INTERSIL RF1K49092

RF1K49092
Data Sheet
August 1999
File Number
3.5A/2.5A, 12V, 0.050/0.130 Ohm, Logic
Level, Complementary LittleFET™ Power
MOSFET
Features
This complementary power MOSFET is manufactured using
an advanced MegaFET process. This process, which uses
feature sizes approaching those of LSI integrated circuits,
gives optimum utilization of silicon, resulting in outstanding
performance. It is designed for use in applications such as
switching regulators, switching converters, motor drivers,
relay drivers, and low voltage bus switches. This product
achieves full rated conduction at a gate bias in the 3V to 5V
range, thereby facilitating true on-off power control directly
from logic level (5V) integrated circuits.
• rDS(ON) = 0.050Ω (N-Channel)
rDS(ON) = 0.130Ω (P-Channel)
3968.5
• 3.5A, 12V (N-Channel)
2.5A, 12V (P-Channel)
• Temperature Compensating PSPICE® Model
• On-Resistance vs Gate Drive Voltage Curves
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
Formerly developmental type TA49092.
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Ordering Information
Symbol
PART NUMBER
RF1K49092
PACKAGE
MS-012AA
BRAND
D1 (8)
D1 (7)
RF1K49092
NOTE: When ordering, use the entire part number. For ordering in
tape and reel, add the suffix 96 to the part number, i.e., RF1K4909296.
S1 (1)
G1 (2)
D2 (6)
D2 (5)
S2 (3)
G2 (4)
Packaging
JEDEC MS-012AA
BRANDING DASH
5
1
2
3
9-3
4
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
LittleFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
RF1K49092
Absolute Maximum Ratings
TA = 25oC Unless Otherwise Specified
N-CHANNEL
P-CHANNEL
UNITS
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . VDSS
12
-12
V
Drain to Gate Voltage (RGS = 20kΩ, Note 1) . . . . . . . . .VDGR
12
-12
V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
±10
±10
V
Drain Current
Continuous (Pulse Width = 5s). . . . . . . . . . . . . . . . . . . . . ID
Pulsed (Figures 5, 26) . . . . . . . . . . . . . . . . . . . . . . . . . IDM
3.5
Refer to Peak Current Curve
2.5
Refer to Peak Current Curve
A
Pulsed Avalanche Rating (Figures 6, 27). . . . . . . . . . . . . EAS
Refer to UIS Curve
Refer to UIS Curve
Power Dissipation
TA = 25oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
0.016
2
0.016
W
W/oC
Operating and Storage Temperature . . . . . . . . . . . . TJ, TSTG
-55 to 150
-55 to 150
oC
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . .Tpkg
300
260
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 125oC.
N-Channel Electrical Specifications
PARAMETER
TA = 25oC, Unless Otherwise Specified
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
SYMBOL
BVDSS
ID = 250µA, VGS = 0V, (Figure 13)
12
-
-
V
Gate Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA, (Figure 12)
Zero Gate Voltage Drain Current
Gate to Source Leakage Current
Drain to Source On Resistance
Turn-On Time
1
-
2
V
TA = 25o C
-
-
1
µA
TA = 150o C
-
-
50
µA
VGS = ±10V
-
-
±100
nA
ID = 3.5A, VGS = 5V, (Figures 9, 11)
-
-
0.050
Ω
VDD = 6V, ID ≈ 3.5A,
RL = 1.71Ω, VGS = 5V,
RGS = 25Ω
(Figure 10)
-
-
100
ns
-
18
-
ns
-
60
-
ns
td(OFF)
-
50
-
ns
tf
-
60
-
ns
tOFF
-
-
140
ns
-
20
25
nC
-
12
15
nC
-
0.9
1.2
nC
-
750
-
pF
-
700
-
pF
-
275
-
pF
IDSS
IGSS
rDS(ON)
tON
Turn-On Delay Time
td(ON)
Rise Time
tr
Turn-Off Delay Time
Fall Time
Turn-Off Time
TEST CONDITIONS
VDS = 12V,
VGS = 0V
Total Gate Charge
Qg(TOT)
VGS = 0V to 10V
Gate Charge at 5V
Qg(5)
VGS = 0V to 5V
Qg(TH)
VGS = 0V to 1V
Threshold Gate Charge
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
Thermal Resistance Junction to Ambient
RθJA
VDD = 9.6V,
ID = 3.5A,
RL = 2.74Ω
(Figure 15)
VDS = 10V, VGS = 0V,
f = 1MHz (Figure 14)
-
-
62.5
oC/W
MIN
TYP
MAX
UNITS
ISD = 3.5A
-
-
1.25
V
ISD = 3.5A, dISD/dt = 100A/µs
-
-
70
ns
Pulse width = 1s
Device mounted on FR-4 material
N-Channel Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Voltage
VSD
Reverse Recovery Time
trr
9-4
TEST CONDITIONS
RF1K49092
P-Channel Electrical Specifications
PARAMETER
TA = 25o C, Unless Otherwise Specified
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
BVDSS
ID = 250µA, VGS = 0V, (Figure 34)
-12
-
-
V
Gate Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA, (Figure 33)
Zero Gate Voltage Drain Current
Gate to Source Leakage Current
Drain to Source On Resistance
Turn-On Time
-1
-
-2
V
TA = 25o C
-
-
-1
µA
TA = 150o C
-
-
-50
µA
VGS = ±10V
-
-
±100
nA
ID = 2.5A, VGS = -5V
-
-
0.130
Ω
VDD = -6V, ID ≈ 2.5A,
RL = 2.40Ω, VGS = -5V,
RGS = 25Ω
(Figure 31)
-
-
115
ns
-
25
-
ns
-
65
-
ns
td(OFF)
-
40
-
ns
tf
-
45
-
ns
tOFF
-
-
110
ns
-
19
24
nC
-
10
14
nC
-
0.8
1.1
nC
-
775
-
pF
-
550
-
pF
-
150
-
pF
IDSS
IGSS
rDS(ON)
tON
Turn-On Delay Time
td(ON)
Rise Time
tr
Turn-Off Delay Time
Fall Time
Turn-Off Time
VDS = -12V,
VGS = 0V
Total Gate Charge
Qg(TOT)
VGS = 0V to -10V
Gate Charge at -5V
Qg(-5)
VGS = 0V to -5V
Threshold Gate Charge
Qg(TH)
VGS = 0V to -1V
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
Thermal Resistance Junction-to-Ambient
RθJA
VDD = -9.6V,
ID = 2.5A,
RL = 3.84Ω
(Figure 36)
VDS = -10V, VGS = 0V,
f = 1MHz (Figure 35)
-
-
62.5
oC/W
MIN
TYP
MAX
UNITS
ISD = -2.5A
-
-
-1.25
V
ISD = -2.5A, dISD/dt = -100A/µs
-
-
55
ns
Pulse width = 1s
Device mounted on FR-4 material
P-Channel Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Voltage
VSD
Reverse Recovery Time
trr
TEST CONDITIONS
Typical Performance Curves (N-Channel)
4.0
3.5
1.0
ID , DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
3.0
2.5
2.0
1.5
1.0
0.2
0.5
0.0
0
25
50
75
100
125
TA , AMBIENT TEMPERATURE (oC)
150
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT
TEMPERATURE
9-5
0.0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
AMBIENT TEMPERATURE
150
RF1K49092
Typical Performance Curves (N-Channel)
ZθJA, NORMALIZED
THERMAL IMPEDANCE
10
1
(Continued)
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
t1
0.1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJA x RθJA + TA
SINGLE PULSE
0.01
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
102
103
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
TJ = MAX RATED
ID, DRAIN CURRENT (A)
TA = 25oC
VDSS MAX = 12V
10
5ms
10ms
1
100ms
1s
0.1
0.01
0.1
DC
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
1
10
200
IDM, PEAK CURRENT CAPABILITY (A)
100
TA = 25oC FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
100
I
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
10-4
10-3
10-2
10-1
t, PULSE WIDTH (s)
ID , DRAIN CURRENT (A)
25
STARTING TJ = 25oC
STARTING TJ = 150oC
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
1
0.1
20
VGS = 4V
15
10
VGS = 3V
5
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TA = 25oC
100
0
1
2
3
4
VDS, DRAIN TO SOURCE VOLTAGE (V)
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
9-6
101
VGS = 10V
VGS = 5V
VGS = 4.5V
0
1
10
tAV, TIME IN AVALANCHE (ms)
10 0
FIGURE 5. PEAK CURRENT CAPABILITY
20
IAS, AVALANCHE CURRENT (A)
125
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
VDS, DRAIN TO SOURCE VOLTAGE (V)
10
150 - TA
10
1
10-5
100
= I25
VGS = 5V
FIGURE 7. SATURATION CHARACTERISTICS
5
RF1K49092
Typical Performance Curves (N-Channel)
(Continued)
250
25oC
-55oC
20
VDD = 6V
150oC
rDS(ON), ON-STATE RESISTANCE (mΩ)
ID(ON), ON-STATE DRAIN CURRENT (A)
25
15
10
5
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
0
0.0
1.5
3.0
4.5
6.0
VGS, GATE TO SOURCE VOLTAGE (V)
I D = 7.0A
200
150
I D = 3.5A
I D = 1.75A
100
ID = 0.5A
50
0
2.5
7.5
FIGURE 8. TRANSFER CHARACTERISTICS
3.0
3.5
4.0
4.5
VGS, GATE TO SOURCE VOLTAGE (V)
5.0
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
140
2.0
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 5V, ID = 3.5A
120
tr
100
t D(OFF)
80
60
tf
40
20
NORMALIZED ON RESISTANCE
VDD = 6V, ID = 3.5A, RL = 1.71Ω
SWITCHING TIME (ns)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 10V
1.5
1.0
0.5
t D(ON)
0
0
10
20
30
40
50
0.0
-80
RGS, GATE TO SOURCE RESISTANCE (Ω)
FIGURE 10. SWITCHING TIME vs GATE RESISTANCE
160
2.0
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
VGS = VDS, ID = 250µA
NORMALIZED GATE
THRESHOLD VOLTAGE
0
40
80
120
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
2.0
1.5
1.0
0.5
0.0
-80
-40
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
9-7
ID = 250µA
1.5
1.0
0.5
0.0
-80
-40
0
40
80
120
TJ , JUNCTION TEMPERATURE (oC)
160
FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
RF1K49092
(Continued)
12
CISS
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS = CDS + CGD
900
VDS , DRAIN-SOURCE VOLTAGE (V)
C, CAPACITANCE (pF)
1200
COSS
600
CRSS
300
5.00
VDD = BVDSS
VDD = BVDSS
3.75
9
6
2.50
0.75 BVDSS
0.50 BVDSS
0.25 BVDSS
3
1.25
RL = 3.43Ω
IG(REF) = 0.6mA
VGS = 5V
0
0
0.00
I G ( REF )
0
2
4
6
8
20 ---------------------I G ( ACT )
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
I G ( REF )
80 ---------------------I G ( ACT )
t, TIME (µs)
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR
CONSTANT GATE CURRENT
Test Circuits and Waveforms (N-Channel)
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
REQUIRED PEAK IAS
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 17. UNCLAMPED ENERGY WAVEFORMS
tON
tOFF
td(ON)
td(OFF)
tf
tr
VDS
RL
+
RG
DUT
VDD
90%
90%
10%
10%
0
90%
VGS
0
10%
50%
50%
PULSE WIDTH
VGS
FIGURE 18. SWITCHING TIME TEST CIRCUIT
9-8
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
VGS , GATE-SOURCE VOLTAGE (V)
Typical Performance Curves (N-Channel)
RF1K49092
Test Circuits and Waveforms (N-Channel)
(Continued)
VDS
(ISOLATED
SUPPLY)
CURRENT
REGULATOR
VDD
12V
BATTERY
0.2µF
Qg(TOT)
SAME TYPE
AS DUT
50kΩ
VDS
VGS = 10V
0.3µF
Qg(5)
D
VGS = 5V
VGS
DUT
G
VGS = 1V
0
Ig(REF)
Qg(TH)
S
0
IG CURRENT
SAMPLING
RESISTOR
VDS
ID CURRENT
SAMPLING
RESISTOR
Ig(REF)
0
FIGURE 20. GATE CHARGE TEST CIRCUIT
FIGURE 21. GATE CHARGE WAVEFORMS
1.2
-3.0
1.0
-2.5
ID , DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
Typical Performance Curves (P-Channel)
0.8
0.6
0.4
-1.5
-1.0
-0.5
0.2
0
-2.0
0
25
50
75
100
TA , AMBIENT TEMPERATURE (oC)
125
150
FIGURE 22. NORMALIZED POWER DISSIPATION vs AMBIENT
TEMPERATURE
ZθJA, NORMALIZED
THERMAL RESPONSE
10
1
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (oC)
150
FIGURE 23. MAXIMUM CONTINUOUS DRAIN CURRENT vs
AMBIENT TEMPERATURE
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
t1
t2
0.1
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJA x RθJA + TA
SINGLE PULSE
0.01
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
FIGURE 24. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
9-9
102
103
RF1K49092
ID, DRAIN CURRENT (A)
-100
(Continued)
TJ = MAX RATED, TA = 25oC, VDSS(MAX) = -12V
-10
5ms
10ms
-1
100ms
1s
DC
-0.1
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
-0.01
-0.1
-1
-10
-200
IDM, PEAK CURRENT CAPABILITY (A)
Typical Performance Curves (P-Channel)
TA = 25oC
-100
I
VGS = -10V
125
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10-4
10-3
VDS, DRAIN TO SOURCE VOLTAGE (V)
10-1
100
101
FIGURE 26. PEAK CURRENT CAPABILITY
-20
-25
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TA = 25oC
VGS = -10V
-10
I D, DRAIN CURRENT (A)
IAS, AVALANCHE CURRENT (A)
10-2
t, PULSE WIDTH (s)
FIGURE 25. FORWARD BIAS SAFE OPERATING AREA
STARTING TJ = 25oC
STARTING TJ = 150oC
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
-1
0.1
150 - TA
= I25
VGS = -5V
-10
-1
10-5
-100
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
-20
VGS = -5V
-15
VGS = -4.5V
-10
VGS = -4V
-5
0
1
10
tAV, TIME IN AVALANCHE (ms)
100
VGS = -3V
0
-1
-2
-3
-4
-5
VDS, DRAIN TO SOURCE VOLTAGE (V)
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 27. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
-20
500
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = -6V
rDS(ON), ON-STATE RESISTANCE (mΩ)
ID(ON), ON-STATE DRAIN CURRENT (A)
-25
150oC
- 55oC
25oC
-15
-10
-5
0
0.0
-1.5
FIGURE 28. SATURATION CHARACTERISTICS
-3.0
-4.5
-6.0
VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 29. TRANSFER CHARACTERISTICS
9-10
-7.5
ID = -2.5A
ID = -6.0A
400
I D = -1.5A
300
200
I D = -0.5A
100
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = -10V
0
-2.5
-3.0
-3.5
-4.0
-4.5
VGS, GATE TO SOURCE VOLTAGE (V)
-5.0
FIGURE 30. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
RF1K49092
Typical Performance Curves (P-Channel)
(Continued)
120
tr
80
tf
60
tD(OFF)
40
tD(ON)
20
1.5
1.0
0.5
0
0
20
10
30
40
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = -5V, ID = -2.5A
0
-80
50
-40
RGS, GATE TO SOURCE RESISTANCE (Ω)
FIGURE 31. SWITCHING TIME AS A FUNCTION OF GATE
RESISTANCE
2.0
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
NORMALIZED GATE
THRESHOLD VOLTAGE
VGS = VDS, ID = -250µA
1.5
1.0
0.5
-40
0
40
80
120
1.5
1.0
0.5
-40
0
40
80
CISS
COSS
600
CRSS
300
VDS , DRAIN-SOURCE VOLTAGE (V)
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS = CDS + CGD
900
-5.00
VDD = BVDSS
0
-10
FIGURE 35. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
9-11
VDD = BVDSS
-9
-3.75
-6
-2.50
0.75 BVDSS
0.50 BVDSS
0.25 BVDSS
-3
0
-2
-4
-6
-8
VDS, DRAIN TO SOURCE VOLTAGE (V)
160
FIGURE 34. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
-12
1200
120
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 33. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
C, CAPACITANCE (pF)
ID = -250µA
0.0
-80
160
TJ, JUNCTION TEMPERATURE (oC)
0
160
FIGURE 32. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
2.0
0.0
-80
0
40
80
120
TJ, JUNCTION TEMPERATURE (oC)
-1.25
RL = 3.84Ω
IG(REF) = -0.5mA
VGS = -5V
I G ( REF )
20 ---------------------I G ( ACT )
t, TIME (µs)
I G ( REF )
0.00
80 ---------------------I G ( ACT )
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 36. NORMALIZED SWITCHING WAVEFORMS FOR
CONSTANT GATE CURRENT
VGS , GATE-SOURCE VOLTAGE (V)
SWITCHING TIME (ns)
100
NORMALIZED ON RESISTANCE
2.0
VDD = -6V, ID = -2.5A, RL = 2.40Ω
RF1K49092
Test Circuits and Waveforms (P-Channel)
VDS
tAV
L
0
VARY tP TO OBTAIN
-
RG
REQUIRED PEAK IAS
+
VDD
DUT
0V
VDD
tP
VGS
IAS
IAS
VDS
tP
0.01Ω
BVDSS
FIGURE 37. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 38. UNCLAMPED ENERGY WAVEFORMS
tON
tOFF
td(OFF)
td(ON)
tr
0
RL
-
DUT
VGS
+
10%
10%
VDS
VDD
RG
tf
90%
90%
VGS
0
10%
50%
50%
PULSE WIDTH
90%
FIGURE 39. SWITCHING TIME TEST CIRCUIT
FIGURE 40. RESISTIVE SWITCHING WAVEFORMS
-VDS
(ISOLATED
SUPPLY)
CURRENT
REGULATOR
VDS
Qg(TH)
0
DUT
12V
BATTERY
0.2µF
VGS= -1V
50kΩ
0.3µF
VGS= -5V
-VGS
Qg(-5)
D
DUT
G
0
Qg(TOT)
S
Ig(REF)
IG CURRENT
SAMPLING
RESISTOR
+VDS
ID CURRENT
SAMPLING
RESISTOR
FIGURE 41. GATE CHARGE TEST CIRCUIT
9-12
VGS= -10V
VDD
0
Ig(REF)
FIGURE 42. GATE CHARGE WAVEFORMS
RF1K49092
Soldering Precautions
1. The soldering process creates a considerable thermal
stress on any semiconductor component. The melting
temperature of solder is higher than the maximum rated
temperature of the device. The amount of time the device
is heated to a high temperature should be minimized to
assure device reliability. Therefore, the following precautions should always be observed in order to minimize the
thermal stress to which the devices are subjected.
2. Always preheat the device.
3. The delta temperature between the preheat and soldering
should always be less than 100oC. Failure to preheat the
device can result in excessive thermal stress which can
damage the device.
9-13
4. The maximum temperature gradient should be less than 5oC
per second when changing from preheating to soldering.
5. The peak temperature in the soldering process should be
at least 30oC higher than the melting point of the solder
chosen.
6. The maximum soldering temperature and time must not
exceed 260oC for 10 seconds on the leads and case of
the device.
7. After soldering is complete, the device should be allowed
to cool naturally for at least three minutes, as forced cooling will increase the temperature gradient and may result
in latent failure due to mechanical stress.
8. During cooling, mechanical stress or shock should be
avoided.
RF1K49092
PSPICE Electrical Model
SUBCKT RF1K49092 2 1 3;
N-Channel Model rev 9/6/94
CA 12 8 9.77e-10
CB 15 14 9.19e-10
CIN 6 8 7.81e-10
DPLCAP
5
10
DBODY 7 5 DBDMOD
DBREAK 5 11 DBKMOD
DPLCAP 10 5 DPLCAPMOD
DBREAK
RDRAIN
EBREAK 11 7 17 18 14.89
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTO 20 6 18 8 1
ESG
+
GATE
1
IT 8 17 1
16
EBREAK
VTO +
21
DBODY
MOS2
MOS1
CIN
8
RSOURCE
7
LSOURCE
3
SOURCE
S2A
S1A
12
+
17
18
6
RIN
MOS1 16 6 8 8 MOSMOD M = 0.99
MOS2 16 21 8 8 MOSMOD M = 0.01
S1A
S1B
S2A
S2B
11
6
8
EVTO
9
20 +
18
8
LGATE RGATE
LDRAIN 2 5 1e-9
LGATE 1 9 1.233e-9
LSOURCE 3 7 0.452e-9
RBREAK 17 18 RBKMOD 1
RDRAIN 5 16 RDSMOD 4.91e-3
RGATE 9 20 2.74
RIN 6 8 1e9
RSOURCE 8 7 RDSMOD 5e-3
RVTO 18 19 RVTOMOD 1
DRAIN
2
LDRAIN
13
8
S1B
RBREAK
15
14
13
17
18
S2B
RVTO
13
CA
CB
+
EGS
6
8
EDS
+ 14
5
8
IT
19
VBAT
+
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 8 19 DC 1
VTO 21 6 0.3215
.MODEL DBDMOD D (IS = 7.00e-13 RS = 2.15e-2 TRS1 = 0.5e-3 TRS2 = 3.68e-6 CJO = 1.28e-9 TT = 1.8e-8)
.MODEL DBKMOD D (RS = 1.28e-1 TRS1 = 1.69e-3 TRS2 = -2.0e-6)
.MODEL DPLCAPMOD D (CJO = 0.84e-9 IS = 1e-30 N = 10)
.MODEL MOSMOD NMOS (VTO = 1.63 KP = 11.55 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL RBKMOD RES (TC1 = 9.15e-4 TC2 = 3.13e-7)
.MODEL RDSMOD RES (TC1 = 7.00e-4 TC2 = 5.00e-6)
.MODEL RVTOMOD RES (TC1 = -2.155e-3 TC2 = -2.7e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.05 VOFF= -4.05)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.05 VOFF= -6.05)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.72 VOFF= 4.28)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 4.28 VOFF= -0.72)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991.
9-14
RF1K49092
PSPICE Electrical Model
SUBCKT RF1K49092 2 1 3 ;
P-Channel Model rev 10/24/94
CA 12 8 8.75e-10
CB 15 14 8.65e-10
CIN 6 8 7.65e-10
DPLCAP
5
10
DBODY 5 7 DBDMOD
DBREAK 7 11 DBKMOD
DPLCAP 10 5 DPLCAPMOD
RDRAIN
EBREAK 5 11 17 18 -23.75
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 8 6 1
EVTO 20 6 8 18 1
ESG
+
GATE
1
IT 8 17 1
EBREAK 17
18
16
VTO
+
21
EVTO
20 +
18
8
LGATE RGATE
MOS1
RBREAK 17 18 RBKMOD 1
RDRAIN 5 16 RDSMOD 7.36e-3
RGATE 9 20 6.1
RIN 6 8 1e9
RSOURCE 8 7 RDSMOD 4.56e-2
RVTO 18 19 RVTOMOD 1
11
DBREAK
CIN
8
RSOURCE
7
LSOURCE
3
SOURCE
S2A
S1A
12
MOS2
6
RIN
MOS1 16 6 8 8 MOSMOD M = 0.99
MOS2 16 21 8 8 MOSMOD M = 0.01
DBODY
+
6
8
9
LDRAIN 2 5 1e-9
LGATE 1 9 1.233e-9
LSOURCE 3 7 0.452e-9
S1A
S1B
S2A
S2B
DRAIN
2
LDRAIN
13
8
S1B
RBREAK
15
14
13
17
18
S2B
RVTO
13
CA
CB
+
EGS
6
8
EDS
+ 14
5
8
IT
19
VBAT
+
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 8 19 DC 1
VTO 21 6 -0.558
.MODEL DBDMOD D (IS = 3.0e-13 RS = 4.4e-2 TRS1 = 1.0e-3 TRS2 = -7.37e-6 CJO = 1.27e-9 TT = 2.2e-8)
.MODEL DBKMOD D (RS = 7.84e-2 TRS1 = -4.27e-3 TRS2 = 5.77e-5)
.MODEL DPLCAPMOD D (CJO = 2.85e-10 IS = 1e-30 N = 10)
.MODEL MOSMOD PMOS (VTO = -2.1423 KP = 9.206 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL RBKMOD RES (TC1 = 9.61e-4 TC2 = -1.09e-6)
.MODEL RDSMOD RES (TC1 = 2.10e-3 TC2 = 6.99e-6)
.MODEL RVTOMOD RES (TC1 = -1.82e-3 TC2 = 1.47e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 5.47 VOFF= 3.47)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 3.47 VOFF= 5.47)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 1.05 VOFF= -3.95)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.95 VOFF= 1.05)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991.
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
9-15