SPP20N60C3, SPB20N60C3 SPI20N60C3, SPA20N60C3 Final data Cool MOS™ Power Transistor Feature VDS @ Tjmax 650 V RDS(on) 0.19 Ω ID 20.7 A • New revolutionary high voltage technology • Worldwide best R DS(on) in TO 220 • Ultra low gate charge P-TO220-3-31 P-TO262-3-1 P-TO263-3-2 P-TO220-3-1 • Periodic avalanche rated • Extreme dv/dt rated • High peak current capability 1 2 3 P-TO220-3-31 • Improved transconductance • P-TO-220-3-31: Fully isolated package (2500 VAC; 1 minute) Type Package Ordering Code Marking SPP20N60C3 P-TO220-3-1 Q67040-S4398 20N60C3 SPB20N60C3 P-TO263-3-2 Q67040-S4397 20N60C3 SPI20N60C3 P-TO262-3-1 Q67040-S4550 20N60C3 SPA20N60C3 P-TO220-3-31 Q67040-S4410 20N60C3 Maximum Ratings Symbol Parameter Value SPP_B SPP_B_I Continuous drain current Unit SPA ID A TC = 25 °C 20.7 20.7 1) TC = 100 °C 13.1 13.1 1) ID puls 62.1 62.1 A EAS 690 690 mJ EAR 1 1 Avalanche current, repetitive tAR limited by Tjmax IAR 20 20 A Gate source voltage static VGS ±20 ±20 V Gate source voltage AC (f >1Hz) VGS ±30 ±30 Power dissipation, TC = 25°C Ptot 208 34.5 Operating and storage temperature Tj , Tstg Pulsed drain current, tp limited by Tjmax Avalanche energy, single pulse ID=10A, VDD=50V Avalanche energy, repetitive tAR limited by Tjmax2) ID=20A, VDD=50V Page 1 -55...+150 W °C 2003-10-08 Final data SPP20N60C3, SPB20N60C3 SPI20N60C3, SPA20N60C3 Maximum Ratings Parameter Symbol Drain Source voltage slope dv/dt Value Unit 50 V/ns Values Unit V DS = 480 V, I D = 20.7 A, T j = 125 °C Thermal Characteristics Parameter Symbol min. typ. max. Thermal resistance, junction - case RthJC - - 0.6 Thermal resistance, junction - case, FullPAK RthJC_FP - - 3.6 Thermal resistance, junction - ambient, leaded RthJA - - 62 Thermal resistance, junction - ambient, FullPAK RthJA_FP - - 80 SMD version, device on PCB: RthJA @ min. footprint - - 62 @ 6 cm 2 cooling area 3) - 35 - - - 260 Soldering temperature, Tsold K/W °C 1.6 mm (0.063 in.) from case for 10s 4) Electrical Characteristics, at T j=25°C unless otherwise specified Parameter Symbol Conditions Drain-source breakdown voltage V(BR)DSS V GS=0V, ID=0.25mA Drain-Source avalanche V(BR)DS V GS=0V, ID=20A Values Unit min. typ. max. 600 - - - 700 - 2.1 3 3.9 V breakdown voltage Gate threshold voltage VGS(th) ID=1000µA, V GS=V DS Zero gate voltage drain current I DSS V DS=600V, VGS=0V, Gate-source leakage current I GSS Drain-source on-state resistance RDS(on) Gate input resistance RG µA Tj=25°C - 0.1 1 Tj=150°C - - 100 V GS=30V, VDS=0V - - 100 Ω V GS=10V, ID=13.1A Tj=25°C - 0.16 0.19 Tj=150°C - 0.43 - f=1MHz, open drain - 0.54 - Page 2 nA 2003-10-08 Final data SPP20N60C3, SPB20N60C3 SPI20N60C3, SPA20N60C3 Electrical Characteristics Parameter Transconductance Symbol g fs Conditions V DS≥2*I D*RDS(on)max, Values Unit min. typ. max. - 17.5 - S pF ID=13.1A Input capacitance Ciss V GS=0V, V DS=25V, - 2400 - Output capacitance Coss f=1MHz - 780 - Reverse transfer capacitance Crss - 50 - - 83 - - 160 - - 10 - Effective output capacitance, 5) Co(er) V GS=0V, energy related V DS=0V to 480V Effective output capacitance, 6) Co(tr) time related Turn-on delay time td(on) V DD=380V, V GS=0/13V, ns ID=20.7A, RG=3.6Ω, Tj=125 Rise time tr V DD=380V, V GS=0/13V, - 5 - Turn-off delay time td(off) ID=20.7A, - 67 100 Fall time tf RG=3.6Ω - 4.5 12 Gate to source charge Qgs V DD=480V, ID=20.7A - 11 - Gate to drain charge Qgd - 33 - Gate charge total Qg - 87 114 - 5.5 - Gate Charge Characteristics V DD=480V, ID=20.7A, nC V GS=0 to 10V Gate plateau voltage V(plateau) V DD=480V, ID=20.7A V 1Limited only by maximum temperature 2Repetitve avalanche causes additional power losses that can be calculated as PAV=EAR*f. 3Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain connection. PCB is vertical without blown air. 4Soldering temperature for TO-263: 220°C, reflow 5C o(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% V DSS. 6C o(tr) is a fixed capacitance that gives the same charging time as Coss while V DS is rising from 0 to 80% V DSS. Page 3 2003-10-08 SPP20N60C3, SPB20N60C3 SPI20N60C3, SPA20N60C3 Final data Electrical Characteristics Parameter Symbol Inverse diode continuous IS Conditions Values Unit min. typ. max. - - 20.7 - - 62.1 TC=25°C A forward current Inverse diode direct current, I SM pulsed Inverse diode forward voltage VSD VGS =0V, I F=IS - 1 1.2 V Reverse recovery time t rr VR =480V, IF=IS , - 500 800 ns Reverse recovery charge Q rr diF/dt=100A/µs - 11 - µC Peak reverse recovery current I rrm - 70 - A Peak rate of fall of reverse di rr/dt - 1400 - A/µs Tj=25°C recovery current Typical Transient Thermal Characteristics Symbol Value Unit SPP_B_I SPA Rth1 0.00769 0.00769 Rth2 0.015 Rth3 Symbol Value Unit SPP_B_I SPA Cth1 0.0003763 0.0003763 0.015 Cth2 0.001411 0.001411 0.029 0.029 Cth3 0.001931 0.001931 Rth4 0.114 0.163 Cth4 0.005297 0.005297 Rth5 0.136 0.323 Cth5 0.012 0.008453 Rth6 0.059 2.526 Cth6 0.091 0.412 Tj K/W R th1 R th,n T case Ws/K E xternal H eatsink P tot (t) C th1 C th2 C th,n T am b Page 4 2003-10-08 SPP20N60C3, SPB20N60C3 SPI20N60C3, SPA20N60C3 Final data 1 Power dissipation 2 Power dissipation FullPAK Ptot = f (TC) Ptot = f (TC) 240 SPP20N60C3 35 W W 200 25 160 Ptot Ptot 180 140 20 120 15 100 80 10 60 40 5 20 0 0 20 40 60 80 100 120 °C 0 0 160 20 40 60 80 100 120 TC 3 Safe operating area 4 Safe operating area FullPAK ID = f ( V DS ) ID = f (VDS) parameter : D = 0 , TC =25°C parameter: D = 0, TC = 25°C 10 2 °C 160 TC 10 2 10 1 10 1 ID A ID A 10 0 10 -1 10 -2 0 10 10 0 tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms DC 10 1 10 -1 10 2 V VDS 10 3 Page 5 10 -2 0 10 tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms tp = 10 ms DC 10 1 10 2 10 V VDS 2003-10-08 3 SPP20N60C3, SPB20N60C3 SPI20N60C3, SPA20N60C3 Final data 5 Transient thermal impedance 6 Transient thermal impedance FullPAK ZthJC = f (t p) ZthJC = f (t p) parameter: D = tp/T parameter: D = tp/t 10 0 10 1 K/W K/W 10 0 ZthJC ZthJC 10 -1 10 -2 10 -3 10 -4 -7 10 10 -1 D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse 10 -6 10 -5 10 -4 10 -3 10 -2 s tp D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse 10 -2 10 10 -3 -6 10 0 10 -5 10 -4 10 -3 10 -2 -1 1 s 10 tp 7 Typ. output characteristic 8 Typ. output characteristic ID = f (VDS); Tj=25°C ID = f (VDS); Tj=150°C parameter: tp = 10 µs, VGS parameter: tp = 10 µs, VGS 45 80 20V 10V 8V A 20V 10V 7V A 7V 50 6V 35 ID 60 ID 10 6,5V 30 5.5V 25 40 20 6V 5V 30 15 5,5V 20 4.5V 10 5V 10 0 0 5 4,5V 5 10 15 V 25 VDS 0 0 2 4 6 8 10 12 14 16 18 20 22 V 25 VDS Page 6 2003-10-08 SPP20N60C3, SPB20N60C3 SPI20N60C3, SPA20N60C3 Final data 10 Drain-source on-state resistance RDS(on)=f(ID) RDS(on) = f (Tj) parameter: Tj=150°C, VGS parameter : ID = 13.1 A, VGS = 10 V 1.5 1.1 Ω Ω 1.3 0.9 1.2 1.1 RDS(on) RDS(on) 9 Typ. drain-source on resistance 4V 4.5V 5V 5.5V 6V 6.5V 20V 1 0.9 0.8 0.8 0.7 0.6 0.5 0.4 0.7 0.3 0.6 98% 0.5 0.2 0.4 0.1 0.3 0 SPP20N60C3 5 10 15 20 25 30 typ 0 -60 40 A ID -20 20 60 100 180 Tj 11 Typ. transfer characteristics 12 Typ. gate charge ID= f ( VGS ); VDS≥ 2 x ID x RDS(on)max VGS = f (Q Gate) parameter: ID = 20.7 A pulsed parameter: tp = 10 µs °C 80 16 A V SPP20N60C3 25°C 12 VGS ID 60 50 40 0,8 VDS max 8 150°C 30 6 20 4 10 2 0 0 0,2 VDS max 10 1 2 3 4 5 6 7 0 0 9 V VGS 20 40 60 80 100 nC 140 Q Gate Page 7 2003-10-08 SPP20N60C3, SPB20N60C3 SPI20N60C3, SPA20N60C3 Final data 13 Forward characteristics of body diode 14 Typ. switching time IF = f (VSD) t = f (ID), inductive load, T j=125°C parameter: Tj , tp = 10 µs par.: V DS=380V, VGS=0/+13V, R G=3.6Ω 10 10 2 2 SPP20N60C3 td(off) A ns t IF 10 1 td(on) 10 1 tf 10 0 Tj = 25 °C typ tr Tj = 150 °C typ Tj = 25 °C (98%) Tj = 150 °C (98%) 10 -1 0 0.4 0.8 1.2 1.6 2 2.4 V 10 0 0 3 4 8 12 A 16 24 ID VSD 15 Typ. switching time 16 Typ. drain current slope t = f (RG ), inductive load, Tj=125°C di/dt = f(R G), inductive load, Tj = 125°C par.: VDS =380V, VGS=0/+13V, ID=20.7 A par.: V DS=380V, VGS=0/+13V, ID=20.7A 10 3 5000 A/µs td(off) ns 4000 3500 t di/dt 10 2 td(on) 3000 di/dt(on) 2500 2000 10 1 1500 1000 tr tf 10 0 0 5 10 di/dt(off) 500 15 20 25 30 40 Ω RG Page 8 0 0 5 10 15 20 25 30 40 Ω RG 2003-10-08 SPP20N60C3, SPB20N60C3 SPI20N60C3, SPA20N60C3 Final data 17 Typ. drain source voltage slope 18 Typ. switching losses dv/dt = f(RG), inductive load, Tj = 125°C E = f (ID), inductive load, Tj=125°C par.: VDS =380V, VGS=0/+13V, ID=20.7A par.: V DS=380V, VGS=0/+13V, R G=3.6Ω 150 0.08 mWs V/ns *) Eon includes SPD06S60 diode commutation losses dv/dt(off) 100 E dv/dt 0.06 0.05 Eoff 75 0.04 0.03 50 Eon* dv/dt(on) 0.02 25 0.01 0 0 5 10 15 20 25 30 0 0 40 Ω RG 3 6 9 20 Avalanche SOA E = f(RG), inductive load, Tj=125°C IAR = f (tAR) par.: VDS =380V, VGS=0/+13V, ID=20.7A par.: Tj ≤ 150 °C mWs 21 20 *) Eon includes SPD06S60 diode commutation losses A 0.3 IAR Eoff E A 15 ID 19 Typ. switching losses 0.4 12 0.25 Tj(Start)=25°C 10 0.2 Eon* 0.15 Tj(Start)=125°C 5 0.1 0.05 0 0 5 10 15 20 25 30 40 Ω RG Page 9 0 -3 10 10 -2 10 -1 10 0 10 1 10 2 µs 10 t AR 4 2003-10-08 SPP20N60C3, SPB20N60C3 SPI20N60C3, SPA20N60C3 Final data 21 Avalanche energy 22 Drain-source breakdown voltage EAS = f (Tj) V(BR)DSS = f (Tj) par.: ID = 10 A, VDD = 50 V 750 720 mJ V V(BR)DSS 600 550 EAS SPP20N60C3 500 450 680 660 640 400 350 620 300 250 600 200 580 150 100 560 50 0 20 40 60 80 100 120 °C 540 -60 160 -20 20 60 100 °C Tj 180 Tj 23 Avalanche power losses 24 Typ. capacitances PAR = f (f ) C = f (VDS) parameter: E AR=1mJ parameter: V GS=0V, f=1 MHz 10 5 500 pF 10 4 C PAR W 300 10 3 200 10 2 100 10 1 0 4 10 10 5 Hz 10 6 Ciss 10 0 0 Coss Crss 100 200 300 400 V 600 VDS f Page 10 2003-10-08 Final data SPP20N60C3, SPB20N60C3 SPI20N60C3, SPA20N60C3 25 Typ. Coss stored energy Eoss=f(VDS) 14 µJ 12 Eoss 11 10 9 8 7 6 5 4 3 2 1 0 0 100 200 300 400 V 600 VDS Definition of diodes switching characteristics Page 11 2003-10-08 SPP20N60C3, SPB20N60C3 SPI20N60C3, SPA20N60C3 Final data P-TO-220-3-1 B 4.44 0.05 9.98 ±0.48 2.8 ±0.2 1.27±0.13 13.5 ±0.5 C A 5.23 ±0.9 15.38 ±0.6 10 ±0.4 3.7 ±0.2 0.5 ±0.1 3x 0.75 ±0.1 2.51±0.2 1.17 ±0.22 2x 2.54 0.25 M A B C All metal surfaces tin plated, except area of cut. Metal surface min. x=7.25, y=12.3 P-TO-263-3-2 (D 2-PAK) Page 12 2003-10-08 SPP20N60C3, SPB20N60C3 SPI20N60C3, SPA20N60C3 Final data P-TO-262-3-1 (I 2-PAK) 10 ±0.2 A B 0...0.3 4.4 1) 0.05 13.5 ±0.5 4.55 ±0.2 C 2.4 9.25 ±0.2 1 ±0.3 1.27 7.55 11.6 ±0.3 8.5 1) 0.5 ±0.1 0...0.15 2.4 1.05 3 x 0.75 ±0.1 2 x 2.54 1) 0.25 M A B C Typical Metal surface min. X = 7.25, Y = 6.9 All metal surfaces tin plated, except area of cut. P-TO-220-3-31 (FullPAK) Please refer to mounting instructions (application note AN-TO220-3-31-01) Page 13 2003-10-08 Final data SPP20N60C3, SPB20N60C3 SPI20N60C3, SPA20N60C3 Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Page 14 2003-10-08