IRGP4062-E Data Sheet (239 KB, EN)

IRGP4062-EPbF
INSULATED GATE BIPOLAR TRANSISTOR
Features
•
•
•
•
•
•
•
•
•
C
Low VCE (ON) Trench IGBT Technology
Low switching losses
Maximum Junction temperature 175 °C
5 μS short circuit SOA
Square RBSOA
100% of the parts tested for ILM 
Positive VCE (ON) Temperature co-efficient
Tight parameter distribution
Lead Free Package
VCES = 600V
IC = 24A, TC = 100°C
tSC 5μs, TJ(max) = 175°C
G
E
VCE(on) typ. = 1.65V
n-channel
C
Benefits
• High Efficiency in a wide range of applications
• Suitable for a wide range of switching frequencies due to
Low VCE (ON) and Low Switching losses
• Rugged transient Performance for increased reliability
• Excellent Current sharing in parallel operation
• Low EMI
E
C
G
TO-247AD
G
Gate
Base part number
Package Type
IRGP4062-EPbF
TO-247AD
C
Collector
Standard Pack
Form
Quantity
Tube
25
E
Emitter
Orderable part number
IRGP4062-EPbF
Absolute Maximum Ratings
Max.
Units
V CES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
48
IC @ TC = 100°C
ICM
Continuous Collector Current
24
Pulse Collector Current, VGE = 15V
72
ILM
Clamped Inductive Load Current, VGE = 20V
V GE
Continuous Gate-to-Emitter Voltage
Transient Gate-to-Emitter Voltage
±30
PD @ TC = 25°C
Maximum Power Dissipation
250
PD @ TC = 100°C
Maximum Power Dissipation
125
TJ
Operating Junction and
TST G
Storage Temperature Range
c
96
A
±20
V
W
-55 to +175
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
Min.
Typ.
Max.
Units
–––
–––
0.65
°C/W
RJC
Thermal Resistance Junction-to-Case
RCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.50
–––
RJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
–––
40
1
www.irf.com © 2012 International Rectifier
October 10, 2012
IRGP4062-EPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
Collector-to-Emitter BreakdownVoltage
V(BR)CE S/T J
T emperature Coeff. of B reakdown Voltage
VCE(on)
VGE(th)
Collector-to-Emitter Saturation Voltage
Gate Threshold Voltage
Min.
Typ. Max. Units
600
—
—
—
0.30
—
—
1.60
1.95
—
2.03
—
—
2.04
—
4.0
—
6.5
V
IC = 24A, VGE = 15V, T J = 25°C
V
IC = 24A, VGE = 15V, T J = 150°C
IC = 24A, VGE = 15V, T J = 175°C
V
Threshold Voltage temp. coefficient
—
-18
—
gfe
Forward Transconductance
—
17
—
S
ICES
Collector-to-Emitter Leakage Current
—
2.0
25
μA
—
775
—
—
—
±100
Gate-to-Emitter Leakage Current
d
V/°C VGE = 0V, IC = 1mA (25°C-175°C)
VGE (th)/T J
IGES
Conditions
VGE = 0V, IC = 100μA
VCE = VGE , IC = 700μA
mV/°C VCE = VGE , IC = 1.0mA (25°C - 175°C)
VCE = 50V, IC = 24A, PW = 80μs
VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 175°C
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Qge
Gate-to-Emitter Charge (turn-on)
—
13
20
Qgc
—
21
31
VCC = 400V
Eon
Gate-to-Collector Charge (turn-on)
Turn-On Switching Loss
—
115
201
IC = 24A, VCC = 400V, VGE = 15V
Eoff
Turn-Off Switching Loss
—
600
700
Etotal
Total Switching Loss
—
715
901
td(on)
Turn-On delay time
—
41
53
tr
Rise time
—
22
31
td(off)
Turn-Off delay time
—
104
115
tf
—
29
41
Eon
Fall time
Turn-On Switching Loss
—
420
—
Eoff
Turn-Off Switching Loss
—
840
—
Etotal
Total Switching Loss
—
1260
—
td(on)
Turn-On delay time
—
40
—
tr
Rise time
—
24
—
e
50
75
Conditions
Total Gate Charge (turn-on)
e
—
Typ. Max. Units
Qg
IC = 24A
nC
μJ
VGE = 15V
RG = 10, L = 200μH, LS = 150nH, TJ = 25°C
E nergy los s es include tail & diode revers e recovery
IC = 24A, VCC = 400V, VGE = 15V
ns
RG = 10, L = 200μH, LS = 150nH, TJ = 25°C
IC = 24A, VCC = 400V, VGE =15V
μJ
RG=10, L= 200μH, LS=150nH, T J = 175°C
E nergy los s es include tail & diode revers e recovery
IC = 24A, VCC = 400V, VGE = 15V
ns
RG = 10, L = 200μH, LS = 150nH
td(off)
Turn-Off delay time
—
125
—
tf
Fall time
—
39
—
Cies
Input Capacitance
—
1490
—
Coes
Output Capacitance
—
129
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
45
—
f = 1.0Mhz
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
SCSOA
Short Circuit Safe Operating Area
5
TJ = 175°C
pF
VGE = 0V
TJ = 175°C, IC = 96A
VCC = 480V, Vp =600V
Rg = 10, VGE = +20V to 0V
—
—
μs
VCC = 400V, Vp =600V
Rg = 10, VGE = +15V to 0V
Notes:
 VCC = 80% (VCES), VGE = 20V, L = 100μH, RG = 10
‚ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
ƒ Turn-on energy is measured using the same co-pak diode as IRGP4062DPbF.
2
www.irf.com © 2012 International Rectifier
October 10, 2012
IRGP4062-EPbF
50
300
45
250
40
35
200
Ptot (W)
IC (A)
30
25
20
150
100
15
10
50
5
0
0
0
20
40
60
80 100 120 140 160 180
0
20
40
60
80 100 120 140 160 180
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
1000
1000
100
100
IC (A)
IC (A)
10μsec
10
100μsec
1
10
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
DC
0.1
1
1
10
100
1000
10000
10
100
VCE (V)
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C, TJ 175°C; VGE =15V
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE =20V
90
90
80
80
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
ICE (A)
60
50
70
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
60
ICE (A)
70
40
50
40
30
30
20
20
10
10
0
0
0
1
2
3
4
5
6
7
8
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80μs
3
1000
www.irf.com © 2012 International Rectifier
0
1
2
3
4
5
6
7
8
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80μs
October 10, 2012
IRGP4062-EPbF
90
20
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
80
70
16
14
VCE (V)
60
18
ICE (A)
50
40
30
12
ICE = 12A
ICE = 24A
ICE = 48A
10
8
6
20
4
10
2
0
0
0
1
2
3
4
5
6
7
8
5
10
Fig. 8 - Typical VCE vs. VGE
TJ = -40°C
20
20
18
18
16
16
14
14
ICE = 12A
VCE (V)
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80μs
ICE = 24A
10
ICE = 48A
8
12
ICE = 12A
ICE = 24A
10
ICE = 48A
8
6
6
4
4
2
2
0
0
5
10
15
20
5
10
VGE (V)
20
Fig. 10 - Typical VCE vs. VGE
TJ = 175°C
16
280
100
14
240
12
200
10
160
40
8
120
20
6
80
T J = 25°C
T J = 175°C
Time (μs)
60
40
4
0
0
5
10
15
VGE (V)
Fig. 11 - Typ. Transfer Characteristics
VCE = 50V; tp = 10μs
www.irf.com © 2012 International Rectifier
Current (A)
120
80
ICE (A)
15
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = 25°C
4
20
VGE (V)
VCE (V)
12
15
8
10
12
14
16
18
VGE (V)
Fig. 12 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
October 10, 2012
IRGP4062-EPbF
1000
1800
1600
tdOFF
Energy (μJ)
1200
Swiching Time (ns)
1400
EOFF
1000
800
EON
600
100
td ON
tF
10
tR
400
200
1
0
0
10
20
30
40
50
60
10
20
30
40
50
IC (A)
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10; VGE = 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10; VGE = 15V
1000
1600
1400
EON
1000
Swiching Time (ns)
Energy (μJ)
1200
EOFF
800
600
tdOFF
100
tdON
400
tF
tR
200
10
0
0
25
50
75
100
125
0
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 24A; VGE = 15V
75
100
125
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 24A; VGE = 15V
10000
16
VGE, Gate-to-Emitter Voltage (V)
Capacitance (pF)
50
RG ()
Rg ()
Cies
1000
Coes
100
Cres
10
V CES = 300V
14
V CES = 400V
12
10
8
6
4
2
0
0
20
40
60
80
100
VCE (V)
Fig. 17 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
5
25
www.irf.com © 2012 International Rectifier
0
5 10 15 20 25 30 35 40 45 50 55
Q G, Total Gate Charge (nC)
Fig. 18 - Typical Gate Charge vs. VGE
ICE = 24A; L = 600μH
October 10, 2012
IRGP4062-EPbF
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20
0.10
0.05
J
0.02
0.01
0.01
R1
R1
J
1
R2
R2
C
2
1
2
Ri (°C/W) i (sec)
0.2782 0.000311
0.3715 0.006347
Ci= iRi
Ci iRi
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006

1E-005
0.0001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig. 19 Maximum Transient Thermal Impedance, Junction-to-Case
6
www.irf.com © 2012 International Rectifier
October 10, 2012
IRGP4062-EPbF
L
L
VC C
D UT
0
80 V
DU T
4 80V
Rg
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
d io d e clamp /
DU T
4x
DC
V360V
CC
L
- 5V
DU T /
D RIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C. SOA Circuit
R=
Fig.C.T.4 - Switching Loss Circuit
VCC
ICM
DUT
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
7
www.irf.com © 2012 International Rectifier
Fig.C.T.6 - BVCES Filter Circuit
October 10, 2012
IRGP4062-EPbF
600
30
600
25
500
60
tf
500
90% ICE
20
400
15
C
10
5% V CE
300
5
20
100
0
EOFF Loss
5% V CE
0
10
0
EON
-5
0.10
30
90% test
200
5% ICE
-100
-0.40
C
10% ICE
100
0
40
-100
11.70
0.60
11.90
Time(µs)
12.10
-10
12.30
Time (µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
600
300
ICE
500
250
V CE (V)
400
200
V CE
300
150
200
100
100
50
0
I CE (A)
200
tr
ICE
V CE
300
VCE (V)
VCE (V)
ICE
400
50
V CE
C
0
-100
-5.00
0.00
5.00
-50
10.00
time (µS)
Fig. WF3 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
8
www.irf.com © 2012 International Rectifier
October 10, 2012
IRGP4062-EPbF
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
(;$03/( 7+,6,6$1,5*3%.'(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
3$57180%(5
,17(51$7,21$/
5(&7,),(5
/2*2
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
9
www.irf.com © 2012 International Rectifier
October 10, 2012
IRGP4062-EPbF
Qualification Information†
Qualification Level
Moisture Sensitivity Level
ESD
Industrial
(per International Rectifier’s internal guidelines)
TO-247AD
Machine Model
Human Body Model
Charged Device Model
RoHS Compliant
N/A
(per JEDEC J-STD-020D)
Class M4 (+/- 700V )
(per AEC-Q101-002)
Class H1C (+/- 2000V )
(per AEC-Q101-001)
Class C5(+/- 2000V )
(per AEC-Q101-005)
Yes
† Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
10
www.irf.com © 2012 International Rectifier
October 10, 2012