IR MOSFET StrongIRFET™ IRF60B217 HEXFET® Power MOSFET Application Brushed Motor drive applications BLDC Motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies OR-ing and redundant power switches DC/DC and AC/DC converters DC/AC Inverters D 9.0m 60A TO-220AB IRF60B217 D Drain Standard Pack Form Quantity Tube 50 S Source Orderable Part Number IRF60B217 60 30 ID = 36A 25 50 20 TJ = 125°C 15 10 TJ = 25°C 5 0 4 8 12 16 40 30 20 10 20 V GS, Gate-to-Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 1 max S D G ID , Drain Current (A) RDS(on), Drain-to -Source On Resistance ( m) TO-220 7.3m ID G Gate IRF60B217 RDS(on) typ. S Benefits Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free* RoHS Compliant, Halogen-Free Package Type 60V G Base part number VDSS 0 25 50 75 100 125 150 175 TC , CaseTemperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature 2016– 01-05 IRF60B217 Absolute Maximum Rating Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS TJ Parameter Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Operating Junction and Storage Temperature Range Max. 60 42 225 83 0.56 ± 20 -55 to + 175 Soldering Temperature, for 10 seconds (1.6mm from case) 300 Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Avalanche Characteristics 85 EAS (Thermally limited) Single Pulse Avalanche Energy 124 EAS (Thermally limited) Single Pulse Avalanche Energy IAR Avalanche Current See Fig 15, 16, 23a, 23b EAR Repetitive Avalanche Energy Thermal Resistance Symbol Parameter Typ. Max. Junction-to-Case ––– 1.8 RJC Case-to-Sink, Flat Greased Surface RCS 0.50 ––– Junction-to-Ambient RJA ––– 62 Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS Drain-to-Source Breakdown Voltage V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS RG Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Resistance Min. Typ. Max. 60 ––– ––– ––– 0.047 ––– ––– 7.3 9.0 ––– 9.0 ––– 2.1 ––– 3.7 ––– ––– 1.0 ––– ––– 150 ––– ––– 100 ––– ––– -100 ––– 2.0 ––– Units A W W/°C V °C mJ A mJ Units °C/W Units Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA VGS = 10V, ID = 36A m VGS = 6.0V, ID = 18A V VDS = VGS, ID = 50µA VDS =40 V, VGS = 0V µA VDS =40V,VGS = 0V,TJ =125°C VGS = 20V nA VGS = -20V Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.131mH, RG = 50, IAS = 36A, VGS =10V. ISD 36A, di/dt 630A/µs, VDD V(BR)DSS, TJ 175°C. Pulse width 400µs; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. R is measured at TJ approximately 90°C. Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 16A, VGS =10V. 2 2016– 01-05 IRF60B217 Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain Charge Total Gate Charge Sync. (Qg– Qgd) Turn-On Delay Time Rise Time Min. 150 ––– ––– ––– ––– ––– ––– Typ. ––– 44 12 14 30 8.3 37 td(off) Turn-Off Delay Time ––– 24 tf Ciss Coss Fall Time Input Capacitance Output Capacitance ––– ––– ––– 20 2230 215 Crss Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Output Capacitance (Time Related) ––– 140 ––– ––– 230 ––– VGS = 0V, VDS = 0V to 48V ––– 295 ––– VGS = 0V, VDS = 0V to 48V Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Min. Typ. Max. Units ––– ––– 60 ––– ––– 225 Conditions MOSFET symbol showing the integral reverse p-n junction diode. VSD Diode Forward Voltage ––– 0.9 1.2 dv/dt Peak Diode Recovery dv/dt ––– 12 ––– trr Reverse Recovery Time ––– 26 ––– Qrr Reverse Recovery Charge IRRM Reverse Recovery Current ––– ––– ––– ––– 27 24 25 1.7 ––– ––– ––– ––– Coss eff.(ER) Coss eff.(TR) Max. Units Conditions ––– S VDS = 10V, ID =36A 66 ID = 36A VDS = 30V ––– nC VGS = 10V ––– ––– ––– VDD = 30V ––– ID = 36A ns ––– RG= 2.7 VGS = 10V ––– ––– ––– pF VGS = 0V VDS = 25V ƒ = 1.0MHz, See Fig.7 Diode Characteristics Symbol IS ISM 3 A V D G S TJ = 25°C,IS = 36A,VGS = 0V V/ns TJ = 175°C,IS = 36A,VDS = 40V ns TJ = 25°C VDD = 51V TJ = 125°C IF = 36A, TJ = 25°C di/dt = 100A/µs nC TJ = 125°C A TJ = 25°C 2016– 01-05 IRF60B217 1000 1000 100 BOTTOM TOP 10 4.5V 60µs PULSE WIDTH Tj = 25°C ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 1 100 BOTTOM 4.5V 10 60µs PULSE WIDTH Tj = 175°C 1 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 100 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 4. Typical Output Characteristics 1000 100 TJ = 175°C 10 TJ = 25°C 1 V DS = 30V 60µs PULSE WIDTH 0.1 3.0 4.0 5.0 6.0 7.0 ID = 36A V GS = 10V 2.0 1.5 1.0 0.5 8.0 -60 -40 -20 V GS, Gate-to-Source Voltage (V) 10000 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 5. Typical Transfer Characteristics Fig 6. Normalized On-Resistance vs. Temperature 14 V GS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + Cgd, C ds SHORTED C rss = C gd C oss = Cds + Cgd C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics Ciss 1000 Coss Crss ID= 36A 12 V DS= 48V V DS= 30V V DS= 12V 10 8 6 4 2 0 100 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 0 10 20 30 40 50 60 QG Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage 2016– 01-05 IRF60B217 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 TJ = 175°C 100 TJ = 25°C 10 1 100 100µsec 10 1msec OPERATION IN THIS AREA LIMITED BY RDS(on) 1 10msec 0.1 Tc = 25°C Tj = 175°C Single Pulse V GS = 0V 0.01 0.1 0.2 0.4 0.6 0.8 1.0 0.1 1.2 1 10 V DS, Drain-toSource Voltage (V) V SD, Source-to-Drain Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 0.4 75 Id = 1.0mA 0.3 70 Energy (µJ) V (BR)DSS, Drain-to-Source Breakdown Voltage (V) DC 0.2 65 0.1 0.0 60 0 -60 -40 -20 0 20 40 60 80 100120140160180 20 30 40 50 60 V DS, Drain-to-Source Voltage (V) TJ , Temperature ( °C ) Fig 11. Drain-to-Source Breakdown Voltage RDS(on), Drain-to -Source On Resistance ( m ) 10 Fig 12. Typical Coss Stored Energy 24.0 V GS = 6.0V V GS = 7.0V 20.0 V GS = 8.0V V GS = 10V 16.0 12.0 8.0 4.0 0 40 80 120 160 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 2016– 01-05 IRF60B217 Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Avalanche Current (A) Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150°C and Tstart =25°C (Single Pulse) 10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Avalanche Current vs. Pulse Width EAR , Avalanche Energy (mJ) 100 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 36A 80 60 40 20 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature 6 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1.Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 14) PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 2016– 01-05 IRF60B217 12 4.0 IF = 24A V R = 51V 10 TJ = 25°C TJ = 125°C 3.5 8 3.0 2.5 ID = 250µA ID = 1.0mA 2.0 ID = 10mA ID = 1.0A 1.5 IRRM (A) V GS(th) Gate threshold Voltage (V) 4.5 4 2 1.0 -75 -50 -25 6 0 25 50 75 0 100 125 150 175 0 200 TJ , Temperature ( °C ) 600 800 1000 Fig 18. Typical Recovery Current vs. dif/dt Fig 17. Threshold Voltage vs. Temperature 140 12 IF = 36A V R = 51V 10 TJ = 25°C TJ = 125°C QRR (nC) 8 IRRM (A) 400 diF /dt (A/µs) 6 120 IF = 24A V R = 51V 100 TJ = 25°C TJ = 125°C 80 4 60 2 40 20 0 0 200 400 600 800 0 1000 200 400 600 800 1000 diF /dt (A/µs) diF /dt (A/µs) Fig 19. Typical Recovery Current vs. dif/dt Fig 20. Typical Stored Charge vs. dif/dt QRR (nC) 140 120 IF = 36A V R = 51V 100 TJ = 25°C TJ = 125°C 80 60 40 20 0 200 400 600 800 1000 diF /dt (A/µs) Fig 21. Typical Stored Charge vs. dif/dt 7 2016– 01-05 IRF60B217 Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp 15V L VDS D.U.T RG IAS 20V tp DRIVER + V - DD A I AS 0.01 Fig 23a. Unclamped Inductive Test Circuit Fig 23b. Unclamped Inductive Waveforms Fig 24a. Switching Time Test Circuit Fig 24b. Switching Time Waveforms Id Vds Vgs VDD Vgs(th) Qgs1 Qgs2 Fig 25a. Gate Charge Test Circuit 8 Qgd Qgodr Fig 25b. Gate Charge Waveform 2016– 01-05 IRF60B217 TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information EXAM PLE: T H IS IS A N IR F 1 0 1 0 LO T C O D E 1789 ASSEM BLED O N W W 19, 2000 IN T H E A S S E M B L Y L IN E "C " N o t e : "P " in a s s e m b ly lin e p o s it io n in d ic a t e s "L e a d - F r e e " IN T E R N A T IO N A L R E C T IF IE R LO G O ASSEM BLY LO T C O D E PART NUM BER D ATE C O D E YEA R 0 = 2000 W EEK 19 L IN E C TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 2016– 01-05 IRF60B217 Qualification Information† Industrial (per JEDEC JESD47F) †† Qualification Level Moisture Sensitivity Level TO-220 RoHS Compliant N/A Yes † Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/ †† Applicable version of JEDEC standard at the time of product release. Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved. IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. 10 2016– 01-05