PD - 96205 IRFS5620PbF IRFSL5620PbF DIGITAL AUDIO MOSFET Features • Key Parameters Optimized for Class-D Audio Key Parameters Amplifier Applications VDS RDS(ON) typ. @ 10V Qg typ. Qsw typ. RG(int) typ. TJ max • Low RDSON for Improved Efficiency • Low QG and QSW for Better THD and Improved Efficiency • Low QRR for Better THD and Lower EMI • 175°C Operating Junction Temperature for 200 63.7 25 9.8 2.6 175 V m: nC nC Ω °C Ruggedness D D D • Can Deliver up to 300W per Channel into 8Ω Load in Half-Bridge Configuration Amplifier S G G G D2 Pak IRFS5620PbF S D S TO-262 IRFSL5620PbF G D S Gate Drain Source Description This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD and EMI. Additional features of this MOSFET are 175°C operating junction temperature and repetitive avalanche capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for ClassD audio amplifier applications. Absolute Maximum Ratings Parameter VDS VGS ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C PD @TC = 100°C TJ TSTG Max. Drain-to-Source Voltage 200 Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current ±20 24 17 100 Power Dissipation Power Dissipation 144 72 f f c Units V A W 0.96 -55 to + 175 Linear Derating Factor Operating Junction and W/°C Storage Temperature Range °C Soldering Temperature, for 10 seconds (1.6mm from case) 300 Thermal Resistance RθJC RθJA Junction-to-Case f Parameter Junction-to-Ambient (PCB Mount) h Typ. ––– Max. 1.045 ––– 40 Units °C/W Notes through are on page 2 www.irf.com 1 12/18/08 IRFS/SL5620PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage Parameter 200 ––– ––– ∆ΒVDSS/∆TJ RDS(on) VGS(th) Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance ––– ––– 0.22 63.7 ––– 77.5 Gate Threshold Voltage Gate Threshold Voltage Coefficient 3.0 ––– ––– -14 5.0 ––– Drain-to-Source Leakage Current ––– ––– ––– ––– 20 250 µA VDS = 200V, VGS = 0V VDS = 200V, VGS = 0V, TJ = 125°C IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage ––– ––– ––– ––– 100 -100 nA VGS = 20V VGS = -20V gfs Forward Transconductance Total Gate Charge 37 ––– ––– 25 ––– 38 S VDS = 50V, ID = 15A Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge ––– ––– 6.3 1.9 ––– ––– Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– ––– 7.9 9.3 ––– ––– Internal Gate Resistance ––– ––– 9.8 2.6 ––– 5.0 Turn-On Delay Time Rise Time ––– ––– 8.6 14.6 ––– ––– Turn-Off Delay Time Fall Time ––– ––– 17.1 9.9 ––– ––– Input Capacitance Output Capacitance ––– ––– 1710 125 ––– ––– Reverse Transfer Capacitance Effective Output Capacitance ––– ––– 30 138 ––– ––– ––– 4.5 ––– ∆VGS(th)/∆TJ IDSS Qg Qgs1 Qgs2 Qgd Qgodr Qsw RG(int) td(on) tr td(off) tf Ciss Coss Crss Coss LD LS Internal Drain Inductance V V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 15A e V VDS = VGS, ID = 100µA mV/°C nC ––– 7.5 VDS = 100V VGS = 10V ID = 15A See Fig. 6 and 19 Ω ns pF e VDD = 100V, VGS = 10V ID = 15A RG = 2.4Ω VGS = 0V VDS = 50V ƒ = 1.0MHz, See Fig.5 VGS = 0V, VDS = 0V to 160V Between lead, nH Internal Source Inductance Conditions VGS = 0V, ID = 250µA ––– D 6mm (0.25in.) from package G S and center of die contact Avalanche Characteristics Parameter EAS IAR EAR Single Pulse Avalanche Energy Avalanche Current g Repetitive Avalanche Energy Typ. d Max. Units ––– 113 See Fig. 14, 15, 17a, 17b g mJ A mJ Diode Characteristics Parameter IS @ TC = 25°C Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD (Body Diode) Diode Forward Voltage trr Qrr c Min. ––– Typ. Max. Units ––– Conditions MOSFET symbol 24 A ––– ––– 100 ––– ––– 1.3 V Reverse Recovery Time ––– 98 147 ns Reverse Recovery Charge ––– 491 737 nC showing the integral reverse p-n junction diode. TJ = 25°C, IS = 15A, VGS = 0V e TJ = 25°C, IF = 15A , VR = 160V di/dt = 100A/µs e Notes: Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive Repetitive rating; pulse width limited by max. junction temperature. avalanche information Starting TJ = 25°C, L = 1.00mH, RG = 25Ω, IAS = 15A. When mounted on 1" square PCB (FR-4 or G-10 Material). For Pulse width ≤ 400µs; duty cycle ≤ 2%. recommended footprint and soldering techniques refer to Rθ is measured at TJ of approximately 90°C. application note #AN-994. 2 www.irf.com IRFS/SL5620PbF 1000 1000 ID, Drain-to-Source Current (A) 100 BOTTOM 10 VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V 5.0V TOP ID, Drain-to-Source Current (A) TOP 1 5.0V 0.1 ≤60µs PULSE WIDTH Tj = 25°C 100 BOTTOM 10 5.0V 1 ≤60µs PULSE WIDTH 0.01 Tj = 175°C 0.1 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 3.5 100 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) 1000 TJ = 175°C 10 T J = 25°C 1 VDS = 50V ≤60µs PULSE WIDTH 0.1 ID = 15A VGS = 10V 3.0 2.5 2.0 1.5 1.0 0.5 2 4 6 8 10 12 14 16 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 100000 Fig 4. Normalized On-Resistance vs. Temperature 14.0 VGS = 0V, f = 1 MHZ Ciss = C gs + C gd, C ds SHORTED VGS, Gate-to-Source Voltage (V) Crss = C gd Coss = C ds + C gd 10000 C, Capacitance (pF) VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V 5.0V Ciss 1000 Coss 100 Crss ID= 15A 12.0 VDS= 160V VDS= 100V VDS= 40V 10.0 8.0 6.0 4.0 2.0 0.0 10 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 5 10 15 20 25 30 35 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRFS/SL5620PbF 1000 TJ = 175°C ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 T J = 25°C 10 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100µsec 1msec 10 10msec DC 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1.0 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 100 1000 Fig 8. Maximum Safe Operating Area 6.0 VGS(th), Gate threshold Voltage (V) 30 25 ID, Drain Current (A) 10 VDS, Drain-to-Source Voltage (V) 20 15 10 5 5.5 5.0 4.5 4.0 3.5 ID = 100µA ID = 250uA ID = 1.0mA ID = 1.0A 3.0 2.5 2.0 1.5 1.0 0 25 50 75 100 125 150 -75 -50 -25 175 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Threshold Voltage vs. Temperature Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 τJ 0.01 0.001 1E-006 SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 0.0001 R1 R1 τJ τ1 R2 R2 τC τ2 τ1 τ2 Ci= τi/Ri Ci i/Ri 0.001 τ Ri (°C/W) 0.456 τi (sec) 0.000311 0.589 0.003759 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com 0.5 500 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance ( Ω) IRFS/SL5620PbF ID = 15A 0.4 0.3 0.2 T J = 125°C 0.1 T J = 25°C ID 2.05A 2.94A BOTTOM 15A 450 TOP 400 350 300 250 200 150 100 50 0 0 4 6 8 10 12 14 16 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 12. On-Resistance Vs. Gate Voltage Fig 13. Maximum Avalanche Energy Vs. Drain Current 100 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) 0.01 10 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 120 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 15A 100 80 60 40 20 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max) is exceeded 3. Equation below based on circuit and waveforms shown in Figures 17a, 17b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 5 IRFS/SL5620PbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • dv/dt controlled by RG • Driver same type as D.U.T. • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + V DD + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor InductorCurrent Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS 20V A 0.01Ω tp I AS Fig 17a. Unclamped Inductive Test Circuit RD V DS Fig 17b. Unclamped Inductive Waveforms VDS 90% V GS D.U.T. RG + - V DD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 18a. Switching Time Test Circuit tr t d(off) Fig 18b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 19a. Gate Charge Test Circuit 6 Qgs1 Qgs2 Qgd Qgodr Fig 19b. Gate Charge Waveform www.irf.com IRFS/SL5620PbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information (;$03/( 7+,6,6$1,5// /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( <($5 :((. /,1(& 25 ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 7 IRFS/SL5620PbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information (;$03/( 7+,6,6$1,5// /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& 3$57180%(5 ,17(51$7,21$/ 5(&7,),(5 /2*2 '$7(&2'( <($5 :((. /,1(& $66(0%/< /27&2'( 25 ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRFS/SL5620PbF D2Pak (TO-263AB) Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 1.65 (.065) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 1.75 (.069) 1.25 (.049) 10.90 (.429) 10.70 (.421) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 12/2008 www.irf.com 9