INFINEON SPI20N60C3

SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
Final data
Cool MOS™ Power Transistor
Feature
VDS @ Tjmax
650
V
RDS(on)
0.19
Ω
ID
20.7
A
• New revolutionary high voltage technology
• Worldwide best R DS(on) in TO 220
• Ultra low gate charge
P-TO220-3-31
P-TO262-3-1
P-TO263-3-2
P-TO220-3-1
• Periodic avalanche rated
• Extreme dv/dt rated
• High peak current capability
1
2
3
P-TO220-3-31
• Improved transconductance
• P-TO-220-3-31: Fully isolated package (2500 VAC; 1 minute)
Type
Package
Ordering Code
Marking
SPP20N60C3
P-TO220-3-1
Q67040-S4398
20N60C3
SPB20N60C3
P-TO263-3-2
Q67040-S4397
20N60C3
SPI20N60C3
P-TO262-3-1
Q67040-S4550
20N60C3
SPA20N60C3
P-TO220-3-31 Q67040-S4410
20N60C3
Maximum Ratings
Symbol
Parameter
Value
SPP_B
SPP_B_I
Continuous drain current
Unit
SPA
ID
A
TC = 25 °C
20.7
20.7 1)
TC = 100 °C
13.1
13.1 1)
ID puls
62.1
62.1
A
EAS
690
690
mJ
EAR
1
1
Avalanche current, repetitive tAR limited by Tjmax
IAR
20
20
A
Gate source voltage static
VGS
±20
±20
V
Gate source voltage AC (f >1Hz)
VGS
±30
±30
Power dissipation, TC = 25°C
Ptot
208
34.5
Operating and storage temperature
Tj , Tstg
Pulsed drain current, tp limited by Tjmax
Avalanche energy, single pulse
ID=10A, VDD=50V
Avalanche energy, repetitive tAR limited by Tjmax2)
ID=20A, VDD=50V
Page 1
-55...+150
W
°C
2003-10-08
Final data
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
Maximum Ratings
Parameter
Symbol
Drain Source voltage slope
dv/dt
Value
Unit
50
V/ns
Values
Unit
V DS = 480 V, I D = 20.7 A, T j = 125 °C
Thermal Characteristics
Parameter
Symbol
min.
typ.
max.
Thermal resistance, junction - case
RthJC
-
-
0.6
Thermal resistance, junction - case, FullPAK
RthJC_FP
-
-
3.6
Thermal resistance, junction - ambient, leaded
RthJA
-
-
62
Thermal resistance, junction - ambient, FullPAK
RthJA_FP
-
-
80
SMD version, device on PCB:
RthJA
@ min. footprint
-
-
62
@ 6 cm 2 cooling area 3)
-
35
-
-
-
260
Soldering temperature,
Tsold
K/W
°C
1.6 mm (0.063 in.) from case for 10s 4)
Electrical Characteristics, at T j=25°C unless otherwise specified
Parameter
Symbol
Conditions
Drain-source breakdown voltage V(BR)DSS V GS=0V, ID=0.25mA
Drain-Source avalanche
V(BR)DS V GS=0V, ID=20A
Values
Unit
min.
typ.
max.
600
-
-
-
700
-
2.1
3
3.9
V
breakdown voltage
Gate threshold voltage
VGS(th)
ID=1000µA, V GS=V DS
Zero gate voltage drain current
I DSS
V DS=600V, VGS=0V,
Gate-source leakage current
I GSS
Drain-source on-state resistance RDS(on)
Gate input resistance
RG
µA
Tj=25°C
-
0.1
1
Tj=150°C
-
-
100
V GS=30V, VDS=0V
-
-
100
Ω
V GS=10V, ID=13.1A
Tj=25°C
-
0.16
0.19
Tj=150°C
-
0.43
-
f=1MHz, open drain
-
0.54
-
Page 2
nA
2003-10-08
Final data
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
Electrical Characteristics
Parameter
Transconductance
Symbol
g fs
Conditions
V DS≥2*I D*RDS(on)max,
Values
Unit
min.
typ.
max.
-
17.5
-
S
pF
ID=13.1A
Input capacitance
Ciss
V GS=0V, V DS=25V,
-
2400
-
Output capacitance
Coss
f=1MHz
-
780
-
Reverse transfer capacitance
Crss
-
50
-
-
83
-
-
160
-
-
10
-
Effective output capacitance, 5) Co(er)
V GS=0V,
energy related
V DS=0V to 480V
Effective output capacitance, 6) Co(tr)
time related
Turn-on delay time
td(on)
V DD=380V, V GS=0/13V,
ns
ID=20.7A,
RG=3.6Ω, Tj=125
Rise time
tr
V DD=380V, V GS=0/13V,
-
5
-
Turn-off delay time
td(off)
ID=20.7A,
-
67
100
Fall time
tf
RG=3.6Ω
-
4.5
12
Gate to source charge
Qgs
V DD=480V, ID=20.7A
-
11
-
Gate to drain charge
Qgd
-
33
-
Gate charge total
Qg
-
87
114
-
5.5
-
Gate Charge Characteristics
V DD=480V, ID=20.7A,
nC
V GS=0 to 10V
Gate plateau voltage
V(plateau) V DD=480V, ID=20.7A
V
1Limited only by maximum temperature
2Repetitve avalanche causes additional power losses that can be calculated as PAV=EAR*f.
3Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain
connection. PCB is vertical without blown air.
4Soldering temperature for TO-263: 220°C, reflow
5C
o(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% V DSS.
6C
o(tr) is a fixed capacitance that gives the same charging time as Coss while V DS is rising from 0 to 80% V DSS.
Page 3
2003-10-08
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
Final data
Electrical Characteristics
Parameter
Symbol
Inverse diode continuous
IS
Conditions
Values
Unit
min.
typ.
max.
-
-
20.7
-
-
62.1
TC=25°C
A
forward current
Inverse diode direct current,
I SM
pulsed
Inverse diode forward voltage
VSD
VGS =0V, I F=IS
-
1
1.2
V
Reverse recovery time
t rr
VR =480V, IF=IS ,
-
500
800
ns
Reverse recovery charge
Q rr
diF/dt=100A/µs
-
11
-
µC
Peak reverse recovery current
I rrm
-
70
-
A
Peak rate of fall of reverse
di rr/dt
-
1400
-
A/µs
Tj=25°C
recovery current
Typical Transient Thermal Characteristics
Symbol
Value
Unit
SPP_B_I
SPA
Rth1
0.00769
0.00769
Rth2
0.015
Rth3
Symbol
Value
Unit
SPP_B_I
SPA
Cth1
0.0003763
0.0003763
0.015
Cth2
0.001411
0.001411
0.029
0.029
Cth3
0.001931
0.001931
Rth4
0.114
0.163
Cth4
0.005297
0.005297
Rth5
0.136
0.323
Cth5
0.012
0.008453
Rth6
0.059
2.526
Cth6
0.091
0.412
Tj
K/W
R th1
R th,n
T case
Ws/K
E xternal H eatsink
P tot (t)
C th1
C th2
C th,n
T am b
Page 4
2003-10-08
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
Final data
1 Power dissipation
2 Power dissipation FullPAK
Ptot = f (TC)
Ptot = f (TC)
240
SPP20N60C3
35
W
W
200
25
160
Ptot
Ptot
180
140
20
120
15
100
80
10
60
40
5
20
0
0
20
40
60
80
100
120
°C
0
0
160
20
40
60
80
100
120
TC
3 Safe operating area
4 Safe operating area FullPAK
ID = f ( V DS )
ID = f (VDS)
parameter : D = 0 , TC =25°C
parameter: D = 0, TC = 25°C
10
2
°C 160
TC
10 2
10 1
10 1
ID
A
ID
A
10 0
10 -1
10 -2 0
10
10 0
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
tp = 1 ms
DC
10
1
10 -1
10
2
V
VDS
10
3
Page 5
10 -2 0
10
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
tp = 1 ms
tp = 10 ms
DC
10
1
10
2
10
V
VDS
2003-10-08
3
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
Final data
5 Transient thermal impedance
6 Transient thermal impedance FullPAK
ZthJC = f (t p)
ZthJC = f (t p)
parameter: D = tp/T
parameter: D = tp/t
10
0
10 1
K/W
K/W
10 0
ZthJC
ZthJC
10 -1
10 -2
10 -3
10 -4 -7
10
10 -1
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
10
-6
10
-5
10
-4
10
-3
10
-2
s
tp
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
10 -2
10
10 -3 -6
10
0
10
-5
10
-4
10
-3
10
-2
-1
1
s 10
tp
7 Typ. output characteristic
8 Typ. output characteristic
ID = f (VDS); Tj=25°C
ID = f (VDS); Tj=150°C
parameter: tp = 10 µs, VGS
parameter: tp = 10 µs, VGS
45
80
20V
10V
8V
A
20V
10V
7V
A
7V
50
6V
35
ID
60
ID
10
6,5V
30
5.5V
25
40
20
6V
5V
30
15
5,5V
20
4.5V
10
5V
10
0
0
5
4,5V
5
10
15
V
25
VDS
0
0
2
4
6
8
10 12 14 16 18 20 22 V 25
VDS
Page 6
2003-10-08
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
Final data
10 Drain-source on-state resistance
RDS(on)=f(ID)
RDS(on) = f (Tj)
parameter: Tj=150°C, VGS
parameter : ID = 13.1 A, VGS = 10 V
1.5
1.1
Ω
Ω
1.3
0.9
1.2
1.1
RDS(on)
RDS(on)
9 Typ. drain-source on resistance
4V
4.5V
5V
5.5V
6V
6.5V
20V
1
0.9
0.8
0.8
0.7
0.6
0.5
0.4
0.7
0.3
0.6
98%
0.5
0.2
0.4
0.1
0.3
0
SPP20N60C3
5
10
15
20
25
30
typ
0
-60
40
A
ID
-20
20
60
100
180
Tj
11 Typ. transfer characteristics
12 Typ. gate charge
ID= f ( VGS ); VDS≥ 2 x ID x RDS(on)max
VGS = f (Q Gate)
parameter: ID = 20.7 A pulsed
parameter: tp = 10 µs
°C
80
16
A
V
SPP20N60C3
25°C
12
VGS
ID
60
50
40
0,8 VDS max
8
150°C
30
6
20
4
10
2
0
0
0,2 VDS max
10
1
2
3
4
5
6
7
0
0
9
V
VGS
20
40
60
80
100
nC
140
Q Gate
Page 7
2003-10-08
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
Final data
13 Forward characteristics of body diode
14 Typ. switching time
IF = f (VSD)
t = f (ID), inductive load, T j=125°C
parameter: Tj , tp = 10 µs
par.: V DS=380V, VGS=0/+13V, R G=3.6Ω
10
10 2
2 SPP20N60C3
td(off)
A
ns
t
IF
10 1
td(on)
10 1
tf
10 0
Tj = 25 °C typ
tr
Tj = 150 °C typ
Tj = 25 °C (98%)
Tj = 150 °C (98%)
10 -1
0
0.4
0.8
1.2
1.6
2
2.4 V
10 0
0
3
4
8
12
A
16
24
ID
VSD
15 Typ. switching time
16 Typ. drain current slope
t = f (RG ), inductive load, Tj=125°C
di/dt = f(R G), inductive load, Tj = 125°C
par.: VDS =380V, VGS=0/+13V, ID=20.7 A
par.: V DS=380V, VGS=0/+13V, ID=20.7A
10
3
5000
A/µs
td(off)
ns
4000
3500
t
di/dt
10 2
td(on)
3000
di/dt(on)
2500
2000
10 1
1500
1000
tr
tf
10 0
0
5
10
di/dt(off)
500
15
20
25
30
40
Ω
RG
Page 8
0
0
5
10
15
20
25
30
40
Ω
RG
2003-10-08
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
Final data
17 Typ. drain source voltage slope
18 Typ. switching losses
dv/dt = f(RG), inductive load, Tj = 125°C
E = f (ID), inductive load, Tj=125°C
par.: VDS =380V, VGS=0/+13V, ID=20.7A
par.: V DS=380V, VGS=0/+13V, R G=3.6Ω
150
0.08
mWs
V/ns
*) Eon includes SPD06S60 diode
commutation losses
dv/dt(off)
100
E
dv/dt
0.06
0.05
Eoff
75
0.04
0.03
50
Eon*
dv/dt(on)
0.02
25
0.01
0
0
5
10
15
20
25
30
0
0
40
Ω
RG
3
6
9
20 Avalanche SOA
E = f(RG), inductive load, Tj=125°C
IAR = f (tAR)
par.: VDS =380V, VGS=0/+13V, ID=20.7A
par.: Tj ≤ 150 °C
mWs
21
20
*) Eon includes SPD06S60 diode
commutation losses
A
0.3
IAR
Eoff
E
A
15
ID
19 Typ. switching losses
0.4
12
0.25
Tj(Start)=25°C
10
0.2
Eon*
0.15
Tj(Start)=125°C
5
0.1
0.05
0
0
5
10
15
20
25
30
40
Ω
RG
Page 9
0 -3
10
10
-2
10
-1
10
0
10
1
10
2
µs 10
t AR
4
2003-10-08
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
Final data
21 Avalanche energy
22 Drain-source breakdown voltage
EAS = f (Tj)
V(BR)DSS = f (Tj)
par.: ID = 10 A, VDD = 50 V
750
720
mJ
V
V(BR)DSS
600
550
EAS
SPP20N60C3
500
450
680
660
640
400
350
620
300
250
600
200
580
150
100
560
50
0
20
40
60
80
100
120
°C
540
-60
160
-20
20
60
100
°C
Tj
180
Tj
23 Avalanche power losses
24 Typ. capacitances
PAR = f (f )
C = f (VDS)
parameter: E AR=1mJ
parameter: V GS=0V, f=1 MHz
10 5
500
pF
10 4
C
PAR
W
300
10 3
200
10 2
100
10 1
0 4
10
10
5
Hz
10
6
Ciss
10 0
0
Coss
Crss
100
200
300
400
V
600
VDS
f
Page 10
2003-10-08
Final data
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
25 Typ. Coss stored energy
Eoss=f(VDS)
14
µJ
12
Eoss
11
10
9
8
7
6
5
4
3
2
1
0
0
100
200
300
400
V
600
VDS
Definition of diodes switching characteristics
Page 11
2003-10-08
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
Final data
P-TO-220-3-1
B
4.44
0.05
9.98 ±0.48
2.8 ±0.2
1.27±0.13
13.5 ±0.5
C
A
5.23 ±0.9
15.38 ±0.6
10 ±0.4
3.7 ±0.2
0.5 ±0.1
3x
0.75 ±0.1
2.51±0.2
1.17 ±0.22
2x 2.54
0.25
M
A B C
All metal surfaces tin plated, except area of cut.
Metal surface min. x=7.25, y=12.3
P-TO-263-3-2 (D 2-PAK)
Page 12
2003-10-08
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
Final data
P-TO-262-3-1 (I 2-PAK)
10 ±0.2
A
B
0...0.3
4.4
1)
0.05
13.5 ±0.5
4.55 ±0.2
C
2.4
9.25 ±0.2
1 ±0.3
1.27
7.55
11.6 ±0.3
8.5
1)
0.5 ±0.1
0...0.15
2.4
1.05
3 x 0.75 ±0.1
2 x 2.54
1)
0.25
M
A B C
Typical
Metal surface min. X = 7.25, Y = 6.9
All metal surfaces tin plated, except area of cut.
P-TO-220-3-31 (FullPAK)
Please refer to mounting instructions (application note AN-TO220-3-31-01)
Page 13
2003-10-08
Final data
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
Page 14
2003-10-08