IRGP4062-EPbF INSULATED GATE BIPOLAR TRANSISTOR Features • • • • • • • • • C Low VCE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 175 °C 5 μS short circuit SOA Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) Temperature co-efficient Tight parameter distribution Lead Free Package VCES = 600V IC = 24A, TC = 100°C tSC 5μs, TJ(max) = 175°C G E VCE(on) typ. = 1.65V n-channel C Benefits • High Efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses • Rugged transient Performance for increased reliability • Excellent Current sharing in parallel operation • Low EMI E C G TO-247AD G Gate Base part number Package Type IRGP4062-EPbF TO-247AD C Collector Standard Pack Form Quantity Tube 25 E Emitter Orderable part number IRGP4062-EPbF Absolute Maximum Ratings Max. Units V CES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 48 IC @ TC = 100°C ICM Continuous Collector Current 24 Pulse Collector Current, VGE = 15V 72 ILM Clamped Inductive Load Current, VGE = 20V V GE Continuous Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage ±30 PD @ TC = 25°C Maximum Power Dissipation 250 PD @ TC = 100°C Maximum Power Dissipation 125 TJ Operating Junction and TST G Storage Temperature Range c 96 A ±20 V W -55 to +175 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Parameter Min. Typ. Max. Units ––– ––– 0.65 °C/W RJC Thermal Resistance Junction-to-Case RCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.50 ––– RJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– ––– 40 1 www.irf.com © 2012 International Rectifier October 10, 2012 IRGP4062-EPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES Collector-to-Emitter BreakdownVoltage V(BR)CE S/T J T emperature Coeff. of B reakdown Voltage VCE(on) VGE(th) Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Min. Typ. Max. Units 600 — — — 0.30 — — 1.60 1.95 — 2.03 — — 2.04 — 4.0 — 6.5 V IC = 24A, VGE = 15V, T J = 25°C V IC = 24A, VGE = 15V, T J = 150°C IC = 24A, VGE = 15V, T J = 175°C V Threshold Voltage temp. coefficient — -18 — gfe Forward Transconductance — 17 — S ICES Collector-to-Emitter Leakage Current — 2.0 25 μA — 775 — — — ±100 Gate-to-Emitter Leakage Current d V/°C VGE = 0V, IC = 1mA (25°C-175°C) VGE (th)/T J IGES Conditions VGE = 0V, IC = 100μA VCE = VGE , IC = 700μA mV/°C VCE = VGE , IC = 1.0mA (25°C - 175°C) VCE = 50V, IC = 24A, PW = 80μs VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 175°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Qge Gate-to-Emitter Charge (turn-on) — 13 20 Qgc — 21 31 VCC = 400V Eon Gate-to-Collector Charge (turn-on) Turn-On Switching Loss — 115 201 IC = 24A, VCC = 400V, VGE = 15V Eoff Turn-Off Switching Loss — 600 700 Etotal Total Switching Loss — 715 901 td(on) Turn-On delay time — 41 53 tr Rise time — 22 31 td(off) Turn-Off delay time — 104 115 tf — 29 41 Eon Fall time Turn-On Switching Loss — 420 — Eoff Turn-Off Switching Loss — 840 — Etotal Total Switching Loss — 1260 — td(on) Turn-On delay time — 40 — tr Rise time — 24 — e 50 75 Conditions Total Gate Charge (turn-on) e — Typ. Max. Units Qg IC = 24A nC μJ VGE = 15V RG = 10, L = 200μH, LS = 150nH, TJ = 25°C E nergy los s es include tail & diode revers e recovery IC = 24A, VCC = 400V, VGE = 15V ns RG = 10, L = 200μH, LS = 150nH, TJ = 25°C IC = 24A, VCC = 400V, VGE =15V μJ RG=10, L= 200μH, LS=150nH, T J = 175°C E nergy los s es include tail & diode revers e recovery IC = 24A, VCC = 400V, VGE = 15V ns RG = 10, L = 200μH, LS = 150nH td(off) Turn-Off delay time — 125 — tf Fall time — 39 — Cies Input Capacitance — 1490 — Coes Output Capacitance — 129 — VCC = 30V Cres Reverse Transfer Capacitance — 45 — f = 1.0Mhz RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area 5 TJ = 175°C pF VGE = 0V TJ = 175°C, IC = 96A VCC = 480V, Vp =600V Rg = 10, VGE = +20V to 0V — — μs VCC = 400V, Vp =600V Rg = 10, VGE = +15V to 0V Notes: VCC = 80% (VCES), VGE = 20V, L = 100μH, RG = 10 Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Turn-on energy is measured using the same co-pak diode as IRGP4062DPbF. 2 www.irf.com © 2012 International Rectifier October 10, 2012 IRGP4062-EPbF 50 300 45 250 40 35 200 Ptot (W) IC (A) 30 25 20 150 100 15 10 50 5 0 0 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 1000 1000 100 100 IC (A) IC (A) 10μsec 10 100μsec 1 10 1msec Tc = 25°C Tj = 175°C Single Pulse DC 0.1 1 1 10 100 1000 10000 10 100 VCE (V) VCE (V) Fig. 3 - Forward SOA TC = 25°C, TJ 175°C; VGE =15V Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =20V 90 90 80 80 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 60 50 70 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 60 ICE (A) 70 40 50 40 30 30 20 20 10 10 0 0 0 1 2 3 4 5 6 7 8 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80μs 3 1000 www.irf.com © 2012 International Rectifier 0 1 2 3 4 5 6 7 8 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80μs October 10, 2012 IRGP4062-EPbF 90 20 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 80 70 16 14 VCE (V) 60 18 ICE (A) 50 40 30 12 ICE = 12A ICE = 24A ICE = 48A 10 8 6 20 4 10 2 0 0 0 1 2 3 4 5 6 7 8 5 10 Fig. 8 - Typical VCE vs. VGE TJ = -40°C 20 20 18 18 16 16 14 14 ICE = 12A VCE (V) VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80μs ICE = 24A 10 ICE = 48A 8 12 ICE = 12A ICE = 24A 10 ICE = 48A 8 6 6 4 4 2 2 0 0 5 10 15 20 5 10 VGE (V) 20 Fig. 10 - Typical VCE vs. VGE TJ = 175°C 16 280 100 14 240 12 200 10 160 40 8 120 20 6 80 T J = 25°C T J = 175°C Time (μs) 60 40 4 0 0 5 10 15 VGE (V) Fig. 11 - Typ. Transfer Characteristics VCE = 50V; tp = 10μs www.irf.com © 2012 International Rectifier Current (A) 120 80 ICE (A) 15 VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 25°C 4 20 VGE (V) VCE (V) 12 15 8 10 12 14 16 18 VGE (V) Fig. 12 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C October 10, 2012 IRGP4062-EPbF 1000 1800 1600 tdOFF Energy (μJ) 1200 Swiching Time (ns) 1400 EOFF 1000 800 EON 600 100 td ON tF 10 tR 400 200 1 0 0 10 20 30 40 50 60 10 20 30 40 50 IC (A) IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200μH; VCE = 400V, RG = 10; VGE = 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L = 200μH; VCE = 400V, RG = 10; VGE = 15V 1000 1600 1400 EON 1000 Swiching Time (ns) Energy (μJ) 1200 EOFF 800 600 tdOFF 100 tdON 400 tF tR 200 10 0 0 25 50 75 100 125 0 Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200μH; VCE = 400V, ICE = 24A; VGE = 15V 75 100 125 Fig. 16 - Typ. Switching Time vs. RG TJ = 175°C; L = 200μH; VCE = 400V, ICE = 24A; VGE = 15V 10000 16 VGE, Gate-to-Emitter Voltage (V) Capacitance (pF) 50 RG () Rg () Cies 1000 Coes 100 Cres 10 V CES = 300V 14 V CES = 400V 12 10 8 6 4 2 0 0 20 40 60 80 100 VCE (V) Fig. 17 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 5 25 www.irf.com © 2012 International Rectifier 0 5 10 15 20 25 30 35 40 45 50 55 Q G, Total Gate Charge (nC) Fig. 18 - Typical Gate Charge vs. VGE ICE = 24A; L = 600μH October 10, 2012 IRGP4062-EPbF 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.20 0.10 0.05 J 0.02 0.01 0.01 R1 R1 J 1 R2 R2 C 2 1 2 Ri (°C/W) i (sec) 0.2782 0.000311 0.3715 0.006347 Ci= iRi Ci iRi SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig. 19 Maximum Transient Thermal Impedance, Junction-to-Case 6 www.irf.com © 2012 International Rectifier October 10, 2012 IRGP4062-EPbF L L VC C D UT 0 80 V DU T 4 80V Rg 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit d io d e clamp / DU T 4x DC V360V CC L - 5V DU T / D RIVER DUT VCC Rg Fig.C.T.3 - S.C. SOA Circuit R= Fig.C.T.4 - Switching Loss Circuit VCC ICM DUT VCC Rg Fig.C.T.5 - Resistive Load Circuit 7 www.irf.com © 2012 International Rectifier Fig.C.T.6 - BVCES Filter Circuit October 10, 2012 IRGP4062-EPbF 600 30 600 25 500 60 tf 500 90% ICE 20 400 15 C 10 5% V CE 300 5 20 100 0 EOFF Loss 5% V CE 0 10 0 EON -5 0.10 30 90% test 200 5% ICE -100 -0.40 C 10% ICE 100 0 40 -100 11.70 0.60 11.90 Time(µs) 12.10 -10 12.30 Time (µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 600 300 ICE 500 250 V CE (V) 400 200 V CE 300 150 200 100 100 50 0 I CE (A) 200 tr ICE V CE 300 VCE (V) VCE (V) ICE 400 50 V CE C 0 -100 -5.00 0.00 5.00 -50 10.00 time (µS) Fig. WF3 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3 8 www.irf.com © 2012 International Rectifier October 10, 2012 IRGP4062-EPbF TO-247AD Package Outline Dimensions are shown in millimeters (inches) TO-247AD Part Marking Information (;$03/( 7+,6,6$1,5*3%.'( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH 3$57180%(5 ,17(51$7,21$/ 5(&7,),(5 /2*2 + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2012 International Rectifier October 10, 2012 IRGP4062-EPbF Qualification Information† Qualification Level Moisture Sensitivity Level ESD Industrial (per International Rectifier’s internal guidelines) TO-247AD Machine Model Human Body Model Charged Device Model RoHS Compliant N/A (per JEDEC J-STD-020D) Class M4 (+/- 700V ) (per AEC-Q101-002) Class H1C (+/- 2000V ) (per AEC-Q101-001) Class C5(+/- 2000V ) (per AEC-Q101-005) Yes † Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10 www.irf.com © 2012 International Rectifier October 10, 2012