
Qgs
Qgd
Rg
nC
Ω
Document Number: 69654
S09-2109-Rev. E, 12-Oct-09
Si4914BDY
Vishay Siliconix
MOSFET SPECIFICATIONS TJ = 25 °C, unless otherwise noted
Parameter
Symbol
Typ.a
Max.
Ch-1
9
18
Ch-2
10
20
Ch-1
10
20
Ch-2
9
18
Ch-1
16
32
Ch-2
16
32
Ch-1
9
18
Ch-2
8
16
IF = 2.2 A, dI/dt = 100 A/µs
Ch-1
35
55
35
Test Conditions
Min.
Unit
Dynamica
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Source-Drain Reverse Recovery Time
td(on)
tr
td(off)
tf
trr
Body Diode Reverse Recovery Charge
Qrr
Reverse Recovery Fall Time
ta
Reverse Recovery Rise Time
tb
Channel-1
VDD = 15 V, RL = 3 Ω
ID ≅ 5 A, VGEN = 10 V, Rg = 1 Ω
Channel-2
VDD = 15 V, RL = 3 Ω
ID ≅ 5 A, VGEN = 10 V, Rg = 1 Ω
IF = 2.2 A, dI/dt = 100 A/µs
Ch-2
21
IF = 2.2 A, dI/dt = 100 A/µs
Ch-1
40
IF = 2.2 A, dI/dt = 100 A/µs
Ch-2
11
IF = 2.2 A, dI/dt = 100 A/µs
Ch-1
19
IF = 2.2 A, dI/dt = 100 A/µs
Ch-2
11
IF = 2.2 A, dI/dt = 100 A/µs
Ch-1
16
IF = 2.2 A, dI/dt = 100 A/µs
Ch-2
10
ns
nC
ns
Notes:
a. Guaranteed by design, not subject to production testing.
b. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
Document Number: 69654
S09-2109-Rev. E, 12-Oct-09
www.vishay.com
3
Si4914BDY
Vishay Siliconix
CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
50
2.0
VGS = 10 V thru 5 V
1.6
I D - Drain Current (A)
I D - Drain Current (A)
40
4V
30
20
1.2
TC = 25 °C
0.8
10
0.4
TC = 125 °C
3V
0
TJ = - 55 °C
0
0
0.5
1.0
1.5
2.0
2.5
0
1
2
3
4
VDS - Drain-to-Source Voltage (V)
VGS - Gate-to-Source Voltage (V)
Output Characteristics
Transfer Characteristics
0.05
1000
0.04
800
5
C - Capacitance (pF)
R DS(on) - On-Resistance (Ω)
Ciss
0.03
VGS = 4.5 V
0.02
600
400
VGS = 10 V
0.01
200
0
0
0
10
20
30
40
50
Coss
Crss
0
6
ID - Drain Current (A)
12
24
30
VDS - Drain-to-Source Voltage (V)
On-Resistance vs. Drain Current
Capacitance
1.7
10
ID = 8 A
ID = 7 A
VDS = 10 V
VGS = 10 V
1.5
VDS = 15 V
6
VDS = 20 V
4
(Normalized)
8
R DS(on) - On-Resistance
VGS - Gate-to-Source Voltage (V)
18
1.3
VGS = 4.5 V
1.1
0.9
2
0
0
3.2
6.4
9.6
Qg - Total Gate Charge (nC)
Gate Charge
www.vishay.com
4
12.8
16.0
0.7
- 50
- 25
0
25
50
75
100
125
150
TJ - Junction Temperature (°C)
On-Resistance vs. Junction Temperature
Document Number: 69654
S09-2109-Rev. E, 12-Oct-09
Si4914BDY
Vishay Siliconix
CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
0.10
100
TJ = 150 °C
R DS(on) - On-Resistance (Ω)
IS - Source Current (A)
10
TJ = 25 °C
1
0.1
0.01
0.08
0.06
0.04
TA = 125 °C
0.02
TA = 25 °C
0
0.001
0
0.2
0.4
0.6
0.8
1.0
0
1.2
2
VSD - Source-to-Drain Voltage (V)
4
6
8
10
VGS - Gate-to-Source Voltage (V)
On-Resistance vs. Gate-to-Source Voltage
Source-Drain Diode Forward Voltage
100
0.5
ID = 250 µA
80
ID = 5 mA
- 0.1
Power (W)
VGS(th) Variance (V)
0.2
- 0.4
40
20
- 0.7
- 1.0
- 50
60
0
- 25
0
25
50
75
100
125
150
0.001
0.01
0.1
1
10
Time (s)
TJ - Temperature (°C)
Single Pulse Power, Junction-to-Ambient
Threshold Voltage
100
Limited by R DS(on)*
I D - Drain Current (A)
10
1 ms
1
10 ms
100 ms
0.1
1s
10 s
DC
TA = 25 °C
Single Pulse
0.01
0.1
1
10
100
VDS - Drain-to-Source Voltage (V)
* VGS > minimum VGS at which R DS(on) is specified
Safe Operating Area
Document Number: 69654
S09-2109-Rev. E, 12-Oct-09
www.vishay.com
5
Si4914BDY
Vishay Siliconix
CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
10
I D - Drain Current (A)
8
6
4
2
0
0
25
50
75
100
125
150
TC - Case Temperature (°C)
3.5
1.5
2.8
1.2
2.1
0.9
Power (W)
Power (W)
Current Derating*
1.4
0.6
0.3
0.7
0
0
0
25
50
75
100
125
150
0
25
50
75
100
125
TC - Case Temperature (°C)
TA - Ambient Temperature (°C)
Power, Junction-to-Foot
Power, Junction-to-Ambient
150
* The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package
limit.
www.vishay.com
6
Document Number: 69654
S09-2109-Rev. E, 12-Oct-09
Si4914BDY
Vishay Siliconix
CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
1
Normalized Effective Transient
Thermal Impedance
Duty Cycle = 0.5
0.2
0.1
Notes:
0.1
PDM
0.05
t1
t2
1. Duty Cycle, D =
0.02
t1
t2
2. Per Unit Base = RthJA = 120 °C/W
3. TJM - TA = PDMZthJA(t)
4. Surface Mounted
Single Pulse
0.01
10 -4
10 -3
10 -2
10 -1
1
Square Wave Pulse Duration (s)
100
10
1000
Normalized Thermal Transient Impedance, Junction-to-Ambient
1
Normalized Effective Transient
Thermal Impedance
Duty Cycle = 0.5
0.2
0.1
0.1
0.05
0.02
Single Pulse
0.01
10 -4
10 -3
10 -2
10 -1
Square Wave Pulse Duration (s)
1
10
Normalized Thermal Transient Impedance, Junction-to-Foot
Document Number: 69654
S09-2109-Rev. E, 12-Oct-09
www.vishay.com
7
Si4914BDY
Vishay Siliconix
CHANNEL-2 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
2.0
50
VGS = 10 V thru 5 V
1.6
I D - Drain Current (A)
I D - Drain Current (A)
40
4V
30
20
1.2
TJ = 25 °C
0.8
0.4
10
TJ = 125 °C
3V
TJ = - 55 °C
0
0
0
0.5
1.0
1.5
2.0
0
2.5
1.2
2.4
3.6
4.8
6.0
VGS - Gate-to-Source Voltage (V)
VDS - Drain-to-Source Voltage (V)
Output Characteristics
Transfer Characteristics
0.040
1200
0.034
960
C - Capacitance (pF)
R DS(on) - On-Resistance (Ω)
Ciss
0.028
VGS = 4.5 V
0.022
VGS = 10 V
720
480
Coss
0.016
240
0.010
0
0
10
20
30
40
50
Crss
0
6
ID - Drain Current (A)
12
24
30
VDS - Drain-to-Source Voltage (V)
On-Resistance vs. Drain Current
Capacitance
10
1.7
ID = 8 A
ID = 7.5 A
VDS = 10 V
8
VGS = 10 V
VDS = 15 V
6
VDS = 20 V
4
2
(Normalized)
1.5
R DS(on) - On-Resistance
VGS - Gate-to-Source Voltage (V)
18
1.3
VGS = 4.5 V
1.1
0.9
0
0
www.vishay.com
8
3.4
6.8
10.2
13.6
17.0
0.7
- 50
- 25
0
25
50
75
100
125
Qg - Total Gate Charge (nC)
TJ - Junction Temperature (°C)
Gate Charge
On-Resistance vs. Junction Temperature
150
Document Number: 69654
S09-2109-Rev. E, 12-Oct-09
Si4914BDY
Vishay Siliconix
CHANNEL-2 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
0.10
R DS(on) - On-Resistance (Ω)
IS - Source Current (A)
100
10
TJ = 150 °C
1
TJ = 25 °C
0.08
0.06
0.04
TA = 125 °C
0.02
TA = 25 °C
0
0.1
0
0.2
0.4
0.6
0.8
1.0
0
1.2
2
4
6
8
VSD - Source-to-Drain Voltage (V)
VGS - Gate-to-Source Voltage (V)
Source-Drain Diode Forward Voltage
On-Resistance vs. Gate-to-Source Voltage
10-1
10
100
VDS = 20 V
80
VDS = 30 V
10-3
Power (W)
I R - Reverse (A)
10-2
VDS = 10 V
10-4
10-5
60
40
20
10-6
0
25
50
75
100
125
0
0.001
150
0.01
TJ - Temperature (°C)
0.1
1
10
Time (s)
Reverse Current Schottky
Single Pulse Power, Junction-to-Ambient
100
Limited by R DS(on)*
I D - Drain Current (A)
10
1 ms
1
10 ms
100 ms
0.1
1s
10 s
DC
TA = 25 °C
Single Pulse
0.01
0.1
1
10
100
VDS - Drain-to-Source Voltage (V)
* VGS > minimum VGS at which R DS(on) is specified
Safe Operating Area
Document Number: 69654
S09-2109-Rev. E, 12-Oct-09
www.vishay.com
9
Si4914BDY
Vishay Siliconix
CHANNEL-2 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
11.0
I D - Drain Current (A)
8.8
Package Limited
6.6
4.4
2.2
0
0
25
50
75
100
125
150
TC - Case Temperature (°C)
4.0
1.5
3.2
1.2
2.4
0.9
Power (W)
Power (W)
Current Derating*
1.6
0.6
0.3
0.8
0
0
0
25
50
75
100
125
150
0
25
50
75
100
125
TC - Case Temperature (°C)
TA - Ambient Temperature (°C)
Power, Junction-to-Foot
Power, Junction-to-Ambient
150
* The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package
limit.
www.vishay.com
10
Document Number: 69654
S09-2109-Rev. E, 12-Oct-09
Si4914BDY
Vishay Siliconix
CHANNEL-2 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
1
Normalized Effective Transient
Thermal Impedance
Duty Cycle = 0.5
0.2
0.1
Notes:
0.1
PDM
0.05
t1
t2
1. Duty Cycle, D =
t1
t2
2. Per Unit Base = RthJA = 115 °C/W
0.02
3. TJM - TA = PDMZthJA(t)
Single Pulse
4. Surface Mounted
0.01
10 -4
10 -3
10 -2
10 -1
1
Square Wave Pulse Duration (s)
100
10
1000
Normalized Thermal Transient Impedance, Junction-to-Ambient
Normalized Effective Transient
Thermal Impedance
1
Duty Cycle = 0.5
0.2
0.1
0.1
0.05
0.02
Single Pulse
0.01
10 -4
10 -3
10 -2
10 -1
1
10
Square Wave Pulse Duration (s)
Normalized Thermal Transient Impedance, Junction-to-Foot
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see www.vishay.com/ppg?69654.
Document Number: 69654
S09-2109-Rev. E, 12-Oct-09
www.vishay.com
11
Package Information
Vishay Siliconix
SOIC (NARROW): 8-LEAD
JEDEC Part Number: MS-012
8
6
7
5
E
1
3
2
H
4
S
h x 45
D
C
0.25 mm (Gage Plane)
A
e
B
All Leads
q
A1
L
0.004"
MILLIMETERS
INCHES
DIM
Min
Max
Min
Max
A
1.35
1.75
0.053
0.069
A1
0.10
0.20
0.004
0.008
B
0.35
0.51
0.014
0.020
C
0.19
0.25
0.0075
0.010
D
4.80
5.00
0.189
0.196
E
3.80
4.00
0.150
e
0.101 mm
1.27 BSC
0.157
0.050 BSC
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.50
0.93
0.020
0.037
q
0°
8°
0°
8°
S
0.44
0.64
0.018
0.026
ECN: C-06527-Rev. I, 11-Sep-06
DWG: 5498
Document Number: 71192
11-Sep-06
www.vishay.com
1
Application Note 826
Vishay Siliconix
RECOMMENDED MINIMUM PADS FOR SO-8
0.172
(4.369)
0.028
0.022
0.050
(0.559)
(1.270)
0.152
(3.861)
0.047
(1.194)
0.246
(6.248)
(0.711)
Recommended Minimum Pads
Dimensions in Inches/(mm)
Return to Index
APPLICATION NOTE
Return to Index
www.vishay.com
22
Document Number: 72606
Revision: 21-Jan-08
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000