Data Sheet

Freescale Semiconductor
Technical Data
Document Number: A2I25H060N
Rev. 0, 1/2016
RF LDMOS Wideband Integrated
Power Amplifiers
The A2I25H060N wideband integrated circuit is an asymmetrical Doherty
d e s i g n e d w i t h o n -- c h i p m a t c h i n g t h a t m a k e s i t u s a b l e f r o m 2 3 0 0 t o
2690 MHz. This multi--stage structure is rated for 20 to 32 V operation and
covers all typical cellular base station modulation formats.
2600 MHz
 Typical Doherty Single--Carrier W--CDMA Characterization Performance:
VDD = 28 Vdc, IDQ1A = 26 mA, IDQ2A = 163 mA, VGS1B = 1.7 Vdc,
VGS2B = 1.3 Vdc, Pout = 10.5 W Avg., Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF.(1)
Frequency
Gps
(dB)
PAE
(%)
ACPR
(dBc)
2496 MHz
27.1
40.9
–31.5
2590 MHz
27.5
40.9
–34.0
2690 MHz
27.1
39.4
–34.7
A2I25H060NR1
A2I25H060GNR1
2300–2690 MHz, 10.5 W AVG., 28 V
AIRFAST RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIERS
TO--270WB--17
PLASTIC
A2I25H060NR1
2300 MHz
 Typical Doherty Single--Carrier W--CDMA Performance: VDD = 28 Vdc,
IDQ1A = 28 mA, IDQ2A = 177 mA, VGS1B = 1.8 Vdc, VGS2B = 1.3 Vdc,
Pout = 10.5 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on
CCDF.(1)
Frequency
Gps
(dB)
PAE
(%)
ACPR
(dBc)
2300 MHz
26.7
38.9
–33.7
2350 MHz
27.0
38.9
–34.8
2400 MHz
27.1
39.0
–34.7
TO--270WBG--17
PLASTIC
A2I25H060GNR1
Features
 Advanced High Performance In--Package Doherty
 On--Chip Matching (50 Ohm Input, DC Blocked)
 Integrated Quiescent Current Temperature Compensation with
Enable/Disable Function (2)
 Designed for Digital Predistortion Error Correction Systems
1. All data measured in fixture with device soldered to heatsink.
2. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current
Control for the RF Integrated Circuit Device Family. Go to http://www.nxp.com/RF and search for AN1977 or AN1987.
 Freescale Semiconductor, Inc., 2016. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
A2I25H060NR1 A2I25H060GNR1
1
VDS1A
VBWA
RFinA
VDS1A
VGS2A
VGS1A
RFinA
N.C.
GND
GND
N.C.
RFinB
VGS1B
VGS2B
VDS1B
RFout1/VDS2A
VGS1A
Quiescent Current
Temperature Compensation (1)
VGS2A
VGS1B
Quiescent Current
Temperature Compensation (1)
VGS2B
RFinB
RFout2/VDS2B
VDS1B
VBWB
1
2
3
4
5
6
7
8
9
10
11
12
Carrier
17
16
15
14
13
Peaking
VBWA(2)
RFout1/VDS2A
GND
RFout2/VDS2B
VBWB(2)
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistors.
Figure 1. Functional Block Diagram
Figure 2. Pin Connections
2. Device can operate with VDD current
supplied through pin 13 and pin 17.
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated
Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit
Device Family. Go to http://www.nxp.com/RF and search for AN1977 or AN1987.
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
–0.5, +65
Vdc
Gate--Source Voltage
VGS
–0.5, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
–65 to +150
C
TC
–40 to +150
C
TJ
–40 to +225
C
Pin
22
dBm
Symbol
Value (4,5)
Case Operating Temperature Range
Operating Junction Temperature Range
(3,4)
Input Power
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 77C, 10.5 W Avg., 2590 MHz
Stage 1, 28 Vdc, IDQ1A = 30 mA, VG1A = 3.5 Vdc, VG1B = 1.7 Vdc
Stage 2, 28 Vdc, IDQ2A = 190 mA, VG2A = 3.65 Vdc, VG2B = 1.3 Vdc
RJC
Unit
C/W
5.6
2.2
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
1B
Machine Model (per EIA/JESD22--A115)
A
Charge Device Model (per JESD22--C101)
II
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
3. Continuous use at maximum temperature will affect MTTF.
4. MTTF calculator available at http://www.nxp.com/RF/calculators.
5. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
A2I25H060NR1 A2I25H060GNR1
2
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 32 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 1.0 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage (1)
(VDS = 10 Vdc, ID = 4 Adc)
VGS(th)
0.8
1.2
1.6
Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, IDQ1A = 26 mAdc)
VGS(Q)
—
2.0
—
Vdc
Fixture Gate Quiescent Voltage
(VDD = 28 Vdc, IDQ1A = 26 mAdc, Measured in Functional Test)
VGG(Q)
2.9
3.5
4.4
Vdc
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 32 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 1.0 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage (1)
(VDS = 10 Vdc, ID = 26 Adc)
VGS(th)
0.8
1.2
1.6
Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, IDQ2A = 174 mAdc)
VGS(Q)
—
1.7
—
Vdc
Fixture Gate Quiescent Voltage
(VDD = 28 Vdc, IDQ2A = 174 mAdc, Measured in Functional Test)
VGG(Q)
2.9
3.6
4.4
Vdc
Drain--Source On--Voltage (1)
(VGS = 10 Vdc, ID = 350 mAdc)
VDS(on)
0.1
0.22
1.5
Vdc
Characteristic
Carrier Stage 1 -- Off Characteristics (1)
Carrier Stage 1 -- On Characteristics
Carrier Stage 2 -- Off Characteristics (1)
Carrier Stage 2 -- On Characteristics
1. Each side of device measured separately.
(continued)
A2I25H060NR1 A2I25H060GNR1
RF Device Data
Freescale Semiconductor, Inc.
3
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 32 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 1.0 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
VGS(th)
0.8
1.2
1.6
Vdc
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 32 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 1.0 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 42 Adc)
VGS(th)
0.8
1.2
1.6
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 565 mAdc)
VDS(on)
0.1
0.22
1.5
Vdc
Peaking Stage 1 -- Off Characteristics (1)
Peaking Stage 1 -- On Characteristics (1)
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 8 Adc)
Peaking Stage 2 -- Off Characteristics (1)
Peaking Stage 2 -- On Characteristics (1)
1. Each side of device measured separately.
(continued)
A2I25H060NR1 A2I25H060GNR1
4
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
(1,2,3)
Functional Tests
(In Freescale Doherty Production Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1A = 26 mA, IDQ2A = 174 mA,
VGS1B = 1.7 Vdc, VGS2B = 1.3 Vdc, Pout = 10.5 W Avg., f = 2590 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal
PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset.
Power Gain
Gps
24.6
26.1
28.0
dB
Power Added Efficiency
PAE
37.5
40.4
—
%
Adjacent Channel Power Ratio
ACPR
—
–31.6
–28.0
dBc
Pout @ 3 dB Compression Point
P3dB
38.9
48.2
—
W
(2) (In
Load Mismatch
Freescale Doherty Production Test Fixture, 50 ohm system) IDQ1A = 26 mA, IDQ2A = 174 mA, VGS1B = 1.7 Vdc,
VGS2B = 1.3 Vdc, f = 2590 MHz
VSWR 10:1 at 32 Vdc, 55 W CW Output Power
(3 dB Input Overdrive from 36 W CW Rated Power)
No Device Degradation
Typical Performance (2) (In Freescale Doherty Characterization Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1A = 26 mA,
IDQ2A = 163 mA, VGS1B = 1.7 Vdc, VGS2B = 1.3 Vdc, 2496–2690 MHz Bandwidth
Pout @ 1 dB Compression Point, CW
P1dB
—
52
—
W
(4)
P3dB
—
57
—
W
AM/PM
(Maximum value measured at the P3dB compression point across
the 2496–2690 MHz frequency range.)

—
–27.2
—

VBWres
—
180
—
MHz
—
—
4.76
2.33
—
—
Pout @ 3 dB Compression Point
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
Quiescent Current Accuracy over Temperature (5)
with 2 k Gate Feed Resistors (–30 to 85C) Stage 1
with 2 k Gate Feed Resistors (–30 to 85C) Stage 2
IQT
%
Gain Flatness in 194 MHz Bandwidth @ Pout = 10.5 W Avg.
GF
—
0.312
—
dB
Gain Variation over Temperature
(–30C to +85C)
G
—
0.030
—
dB/C
P1dB
—
0.006
—
dB/C
Output Power Variation over Temperature
(–30C to +85C)
Table 6. Ordering Information
Device
A2I25H060NR1
A2I25H060GNR1
Tape and Reel Information
R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel
Package
TO--270WB--17
TO--270WBG--17
1. Part internally matched both on input and output.
2. Measurements made with device in an asymmetrical Doherty configuration.
3. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull
wing (GN) parts.
4. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W--CDMA single--carrier input signal
where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.
5. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current
Control for the RF Integrated Circuit Device Family. Go to http://www.nxp.com/RF and search for AN1977 or AN1987.
A2I25H060NR1 A2I25H060GNR1
RF Device Data
Freescale Semiconductor, Inc.
5
VGG2A
C16 C18
VDD1A
R1
VGG1A
A2I25H060N
Rev. 0
C11
R2
C
VDD2A
C1
C14
CUT OUT AREA
C7
C5
R5
Z1
C4
C10
C9
C13
C3
C6
C8
VDD1B
VGG1B
R4
C12
C15
C2
R3
P
VDD2B
C17
VGG2B
C19
Figure 3. A2I25H060NR1 Production Test Circuit Component Layout
Table 7. A2I25H060NR1 Production Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C2, C3
6.8 pF Chip Capacitors
ATC600F6R8BT250XT
ATC
C4
1.2 pF Chip Capacitor
ATC600F1R2BT250XT
ATC
C5, C6, C7, C8, C16, C17
4.7 F Chip Capacitors
GRM31CR71H475KA12L
Murata
C9
4.7 pF Chip Capacitor
ATC600F4R7BT250XT
ATC
C10
0.2 pF Chip Capacitor
ATC600F0R2BT250XT
ATC
C11, C12, C18, C19
10 F Chip Capacitors
GRM31CR61H106KA12L
Murata
C13
1 pF Chip Capacitor
ATC600F1R0BT250XT
ATC
C14, C15
1 F Chip Capacitors
GRM31MR71H105KA88L
Murata
R1, R2, R3, R4
2 k, 1/4 W Chip Resistors
SG73P2ATTD2001F
KOA Speer
R5
50 , 10 W Termination
RFP-060120A25Z50--2
Anaren
Z1
2300–2700 MHz Band, 90, 2 dB Hybrid Coupler
CMX25Q02
RN2 Technologies
PCB
Rogers RO4350B, 0.020, r = 3.66
—
MTL
A2I25H060NR1 A2I25H060GNR1
6
RF Device Data
Freescale Semiconductor, Inc.
VGG2A
C16 C18
VDD1A
R1
VGG1A
A2I25H060N
Rev. 0
C11
R2
C
VDD2A
D76511
C14
C7
C20
C5
R5
C9
Q1
Z1
C4
C3
C2 C13
C21
C6
C8
VDD1B
VGG1B
C1
C10
R4
C12
C15
P
R3
VDD2B
C17
VGG2B
C19
Note: All data measured in fixture with device soldered to heatsink.
Figure 4. A2I25H060NR1 Characterization Test Circuit Component Layout
Table 8. A2I25H060NR1 Characterization Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C2, C5, C6, C7, C8,
C16, C17
4.7 F Chip Capacitors
GRM31CR71H475KA12L
Murata
C3
6.8 pF Chip Capacitor
ATC600F6R8BT250XT
ATC
C4
1.2 pF Chip Capacitor
ATC600F1R2BT250XT
ATC
C9
3.6 pF Chip Capacitor
ATC600F3R6BT250XT
ATC
C10
0.2 pF Chip Capacitor
ATC600F0R2BT250XT
ATC
C11, C12, C18, C19, C20,
C21
10 F Chip Capacitors
GRM31CR61H106KA12L
Murata
C13
1.5 pF Chip Capacitor
ATC600F1R5BT250XT
ATC
C14, C15
1 F Chip Capacitors
GRM31MR71H105KA88L
Murata
Q1
RF LDMOS Power Amplifier
A2I25H060NR1
Freescale
R1, R2, R3, R4
2 k, 1/4 W Chip Resistors
SG73P2ATTD2001F
KOA Speer
R5
50 , 10 W Termination
RFP-060120A25Z50--2
Anaren
Z1
2300–2700 MHz Band, 90, 2 dB Hybrid Coupler
CMX25Q02
RN2 Technologies
PCB
Rogers RO4350B, 0.020, r = 3.66
D76511
MTL
A2I25H060NR1 A2I25H060GNR1
RF Device Data
Freescale Semiconductor, Inc.
7
TYPICAL CHARACTERISTICS
41
28.5 Single--Carrier W--CDMA, 3.84 MHz Channel
28 Bandwidth, Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
27.5
40
PAE
39
Gps
27
PARC
26.5
–1
–30
–1.5
–32
ACPR
26
–28
–34
–36
25.5
25
2480
2510
2540
2570 2600 2630
f, FREQUENCY (MHz)
2660
2690
–38
2720
–2
–2.5
–3
PARC (dB)
Gps, POWER GAIN (dB)
29
42
ACPR (dBc)
VDD = 28 Vdc, Pout = 10.5 W (Avg.), IDQ1A = 26 mA
IDQ2A = 163 mA, VGS1B = 1.7 Vdc, VGS2B = 1.3 Vdc
PAE, POWER ADDED
EFFICIENCY (%)
43
30
29.5
–3.5
IMD, INTERMODULATION DISTORTION (dBc)
Figure 5. Single--Carrier Output Peak--to--Average Ratio Compression
(PARC) Broadband Performance @ Pout = 10.5 Watts Avg.
–10
VDD = 28 Vdc, Pout = 21 W (PEP), IDQ1A = 26 mA
IDQ2A = 163 mA, VGS1B = 1.7 Vdc, VGS2B = 1.3 Vdc
Two--Tone Measurements, (f1 + f2)/2 = Center
Frequency of 2590 MHz
–20
IM3--U
–30
IM3--L
–40
IM5--L
IM5--U
–50
IM7--L
–60
1
IM7--U
10
300
100
TWO--TONE SPACING (MHz)
28.5
–1
28
27.5
27
26.5
26
VDD = 28 Vdc, IDQ1A = 26 mA, IDQ2A = 163 mA
VGS1B = 1.7 Vdc, VGS2B = 1.3 Vdc, f = 2590 MHz
–1 dB = 7.8 W
–2
50
PAE
ACPR 40
–3 dB = 15.1 W
–3
30
–2 dB = 11.4 W
–4
20
Single--Carrier W--CDMA, 3.84 MHz
Channel Bandwidth, Input Signal
PAR = 9.9 dB @ 0.01% Probability
on CCDF
–5
–6
0
5
Gps
PARC
20
10
15
Pout, OUTPUT POWER (WATTS)
25
–10
60
10
0
30
–20
–30
–40
ACPR (dBc)
0
PAE, POWER ADDED EFFICIENCY (%)
29
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
Figure 6. Intermodulation Distortion Products
versus Two--Tone Spacing
–50
–60
–70
Figure 7. Output Peak--to--Average Ratio
Compression (PARC) versus Output Power
A2I25H060NR1 A2I25H060GNR1
8
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
28
2496 MHz
2496 MHz
2590 MHz 40
2690 MHz
2590 MHz
27
30
2690 MHz
26
2590 MHz
2690 MHz
20
2496 MHz
25
24
50
ACPR
1
Gps
3.84 MHz Channel Bandwidth, Input Signal
PAR = 9.9 dB @ 0.01% Probability on CCDF
10
Pout, OUTPUT POWER (WATTS) AVG.
10
10
0
40
0
–10
–20
–30
ACPR (dBc)
29
Gps, POWER GAIN (dB)
60
VDD = 28 Vdc, IDQ1A = 26 mA, IDQ2A = 163 mA
VGS1B = 1.7 Vdc, VGS2B = 1.3 Vdc
Single--Carrier W--CDMA
PAE
PAE, POWER ADDED EFFICIENCY (%)
30
–40
–50
Figure 8. Single--Carrier W--CDMA Power Gain, Power Added
Efficiency and ACPR versus Output Power
28
Gain
26
GAIN (dB)
24
22
20
VDD = 28 Vdc
Pin = 0 dBm
IDQ1A = 26 mA, IDQ2A = 163 mA
VGS1B = 1.7 Vdc, VGS2B = 1.3 Vdc
18
16
2200
2300
2400
2500 2600 2700
f, FREQUENCY (MHz)
2800
2900
3000
Figure 9. Broadband Frequency Response
A2I25H060NR1 A2I25H060GNR1
RF Device Data
Freescale Semiconductor, Inc.
9
Table 9. Carrier Side Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, IDQ1A = 28 mA, IDQ1B = 182 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Output Power
P1dB
Zload
()
(1)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
10.6 – j11.1
31.9
44.5
28
53.1
–6
9.99 – j10.6
32.0
44.5
28
54.9
–8
31.6
44.1
26
52.8
–9
Zsource
()
Zin
()
2496
60.5 – j0.96
57.6 + j1.40
2590
61.5 + j10.9
57.1 – j8.84
2690
60.1 + j18.7
57.9 – j11.6
8.28 – j10.5
f
(MHz)
Max Output Power
P3dB
f
(MHz)
Zsource
()
Zin
()
Zload (2)
()
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
2496
60.5 – j0.96
55.6 – j1.26
10.4 – j11.5
29.8
45.4
35
55.0
–10
2590
61.5 + j10.9
53.7 – j8.80
9.79 – j11.2
29.8
45.4
35
56.1
–14
2690
60.1 + j18.7
54.8 – j8.94
8.61 – j11.3
29.5
45.0
32
54.9
–17
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Table 10. Carrier Side Load Pull Performance — Maximum Efficiency Tuning
VDD = 28 Vdc, IDQ1A = 28 mA, IDQ1B = 182 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
f
(MHz)
Zsource
()
Zin
()
Zload (1)
()
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
2496
60.5 – j0.96
60.8 + j0.12
15.3 – j5.12
32.8
43.5
22
59.1
–8
2590
61.5 + j10.9
59.4 – j12.2
12.3 – j3.64
33.0
43.2
21
60.4
–9
2690
60.1 + j18.7
57.9 – j16.6
9.70 – j5.83
32.7
43.3
21
59.0
–9
Max Drain Efficiency
P3dB
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
14.7 – j5.71
30.8
44.5
28
60.0
–10
56.0 – j11.9
12.1 – j4.46
30.9
44.3
27
61.5
–14
54.7 – j14.0
9.51 – j5.64
30.7
44.1
26
60.4
–17
f
(MHz)
Zsource
()
Zin
()
2496
60.5 – j0.96
58.6 – j1.83
2590
61.5 + j10.9
2690
60.1 + j18.7
Zload
()
(2)
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
A2I25H060NR1 A2I25H060GNR1
10
RF Device Data
Freescale Semiconductor, Inc.
Table 11. Peaking Side Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, VGSA = 1.0 Vdc, VGSB = 1.0 Vdc, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Output Power
P1dB
Zsource
()
Zin
()
2496
57.3 – j1.04
47.3 – j5.57
2590
61.1 + j16.3
48.1 – j12.9
2690
61.5 + j21.7
52.7 – j10.3
f
(MHz)
Zload
()
(1)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
4.76 – j7.37
23.1
47.5
57
56.2
–32
4.63 – j7.34
23.5
47.5
56
57.0
–38
4.21 – j7.51
23.4
47.1
52
57.6
–43
Max Output Power
P3dB
f
(MHz)
Zsource
()
Zin
()
Zload (2)
()
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
2496
57.3 – j1.04
42.5 – j5.20
4.68 – j7.45
21.0
47.8
60
55.0
–44
2590
61.1 + j16.3
44.6 – j8.75
4.63 – j7.51
21.4
47.7
59
56.1
–50
2690
61.5 + j21.7
52.2 – j4.81
4.14 – j7.58
21.3
47.3
54
57.0
–54
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Table 12. Peaking Side Load Pull Performance — Maximum Efficiency Tuning
VDD = 28 Vdc, VGSA = 1.0 Vdc, VGSB = 1.0 Vdc, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
f
(MHz)
Zsource
()
Zin
()
Zload (1)
()
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
2496
57.3 – j1.04
51.2 – j5.71
7.34 – j4.47
23.0
46.6
45
61.3
–35
2590
61.1 + j16.3
50.6 – j15.7
6.35 – j5.05
23.6
46.8
47
62.0
–39
2690
61.5 + j21.7
52.3 – j15.2
5.07 – j4.95
23.4
46.2
42
62.8
–46
Max Drain Efficiency
P3dB
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
6.93 – j5.75
21.1
47.2
53
59.3
–47
45.6 – j11.3
6.12 – j4.93
21.5
47.0
50
60.5
–55
51.0 – j7.68
5.07 – j5.45
21.4
46.6
46
61.3
–60
f
(MHz)
Zsource
()
Zin
()
2496
57.3 – j1.04
44.4 – j6.29
2590
61.1 + j16.3
2690
61.5 + j21.7
Zload
()
(2)
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
A2I25H060NR1 A2I25H060GNR1
RF Device Data
Freescale Semiconductor, Inc.
11
P1dB – TYPICAL CARRIER LOAD PULL CONTOURS — 2590 MHz
5
5
40.5
41
50
41.5
42
E
–5
43.5
–10
P 44.5
42.5
43
–20
E
–5
60
56
58
54
52
–10
P
44
–15
50
–15
43
8
6
48
44
43.5
10
12
18
16
14
REAL ()
20
48
0
IMAGINARY ()
IMAGINARY ()
0
48
22
–20
24
8
6
10
12
14
16
REAL ()
18
46
20
44
22
24
Figure 11. P1dB Load Pull Efficiency Contours (%)
Figure 10. P1dB Load Pull Output Power Contours (dBm)
5
5
0
0
33
E
–5
IMAGINARY ()
IMAGINARY ()
–14
32.5
–10
P
–12
–10
–5
EE
–8
–10
PP
32
–15
–20
30
29.5
6
8
10
–15
31.5
31
30.5
12
14
16
REAL ()
–6
–8
18
20
22
24
Figure 12. P1dB Load Pull Gain Contours (dB)
NOTE:
–20
6
8
10
12
14
16
REAL ()
18
20
22
24
Figure 13. P1dB Load Pull AM/PM Contours ()
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
A2I25H060NR1 A2I25H060GNR1
12
RF Device Data
Freescale Semiconductor, Inc.
P3dB – TYPICAL CARRIER LOAD PULL CONTOURS — 2590 MHz
5
42
41.5
IMAGINARY ()
0
0
43
43.5
E
–5
44
45
–10
P
–15
E
–5
60
–10
44.5
8
6
10
12
18
16
14
REAL ()
20
22
–20
24
56
54
52
50
48
46
8
6
5
5
0
0
–20
IMAGINARY ()
31
E
–5
30.5
–10
P
10
12
18
14
16
REAL ()
20
22
24
Figure 15. P3dB Load Pull Efficiency Contours (%)
Figure 14. P3dB Load Pull Output Power Contours (dBm)
IMAGINARY ()
58
P
–15
44
–20
54
50
42.5
IMAGINARY ()
5
–12
–18
–16
–10
E
–5
–14
–10
–14 P
30
–15
–20
28
6
8
10
–15
29.5
29
28.5
12
14
16
REAL ()
–8
18
20
22
24
Figure 16. P3dB Load Pull Gain Contours (dB)
NOTE:
–20
6
8
10
12
14
16
REAL ()
18
20
22
24
Figure 17. P3dB Load Pull AM/PM Contours ()
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
A2I25H060NR1 A2I25H060GNR1
RF Device Data
Freescale Semiconductor, Inc.
13
P1dB – TYPICAL PEAKING LOAD PULL CONTOURS — 2590 MHz
0
45
58
–4
E
46
–6
P
–8
46
–4
E
60
–6
56
P
–8
47
–10
54
–10
45.5
–12
54
–2
45.5
IMAGINARY ()
IMAGINARY ()
44
43.5
–2
0
44.5
3
2
46
46.5
4
5
6
7
8
REAL ()
9
10
11
12
–12
21
–2
4
5
6
7
8
REAL ()
9
–46
–2
IMAGINARY ()
IMAGINARY ()
E
–6
–8
23.5
12
–38
E
–36
–6
–34
P
–8
–32
–30
–10
–10
22
21
–12
–40
–4
23
21.5
11
–44
–42
–4
P
10
0
22
21.5
3
Figure 19. P1dB Load Pull Efficiency Contours (%)
Figure 18. P1dB Load Pull Output Power Contours (dBm)
0
2
52
50
48
2
3
22.5
4
5
6
7
8
9
10
11
12
–12
2
3
4
5
6
7
8
9
10
11
REAL ()
REAL ()
Figure 20. P1dB Load Pull Gain Contours (dB)
Figure 21. P1dB Load Pull AM/PM Contours ()
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
12
Gain
Drain Efficiency
Linearity
Output Power
A2I25H060NR1 A2I25H060GNR1
14
RF Device Data
Freescale Semiconductor, Inc.
P3dB – TYPICAL PEAKING LOAD PULL CONTOURS — 2590 MHz
0
43.5
50
45
–2
45.5
–4
46
E
–6
46.5
47.5
47
P
–8
52
IMAGINARY ()
IMAGINARY ()
–2
0
44.5
44
–4
–10
–12
–12
3
2
4
5
6
7
8
REAL ()
9
10
11
12
0
52
44
2
3
4
5
50
48
46
6
7
8
REAL ()
9
10
11
12
0
19.5
19
–2
20
–2
–4
IMAGINARY ()
IMAGINARY ()
54
Figure 23. P3dB Load Pull Efficiency Contours (%)
Figure 22. P3dB Load Pull Output Power Contours (dBm)
E
–6
21.5
P
–8
19.5
21
–10
20
19
–12
60
P
–8
–10
56
58
E
–6
2
3
–60
–58
–56
–4
–54
–52
E
–50
–6
–48
P
–8
–46
–44
–10
20.5
4
5
6
7
8
9
10
11
12
–12
2
3
4
5
6
7
8
9
10
11
REAL ()
REAL ()
Figure 24. P3dB Load Pull Gain Contours (dB)
Figure 25. P3dB Load Pull AM/PM Contours ()
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
12
Gain
Drain Efficiency
Linearity
Output Power
A2I25H060NR1 A2I25H060GNR1
RF Device Data
Freescale Semiconductor, Inc.
15
R6
R1
R2
C7
C18
C17
C25 C26 C27
C19
C23
C3
C2
R5
C1
C9
Z1
C
C12
C16
Q1
C10
C13
P
C14
C20
C15
C4
C5
C6
C21
C22
R4
C24
C8
C11
A2I25H060N
Rev. 0
D76512
C28
C29
C30
R3
R7
Note: All data measured in fixture with device soldered to heatsink.
Figure 26. A2I25H060NR1 Test Circuit Component Layout —2300–2400 MHz
Table 13. A2I25H060NR1 Test Circuit Component Designations and Values —2300–2400 MHz
Part
Description
Part Number
Manufacturer
C1, C2, C3, C4, C5, C6, C7, C8, C9,
C10, C11
8.2 pF Chip Capacitors
ATC600F8R2BT250XT
ATC
C12, C13
0.5 pF Chip Capacitors
ATC600F0R5BT250XT
ATC
C14
0.3 pF Chip Capacitor
ATC600F0R3BT250XT
ATC
C15
12 pF Chip Capacitor
ATC600F12R0BT250XT
ATC
C16
1.5 pF Chip Capacitor
ATC600F1R5BT250XT
ATC
C17, C18, C19, C20, C21, C22, C23,
C24, C25, C26, C27, C28, C29, C30
10 F Chip Capacitors
GRM32ER61H106KA12L
Murata
Q1
RF LDMOS Power Amplifier
A2I25H060NR1
Freescale
R1, R2, R3, R4
2 k, 1/4 W Chip Resistors
SG73P2ATTD2001F
KOA Speer
R5
50 , 10 W Termination
RFP-060120A25Z50--2
Anaren
R6, R7
0 , 3 A Chip Resistors
CRCW12060000Z0EA
Vishay
Z1
2300–2700 MHz Band, 90, 2 dB Hybrid Coupler
CMX25Q02
RN2 Technologies
PCB
Rogers RO4350B, 0.020, r = 3.66
D76512
MTL
A2I25H060NR1 A2I25H060GNR1
16
RF Device Data
Freescale Semiconductor, Inc.
Gps, POWER GAIN (dB)
27.6
39.5
PAE
27.4 Single--Carrier W--CDMA, 3.84 MHz Channel
27.2 Bandwidth, Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
27
Gps
26.6
PARC
ACPR
26.2
26
2290
2305
38.5
38
26.8
26.4
39
–28
–1
–30
–1.5
–32
–34
–36
2320
2335 2350 2365
f, FREQUENCY (MHz)
2380
2395
ACPR (dBc)
VDD = 28 Vdc, Pout = 10.5 W (Avg.), IDQ1A = 28 mA
IDQ2A = 177 mA, VGS1B = 1.8 Vdc, VGS2B = 1.3 Vdc
–2
–2.5
–3
PARC (dB)
40
28
27.8
PAE, POWER ADDED
EFFICIENCY (%)
TYPICAL CHARACTERISTICS — 2300–2400 MHz
–3.5
–38
2410
Figure 27. Single--Carrier Output Peak--to--Average Ratio Compression
(PARC) Broadband Performance @ Pout = 10.5 Watts Avg.
27
2300 MHz
Gps
PAE
2400 MHz
2350 MHz
26
50
40
30
2400 MHz
25
60
2300 MHz
2350 MHz
20
2400 MHz
24
23
ACPR
3.84 MHz Channel Bandwidth, Input Signal
PAR = 9.9 dB @ 0.01% Probability on CCDF
10
Pout, OUTPUT POWER (WATTS) AVG.
1
10
10
0
40
0
–10
–20
–30
ACPR (dBc)
28
VDD = 28 Vdc, IDQ1A = 28 mA, IDQ2A = 177 mA
2300 MHz
VGS1B = 1.8 Vdc, VGS2B = 1.3 Vdc
Single--Carrier W--CDMA
2350 MHz
PAE, POWER ADDED EFFICIENCY (%)
Gps, POWER GAIN (dB)
29
–40
–50
Figure 28. Single--Carrier W--CDMA Power Gain, Power Added
Efficiency and ACPR versus Output Power
28
Gain
26
GAIN (dB)
24
22
20
VDD = 28 Vdc
Pin = 0 dBm
IDQ1A = 28 mA, IDQ2A = 177 mA
VGS1B = 1.8 Vdc, VGS2B = 1.3 Vdc
18
16
2000
2100
2200
2300 2400 2500
f, FREQUENCY (MHz)
2600
2700
2800
Figure 29. Broadband Frequency Response
A2I25H060NR1 A2I25H060GNR1
RF Device Data
Freescale Semiconductor, Inc.
17
Table 14. Carrier Side Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, IDQ1A = 28 mA, IDQ1B = 182 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Output Power
P1dB
f
(MHz)
Zsource
()
Zin
()
2300
26.5 – j9.90
26.4 + j7.78
2400
44.2 – j12.0
42.3 + j9.38
Zload
()
(1)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
9.63 – j12.0
30.7
44.4
28
52.7
–4
10.1 – j11.7
31.1
44.3
27
51.2
–2
Max Output Power
P3dB
f
(MHz)
Zsource
()
Zin
()
Zload (2)
()
2300
26.5 – j9.90
27.5 + j6.96
9.11 – j12.5
28.6
45.2
33
53.3
–6
2400
44.2 – j12.0
42.7 + j7.17
9.76 – j11.9
29.0
45.2
33
52.1
–5
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Table 15. Carrier Side Load Pull Performance — Maximum Efficiency Tuning
VDD = 28 Vdc, IDQ1A = 28 mA, IDQ1B = 182 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
f
(MHz)
Zsource
()
Zin
()
2300
26.5 – j9.90
27.3 + j8.98
2400
44.2 – j12.0
44.7 + j10.3
Zload
()
(1)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
18.2 – j10.7
31.8
43.2
21
59.0
–6
16.7 – j7.02
32.3
43.3
21
56.9
–4
Max Drain Efficiency
P3dB
f
(MHz)
Zsource
()
Zin
()
Zload (2)
()
2300
26.5 – j9.90
28.1 + j8.20
17.0 – j10.3
29.7
44.2
26
59.2
–9
2400
44.2 – j12.0
44.7 + j8.13
17.0 – j7.71
30.3
44.1
26
57.7
–6
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
A2I25H060NR1 A2I25H060GNR1
18
RF Device Data
Freescale Semiconductor, Inc.
Table 16. Peaking Side Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, VGSA = 1.0 Vdc, VGSB = 1.0 Vdc, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Output Power
P1dB
f
(MHz)
Zsource
()
Zin
()
2300
23.9 + j2.41
24.2 – j4.45
2400
36.1 – j2.99
35.3 – j2.41
Zload
()
(1)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
4.16 – j7.89
21.4
47.4
55
54.7
–32
4.57 – j7.10
22.2
47.4
54
54.2
–31
Max Output Power
P3dB
f
(MHz)
Zsource
()
Zin
()
Zload (2)
()
2300
23.9 + j2.41
24.4 – j6.32
4.16 – j7.97
19.4
47.7
59
53.9
–42
2400
36.1 – j2.99
32.8 – j4.53
4.57 – j7.27
20.2
47.6
58
53.3
–42
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Table 17. Peaking Side Load Pull Performance — Maximum Efficiency Tuning
VDD = 28 Vdc, VGSA = 1.0 Vdc, VGSB = 1.0 Vdc, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
f
(MHz)
Zsource
()
Zin
()
2300
23.9 + j2.41
24.7 – j3.51
2400
36.1 – j2.99
37.0 – j1.38
Zload
()
(1)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
7.56 – j8.25
21.3
46.6
45
60.5
–34
8.23 – j5.70
22.0
46.4
44
59.7
–34
Max Drain Efficiency
P3dB
f
(MHz)
Zsource
()
Zin
()
Zload (2)
()
2300
23.9 + j2.41
24.8 – j5.77
6.68 – j8.13
19.4
47.1
52
58.0
–46
2400
36.1 – j2.99
34.2 – j4.41
7.40 – j5.84
20.1
47.0
50
57.3
–47
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
A2I25H060NR1 A2I25H060GNR1
RF Device Data
Freescale Semiconductor, Inc.
19
P1dB – TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 2300 MHz
5
5
41.5
41
0
–5
IMAGINARY ()
IMAGINARY ()
0
40.5
42
42.5
–10
E
P
44
–15
–25
10
5
–10
EE
PP
15
42.5
20
REAL ()
25
30
35
5
0
0
10
5
–5
–5
IMAGINARY ()
IMAGINARY ()
E
–15
29
–25
10
20
REAL ()
20
REAL ()
30
25
35
–10
–10
P
–15
E
–4
–6
31.5
15
50
–8
–20
29.5 30.5
5
15
32
31
30
48
–12
–14
P
46
52
Figure 31. P1dB Load Pull Efficiency Contours (%)
5
–10
56
54
44
–25
Figure 30. P1dB Load Pull Output Power Contours (dBm)
–20
58
–15
–20
42.5
42
41 41.5
–5
43
43.5
–20
52
41
25
30
35
Figure 32. P1dB Load Pull Gain Contours (dB)
NOTE:
–25
0
5
–2
10
15
20
REAL ()
25
30
35
Figure 33. P1dB Load Pull AM/PM Contours ()
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
A2I25H060NR1 A2I25H060GNR1
20
RF Device Data
Freescale Semiconductor, Inc.
P3dB – TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 2300 MHz
5
0
5
41
41.5
0
–5
–10
E
P
45
–15
44.5
–20
–25
IMAGINARY ()
IMAGINARY ()
42
41 41.5
43.5
44
10
15
42
20
REAL ()
25
30
–10
E
58
P
56
–15
–20
42.5
5
–5
54
41.5
43
42
54
–25
35
Figure 34. P3dB Load Pull Output Power Contours (dBm)
52
44 46
10
5
50
48
15
20
REAL ()
30
25
35
Figure 35. P3dB Load Pull Efficiency Contours (%)
5
5
0
0
–5
–5
–10
IMAGINARY ()
IMAGINARY ()
–16
E
P
–15
27
–20
–25
26.5
5
29
28
–12
–10
E
P
20
REAL ()
25
30
35
Figure 36. P3dB Load Pull Gain Contours (dB)
NOTE:
–25
–8
–6
–20
0
15
–10
–15
30
29.5
27.5 28.5
10
–14
5
–2
10
–4
15
20
REAL ()
25
30
35
Figure 37. P3dB Load Pull AM/PM Contours ()
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
A2I25H060NR1 A2I25H060GNR1
RF Device Data
Freescale Semiconductor, Inc.
21
P1dB – TYPICAL PEAKING LOAD PULL CONTOURS — 2300 MHz
–2
45.5
45
44
–2
45
–4
P
–8
E
–10
46
–12
–14
44
3
2
45.5
6
5
7
8
REAL ()
44.5
9
10
11
60
P
–8
E
–10
2
3
4
7
8
REAL ()
9
10
11
12
–2
18
18.5
19.5
19
20
21
20.5
–6
–4
21.5
P
–8
E
–10
–6
–40
P
–8
E
–10
–26
–28
–38
–36
–34
–24
–12
–14
6
5
Figure 39. P1dB Load Pull Efficiency Contours (%)
IMAGINARY ()
IMAGINARY ()
–4
56
–6
–14
12
Figure 38. P1dB Load Pull Output Power Contours (dBm)
–2
54
–12
45
44.5
4
52
58
46.5
47
–6
IMAGINARY ()
IMAGINARY ()
–4
48
50
46
44
–32
–30
–12
19.5
19
2
3
4
5
6
7
8
9
10
11
12
–14
2
3
4
5
6
7
8
9
10
11
12
REAL ()
REAL ()
Figure 40. P1dB Load Pull Gain Contours (dB)
Figure 41. P1dB Load Pull AM/PM Contours ()
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
A2I25H060NR1 A2I25H060GNR1
22
RF Device Data
Freescale Semiconductor, Inc.
P3dB – TYPICAL PEAKING LOAD PULL CONTOURS — 2300 MHz
–4
IMAGINARY ()
–2
44
45
44.5 45.5
45.5
47
–6
–8
46.5
46
47.5
P
E
–10
44
46
42
–4
IMAGINARY ()
–2
50
48
52
54
56
–6
P
P
–8
EE
–10
45.5
–12
–14
3
2
–12
45
44 44.5
4
5
6
7
8
REAL ()
9
10
11
–14
12
19
–6
19.5
–8
P
E
–10
–12
2
3
7
8
REAL ()
–6
9
10
11
12
–50 –52
–8
P
E
–48
–10
17.5
4
17.5
5
6
7
8
9
10
11
12
–14
–44 –46
–38
–12
17
–14
6
5
–4
IMAGINARY ()
IMAGINARY ()
18.5
18
17
4
–2
16
16.5 17.5
–4
3
Figure 43. P3dB Load Pull Efficiency Contours (%)
Figure 42. P3dB Load Pull Output Power Contours (dBm)
–2
2
–40 –42
–36
2
3
4
5
6
7
8
9
10
11
12
REAL ()
REAL ()
Figure 44. P3dB Load Pull Gain Contours (dB)
Figure 45. P3dB Load Pull AM/PM Contours ()
NOTE:
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
A2I25H060NR1 A2I25H060GNR1
RF Device Data
Freescale Semiconductor, Inc.
23
PACKAGE DIMENSIONS
A2I25H060NR1 A2I25H060GNR1
24
RF Device Data
Freescale Semiconductor, Inc.
A2I25H060NR1 A2I25H060GNR1
RF Device Data
Freescale Semiconductor, Inc.
25
A2I25H060NR1 A2I25H060GNR1
26
RF Device Data
Freescale Semiconductor, Inc.
A2I25H060NR1 A2I25H060GNR1
RF Device Data
Freescale Semiconductor, Inc.
27
A2I25H060NR1 A2I25H060GNR1
28
RF Device Data
Freescale Semiconductor, Inc.
A2I25H060NR1 A2I25H060GNR1
RF Device Data
Freescale Semiconductor, Inc.
29
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following resources to aid your design process.
Application Notes
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
 AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
 AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
 RF High Power Model
 .s2p File
Development Tools
 Printed Circuit Boards
To Download Resources Specific to a Given Part Number:
1. Go to http://www.nxp.com/RF
2. Search by part number
3. Click part number link
4. Choose the desired resource from the drop down menu
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Jan. 2016
Description
 Initial release of data sheet
A2I25H060NR1 A2I25H060GNR1
30
RF Device Data
Freescale Semiconductor, Inc.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.
E 2016 Freescale Semiconductor, Inc.
A2I25H060NR1 A2I25H060GNR1
Document
Number:
RF
Device
Data A2I25H060N
Rev. 0, 1/2016Semiconductor, Inc.
Freescale
31