PD - 97065A IRF7905PbF HEXFET® Power MOSFET Applications l Dual SO-8 MOSFET for POL Converters in Notebook Computers, Servers, Graphics Cards, Game Consoles and Set-Top Box 30V ID RDS(on) max Q1 21.8m:@VGS = 10V Q2 17.1m:@VGS = 10V 6 ' * ' 6 ' * ' Benefits l Very Low RDS(on) at 4.5V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current l 20V VGS Max. Gate Rating l Improved Body Diode Reverse Recovery l 100% Tested for RG l Lead-Free VDSS 7.8A 8.9A SO-8 Absolute Maximum Ratings Parameter Q1 Max. Q2 Max. VDS Drain-to-Source Voltage 30 VGS Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V ± 20 ID @ TA = 25°C ID @ TA = 70°C V 7.8 8.9 Continuous Drain Current, VGS @ 10V Pulsed Drain Current 6.2 7.1 IDM 62 71 c Units PD @TA = 25°C Power Dissipation 2.0 2.0 PD @TA = 70°C Power Dissipation 1.3 1.3 TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range 0.016 A W 0.016 W/°C °C Q1 Max. Q2 Max. 20 20 Units °C/W 62.5 62.5 -55 to + 150 Thermal Resistance RθJL RθJA www.irf.com Parameter Junction-to-Drain Lead g Junction-to-Ambient fg 1 07/10/06 IRF7905PbF Static @ TJ = 25°C (unless otherwise specified) BVDSS ∆ΒVDSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance Q1&Q2 Q1 Q2 Q1 Q2 VGS(th) ∆VGS(th)/∆TJ Gate Threshold Voltage Gate Threshold Voltage Coefficient IDSS Drain-to-Source Leakage Current IGSS gfs Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Qg Total Gate Charge Qgs1 Pre-Vth Gate-to-Source Charge Qgs2 Post-Vth Gate-to-Source Charge Qgd Gate-to-Drain Charge Qgodr Gate Charge Overdrive Q sw Switch Charge (Qgs2 + Qgd) Q oss Output Charge RG Gate Resistance td(on) Turn-On Delay Time tr Rise Time td(off) Turn-Off Delay Time tf Fall Time Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Q1&Q2 Q1 Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Min. 30 ––– ––– ––– ––– ––– ––– 1.35 ––– ––– ––– ––– ––– ––– 15 18 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.024 0.024 17.4 23.4 13.7 17.1 1.8 -5.0 -5.0 ––– ––– ––– ––– ––– ––– 4.6 6.9 0.9 1.5 0.6 0.8 1.7 2.5 1.4 2.1 2.3 3.3 2.9 4.5 3.1 3.1 5.2 6.2 8.3 9.3 6.9 8.1 3.4 3.4 600 910 130 190 78 95 Max. ––– ––– ––– 21.8 29.3 17.1 21.3 2.25 ––– ––– 1.0 150 100 -100 ––– ––– 6.9 10 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 4.9 4.9 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Conditions Units VGS = 0V, ID = 250µA V V/°C Reference to 25°C, ID = 1mA mΩ V mV/°C µA nA S nC VGS = 10V, ID = 7.8A VGS = 4.5V, ID = 6.2A VGS = 10V, ID = 8.9A VGS = 4.5V, ID = 7.1A VDS = VGS, ID = 25µA e e e e VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 15V, ID = 6.2A VDS = 15V, ID = 7.1A Q1 VDS = 15V VGS = 4.5V, ID = 6.2A Q2 VDS = 15V VGS = 4.5V, ID = 7.1A nC VDS = 16V, VGS = 0V Ω Q1 VDD = 15V, VGS = 4.5V ID = 6.2A ns Q2 VDD = 15V, VGS = 4.5V ID = 7.1A Clamped Inductive Load pF VGS = 0V VDS = 15V ƒ = 1.0MHz Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current c Typ. ––– ––– d Q1 Max. 12 6.2 Q2 Max. 18 7.1 Units mJ A Diode Characteristics VSD Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage trr Reverse Recovery Time Q rr Reverse Recovery Charge IS ISM 2 c Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– ––– ––– 10 13 2.5 4.0 Max. 2.8 2.8 62 71 1.0 1.0 15 20 3.8 6.0 Units Conditions A MOSFET symbol showing the A integral reverse p-n junction diode. TJ = 25°C, IS = 6.1A, VGS = 0V V TJ = 25°C, IS = 7.1A, VGS = 0V Q1 TJ = 25°C, IF = 6.2A, ns VDD = 15V, di/dt = 100A/µs nC Q2 TJ = 25°C, IF = 7.1A, VDD = 15V, di/dt = 100A/µs e e e e www.irf.com IRF7905PbF Typical Characteristics Q1 - Control FET Q2 - Synchronous FET 100 100 10 BOTTOM VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1 0.1 10 BOTTOM 1 0.1 2.3V ≤ 60µs PULSE WIDTH Tj = 25°C ≤ 60µs PULSE WIDTH Tj = 25°C 2.3V 0.01 0.01 0.1 1 10 0.1 100 Fig 1. Typical Output Characteristics 10 100 Fig 2. Typical Output Characteristics 100 100 10 BOTTOM VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V TOP ID, Drain-to-Source Current (A) TOP ID, Drain-to-Source Current (A) 1 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) 1 2.3V 10 BOTTOM VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V 2.3V 1 ≤ 60µs PULSE WIDTH Tj = 150°C ≤ 60µs PULSE WIDTH Tj = 150°C 0.1 0.1 0.1 1 10 0.1 100 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics Fig 4. Typical Output Characteristics 100.0 ID, Drain-to-Source Current(Α) 100.0 ID, Drain-to-Source Current(Α) VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V 10.0 TJ = 150°C 1.0 TJ = 25°C VDS = 15V ≤ 60µs PULSE WIDTH 0.1 10.0 TJ = 150°C 1.0 TJ = 25°C VDS = 15V ≤ 60µs PULSE WIDTH 0.1 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 VGS, Gate-to-Source Voltage (V) VGS, Gate-to-Source Voltage (V) Fig 5. Typical Transfer Characteristics Fig 6. Typical Transfer Characteristics www.irf.com 3 IRF7905PbF Typical Characteristics Q1 - Control FET 10000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd Coss = Cds + Cgd C, Capacitance (pF) 10000 C, Capacitance (pF) Q2 - Synchronous FET 1000 Ciss Coss 100 Crss 1000 Ciss Coss 100 Crss 10 10 1 10 1 100 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage Fig 8. Typical Capacitance vs. Drain-to-Source Voltage 12 ID= 6.3A ID= 7.1A VDS= 25V VDS= 16V VDS= 7.6V 10 VGS, Gate-to-Source Voltage (V) VGS, Gate-to-Source Voltage (V) 12 8 6 4 2 0 VDS= 25V VDS= 16V VDS= 7.6V 10 8 6 4 2 0 0 2 4 6 8 10 0 4 QG Total Gate Charge (nC) 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 16 Fig 10. Typical Gate Charge vs. Gate-to-Source Voltage 1000 100 1msec 10 1 100µsec 10msec 100msec TA = 25°C Tj = 150°C Single Pulse 0.01 0.01 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 11. Maximum Safe Operating Area 4 12 QG, Total Gate Charge (nC) Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage 0.1 8 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 1msec 10 1 0.1 100µsec 10msec 100msec TA = 25°C Tj = 150°C Single Pulse 0.01 0.01 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 12. Maximum Safe Operating Area www.irf.com IRF7905PbF Typical Characteristics Q1 - Control FET Q2 - Synchronous FET 2.0 RDS(on), Drain-to-Source On Resistance (Normalized) RDS(on) , Drain-to-Source On Resistance (Normalized) 2.0 ID = 7.8A VGS = 10V 1.5 1.0 0.5 ID = 8.9A VGS = 10V 1.5 1.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 -60 -40 -20 TJ , Junction Temperature (°C) 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig 13. Normalized On-Resistance vs. Temperature Fig 14. Normalized On-Resistance vs. Temperature 100 ISD , Reverse Drain Current (A) 100.0 ISD, Reverse Drain Current (A) 0 TJ = 150°C 10.0 1.0 TJ = 25°C TJ = 150°C 10 1 TJ = 25°C VGS = 0V VGS = 0V 0.1 0.1 0.2 0.4 0.6 0.8 1.0 1.2 0.2 1.4 50 ID = 7.8A 40 TJ = 125°C TJ = 25°C 10 2 4 6 8 10 VGS, Gate-to-Source Voltage (V) Fig 17. Typical On-Resistance vs.Gate Voltage www.irf.com 0.8 1.0 1.2 1.4 Fig 16. Typical Source-Drain Diode Forward Voltage ( Ω) RDS (on), Drain-to -Source On Resistance m ( Ω) RDS (on), Drain-to -Source On Resistance m Fig 15. Typical Source-Drain Diode Forward Voltage 20 0.6 VSD, Source-to-Drain Voltage (V) VSD, Source-to-Drain Voltage (V) 30 0.4 50 ID = 8.9A 40 30 TJ = 125°C 20 TJ = 25°C 10 2 4 6 8 10 VGS, Gate-to-Source Voltage (V) Fig 18. Typical On-Resistance vs.Gate Voltage 5 IRF7905PbF Typical Characteristics Q1 - Control FET Q2 - Synchronous FET 8 10 ID, Drain Current (A) ID, Drain Current (A) 8 6 4 2 6 4 2 0 0 25 50 75 100 125 150 25 50 TJ, Ambient Temperature (°C) 150 2.4 VGS(th), Gate threshold Voltage (V) VGS(th, Gate threshold Voltage (V) 125 Fig 20. Maximum Drain Current vs. Ambient Temp. 2.2 2.0 ID = 250µA 1.8 1.6 1.4 1.2 2.2 2.0 ID = 250µA 1.8 1.6 1.4 1.2 1.0 -75 -50 -25 0 25 50 75 100 125 150 -75 -50 -25 TJ , Temperature ( °C ) 25 50 75 100 125 150 Fig 22. Threshold Voltage vs. Temperature EAS, Single Pulse Avalanche Energy (mJ) 50 I D TOP 3.0A 3.5A BOTTOM 6.2A 40 0 TJ , Temperature ( °C ) Fig 21. Threshold Voltage vs. Temperature EAS, Single Pulse Avalanche Energy (mJ) 100 TJ, Ambient Temperature (°C) Fig 19. Maximum Drain Current vs. Ambient Temp. 30 20 10 80 I D 3.2A 3.7A BOTTOM 7.1A TOP 60 40 20 0 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 23. Maximum Avalanche Energy vs. Drain Current 6 75 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 24. Maximum Avalanche Energy vs. Drain Current www.irf.com IRF7905PbF 100 Thermal Response ( ZthJA ) D = 0.50 0.20 10 0.10 0.05 0.02 0.01 1 τJ R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 τ3 τ4 τa τ2 τ1 τ2 τ3 τ4 Ci= τi/Ri Ci= i/Ri 0.1 Ri (°C/W) τι (sec) 2.195355 0.000149 8.470326 0.019287 36.46787 0.63002 15.37789 15.12 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Ta SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q1) 100 Thermal Response ( ZthJA ) D = 0.50 0.20 10 0.10 0.05 0.02 0.01 1 τJ R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 τ3 τ4 τa τ2 τ1 τ2 τ3 τ4 Ci= τi/Ri Ci= i/Ri 0.1 Ri (°C/W) τι (sec) 2.073115 0.000216 9.069028 0.028592 36.96639 0.75582 14.40736 21 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Ta SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1, Rectangular Pulse Duration (sec) Fig 26. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q2) L S2 1 8 D2 G2 2 7 D2 S1 3 6 D1 G1 4 5 D1 Co Vo Cin GND Vin Fig 27. Layout Diagram www.irf.com 7 IRF7905PbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 28. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V A 0.01Ω tp I AS Fig 29a. Unclamped Inductive Test Circuit Fig 29b. Unclamped Inductive Waveforms VDS 15V 90% DRIVER L VDS 10% D.U.T RG + V - DD IAS 20V A VGS td(on) 0.01Ω tp Fig 30a. Switching Time Test Circuit Current Regulator Same Type as D.U.T. tr td(off) Fig 30b. Switching Time Waveforms Id Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. +VDS Vgs(th) VGS -3mA IG ID Current Sampling Resistors Fig 31a. Gate Charge Test Circuit 8 Qgs1 Qgs2 Qgd Qgodr Fig 31b. Gate Charge Waveform www.irf.com IRF7905PbF SO-8 Package Details ' ,1&+(6 0,1 0$; $ $ E F ' ( %$6,& H H %$6,& + . / \ ',0 % $ + ( >@ $ ; H H ;E >@ $ $ 0,//,0(7(56 0,1 0$; %$6,& %$6,& .[ & \ >@ ;/ ;F & $ % 127(6 ',0(16,21,1*72/(5$1&,1*3(5$60(<0 &21752//,1*',0(16,210,//,0(7(5 ',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@ 287/,1(&21)250672-('(&287/,1(06$$ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72 $68%675$7( )22735,17 ;>@ >@ ;>@ ;>@ SO-8 Part Marking (;$03/(7+,6,6$1,5)026)(7 ,17(51$7,21$/ 5(&7,),(5 /2*2 www.irf.com ;;;; ) '$7(&2'(<:: 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ < /$67',*,72)7+(<($5 :: :((. $ $66(0%/<6,7(&2'( /27&2'( 3$57180%(5 9 IRF7905PbF SO-8 Tape and Reel Dimensions are shown in millimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, Q1: L = 0.62mH RG = 25Ω, IAS = 6.2A; Q2: L = 0.72mH RG = 25Ω, IAS = 7.1A. Pulse width ≤ 400µs; duty cycle ≤ 2%. When mounted on 1 inch square copper board. Rθ is measured at TJ approximately 90°C. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/2006 10 www.irf.com