ILA03N60, ILP03N60 ILB03N60, ILD03N60 ^ LightMOS Power Transistor C • • • • • • • New high voltage technology designed for ZVS-switching in lamp ballasts IGBT with integrated reverse diode 4A current rating for reverse diode Up to 10 times lower gate capacitance than MOSFET Avalanche rated 150°C operating temperature FullPak isolates 2.5 kV AC (1 min.) P-TO-220-3-1 (TO-220AB) VCE IC VCE(sat),Tj=25°C Tj,max ILA03N60 600V 3.0A 2.9V ILP03N60 600V 3.0A ILB03N60 600V ILD03N60 600V Type G E P-TO-263-3-2 (D2-PAK) (TO-263AB) P-TO-220-3-31 (TO-220 FullPak) P-TO-252-3-1 (D-PAK) (TO-252AA) Package Ordering Code 150°C P-TO-220-3-31 Q67040-S4626 2.9V 150°C P-TO-220-3-1 Q67040-S4628 3.0A 2.9V 150°C P-TO-263-3-2 Q67040-S4627 3.0A 2.9V 150°C P-TO-252-3-1 Q67040-S4625 Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current IC TC = 25°C TC = 100°C Pulsed collector current, tp limited by Tjmax, tp < 10 ms Value ILA03N60 600 4.5 2.2 3 ICpuls Unit V 3 A 9 Pulsed collector current, tp limited by Tjmax Diode forward current Others 5.5 IF TC = 25°C TC = 100°C Diode pulsed current, tp limited by Tjmax, tp < 10 ms 4 4 2.2 2.5 IFpuls 9 Diode pulsed current, tp limited by Tjmax 5.5 Avalanche energy, single pulse IC=0.4A, VCE=50V EAS 0.32 mJ Gate-emitter voltage VGE ±30 V Reverse diode dv/dt 1 dv/dt V/ns 1 IC ≤ 3A, VCE ≤ 450V, Tjmax ≤ 150°C Power dissipation (TC = 25°C) Ptot Operating junction and storage temperature Tstg Soldering temperature for 10 s (according to JEDEC J-STA-020A) Ts 16.5 27 -55...+150 D-Pak 255 Others 220 W °C 1 Reverse diode of transistor is commutated with same device according to figure C. With application relevant values IC ≤ 1.5A, CSnubber = 1 nF and RG ≥ 50Ω, dv/dt of the reverse diode is within its specification. Power Semiconductors 1 Rev. 1.2 Apr-04 ILA03N60, ILP03N60 ILB03N60, ILD03N60 ^ Thermal Resistance Parameter Symbol Conditions Max. Value Unit P-TO-220-3-31 Other packages 7.6 K/W TO-220-3-31 12 junction – case Other packages 10 Therm. resistance, junction - ambient R t h J A P-TO-220-3-31 P-TO-220-3-1 65 P-TO-263-3-2 75 Characteristic IGBT thermal resistance, RthJC junction – case Diode thermal resistance, SMD version, device on PCB: RthJCD 4.7 62 RthJA @ min. footprint @ 6cm2 cooling area1 50 2 62 P-TO-252-3-1 @ min. footprint 1 40 @ 6cm cooling area Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. typ. max. 600 - - - 850 - T j = 25° C - 2.3 2.9 T j = 15 0° C - 2.7 T j = 25° C - 1.5 - T j = 15 0° C - 1.5 - T j = 25° C - 1.5 1.8 T j = 15 0° C - 1.6 T j = 25° C - 1.0 - T j = 15 0° C - 1.0 - 2.1 3.0 3.9 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V, I C = 0. 5mA Collector-emitter avalanche breakdown voltage V(BR)CE V G S = 0V; I C = 0. 4A Collector-emitter saturation voltage VCE(sat) V G E = 1 0V, I C = 3. 0A V V G E = 1 0V, I C = 0. 8A Diode forward voltage VF V G E = 0V, I F = 3. 0A V G E = 0V, I F = 0. 8A Gate-emitter threshold voltage VGE(th) I C = 30 µA ,V C E =V G E V V 1 Device on 40mm*40mm*1.5mm epoxy PCB FR4with 6cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. Power Semiconductors 2 Rev. 1.2 Apr-04 ILA03N60, ILP03N60 ILB03N60, ILD03N60 ^ Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Zero gate voltage collector current Symbol ICES Conditions continued Value min. typ. max. Unit µA V C E = 600V , V G E = 0V T j = 25° C - 1 20 - 250 T j = 15 0° C - Gate-emitter leakage current IGES V C E = 0V ,V G E = 2 0V - - 100 nA Transconductance gfs V C E = 20V, I C = 3. 0A - 1.5 - S Capacities, Gate Charge, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. V C E = 25V, - 110 - 6 - 4 - Input capacitance Ciss Output capacitance Reverse transfer capacitance Coss V G E = 0V, - Crss f= 1 M Hz - Effective Output Capacitance (Energy related) Co(er) V G E = 0V, Gate to emitter charge QGE Gate to collector charge QGC Gate total charge QG Gate plateau voltage Vm Gate to emitter charge QGE Gate to collector charge QGC Gate total charge QG Gate plateau voltage Vm 3.7 Unit pF pF V C E = 0V t o 4 80 V V C E = 400V , I C = 3. 0A , V G E = 1 0V V C E = 400V , I C = 0. 8A , V G E = 1 0V - 1 - nC - 5.5 - - 8.5 - - 6.5 - V - 0.5 - nC - 4.0 - - 8 - - 3.5 - V Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf 3 Turn-on energy Eon Turn-off energy Eoff Turn-off energy Eoff 3 V C C = 4 00V, I C = 0. 8A , V G E = 0/ 1 0V , R G = 6 0Ω , C S n u b b e r = 0nF (C S n u b b e r : S n u bb er c apac it or ) C S n u b b e r = 1nF - 15 - - 35 - - 100 - - 100 - - 12 - - 20 - - 8 - ns µJ E o n includes SDP04S60 diode commutation losses Power Semiconductors 3 Rev. 1.2 Apr-04 ILA03N60, ILP03N60 ILB03N60, ILD03N60 ^ Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. max. - 20 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf 3 Turn-on energy Eon Turn-off energy Eoff Turn-off energy Eoff V C C = 4 00V, I C = 0. 8A , V G E = 0/ 1 0V , R G = 6 0Ω , C S n u b b e r = 0n F (C S n u b b e r : S n u bb er c apac it or ) C S n u b b e r = 1nF - 45 - - 120 - - 120 - - 15 - - 28 - - 12 - ns µJ Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. Unit Reverse diode Characteristic (switching in half bridge configuration with same transistor according to figure C) Reverse recovery time trr Reverse recovery charge Qrr Peak reverse recovery current Irrm Peak rate of fall of reverse recovery current di r r / d t Reverse recovery time trr Reverse recovery charge Qrr Peak reverse recovery current Irrm Peak rate of fall of reverse recovery current di r r / d t Power Semiconductors V R = 4 00V, I F = 0. 8A, V G E = 0/ 1 0V , R G = 8 0Ω V R = 4 00V, I F = 3A , V G E = 0/ 1 0V , R G = 8 0Ω 4 - 90 - ns - 0.27 - µC - 5.5 - A - 300 - A/µs - 250 - ns - 0.75 - µC - 8 - A - 300 - A/µs Rev. 1.2 Apr-04 ILA03N60, ILP03N60 ILB03N60, ILD03N60 ^ 10A 10A tp=4µs tp=4µs 8µs 15µs 1A 50µs 200µs 0,1A 1ms IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 8µs 15µs 1A 50µs 200 µs 1ms 0,1A DC DC 0,01A 0,01A 1V 10V 100V 1V 1000V f, SWITCHING FREQUENCY Figure 1: Safe operating area (FullPak) (D = 0, TC = 25°C, Tj ≤ 150°C) 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2: Safe operating area (Other Packages) (D = 0, TC = 25°C, Tj ≤ 150°C) 30W 6A IC, COLLECTOR CURRENT Other Packages 20W 15W 10W Ptot, POWER DISSIPATION 25W FullPak 4A Other Packages Fullpak 2A 5W 0W 25°C 50°C 75°C 100°C 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) Power Semiconductors 50°C 75°C 100°C 125°C 150°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 10V, Tj ≤ 150°C) 5 Rev. 1.2 Apr-04 ILA03N60, ILP03N60 ILB03N60, ILD03N60 10A 10A 8A 8A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT ^ V GE =15V 10V 6A 9V 8V 7V 4A 6V 5V 2A 0A 0V 1V 2V 3V 4V 5V IC, COLLECTOR CURRENT 6A 4A 2A 4V 6V 8V 10V 12V VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 20V) Power Semiconductors VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE Tj= +25°C 2V 9V 8V 4A 7V 6V 5V 2A 1V 2V 3V 4V 5V 6V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) +150°C 0A 0V 10V 0A 0V 6V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) 8A V GE =15V 6A 4.5V Ic=4A 4.0V 3.5V 3.0V 2.5V Ic=3A 2.0V Ic=1A 1.5V Ic=0.5A 1.0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 10V) 6 Rev. 1.2 Apr-04 ILA03N60, ILP03N60 ILB03N60, ILD03N60 ^ td(off) tf 100ns 100ns t, SWITCHING TIMES t, SWITCHING TIMES tf tr td(off) tr td(on) 10ns 0.5A 1.0A 1.5A 2.0A 2.5A td(on) 10ns 20Ω 40Ω 3.0A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+10V, RG = 80Ω, Dynamic test circuit in Figure E) 60Ω 80Ω 100Ω 120Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+10V, IC = 1A, Dynamic test circuit in Figure E) 70µJ *) Eon includes losses due to diode recovery. 3.2V E, SWITCHING ENERGY LOSSES VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 80µJ 3.4V 3.0V 2.8V 2.6V 2.4V 2.2V 60µJ Eoff 50µJ Eon* 40µJ 30µJ Eoff, C =1nF Snubber 20µJ 10µJ 2.0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 30µA) Power Semiconductors 0µJ 0,5A 1,0A 1,5A 2,0A 2,5A 3,0A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+10V, RG = 80Ω, CSnubber=0/1nF Dynamic test circuit in Figure E) 7 Rev. 1.2 Apr-04 ILA03N60, ILP03N60 ILB03N60, ILD03N60 ^ 35µJ 34µJ 32µJ Eoff 28µJ 26µJ 30µJ *) Eon includes losses due to diode recovery. 24µJ Eon* 22µJ 20µJ 18µJ 16µJ Eoff, C =1nF Snubber 14µJ E, SWITCHING ENERGY LOSSES 30µJ 25µJ Eoff 20µJ 15µJ Eoff, C 40Ω 60Ω 80Ω 100Ω 120Ω 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+10V, IC = 1A, RG = 80Ω, CSnubber=0/1nF Dynamic test circuit in Figure E) 14V 14V 12V 12V 120V 480V VGE, GATE-EMITTER VOLTAGE VGE, GATE-EMITTER VOLTAGE =1nF Snubber 5µJ RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+10V, IC = 1A, CSnubber=0/1nF Dynamic test circuit in Figure E) 10V 8V 6V 4V 2V 0V 0nC Eon* 10µJ 12µJ 10µJ 20Ω *) Eon includes losses due to diode recovery. 2nC 4nC 6nC 8nC 10nC 12nC 480V 10V 8V 6V 4V 2V 0V 0nC 2nC 4nC 6nC 8nC 10nC 12nC QGE, GATE CHARGE QGE, GATE CHARGE Figure 16. Typical gate charge (IC = 0.8A) Power Semiconductors 120V Figure 17. Typical gate charge (IC = 3A) 8 Rev. 1.2 Apr-04 ILA03N60, ILP03N60 ILB03N60, ILD03N60 ^ 1 R,(K/W) 3.46 0.798 0.662 D=0.5 1.84 0.2 0 10 K/W 0.1 ZthJCD, TRANSIENT THERMAL IMPEDANCE ZthJCT, TRANSIENT THERMAL IMPEDANCE 10 K/W τ, (s) 3.99 0.368 0.00973 -4 8.52*10 R1 R2 0.05 0.02 -1 10 K/W C 1 = τ 1 /R 1 C 2 = τ 2 /R 2 0.01 1 10 K/W R,(K/W) 1.76 2.98 0.620 0.915 D=0.5 0 τ, (s) 5.30 1.59 0.0719 0.00654 0.2 10 K/W R1 0.1 R2 0.05 C 1 = τ 1 /R 1 C 2 = τ 2 /R 2 0.02 0.01 single pulse single pulse -1 10µs 100µs 1ms 10ms 100ms 1s 10s 10 K/W 10µs 100µs 1ms 10ms 100ms 100s tp, PULSE WIDTH Figure 18: IGBT transient thermal impedance as a function of pulse width (FullPak) (D = tp / T) 1s 10s 100s tp, PULSE WIDTH Figure 19: Diode transient thermal impedance as a function of pulse width (FullPak) (D = tp / T) 1 D=0.5 0 10 K/W ZthJCD, TRANSIENT THERMAL IMPEDANCE ZthJCT, TRANSIENT THERMAL IMPEDANCE 10 K/W 0.2 R,(K/W) 1.186 1.856 1.458 0.1 0.05 R1 τ, (s) 0.0466 -3 2.220*10 -4 3.616*10 R2 0.02 -1 10 K/W 0.01 C 1 = τ 1 /R 1 C 2 = τ 2 /R 2 single pulse R,(K/W) 0.907 1.088 3.762 4.043 D=0.5 0 10 K/W 0.2 τ, (s) -2 4.532*10 -3 5.957*10 -4 8.797*10 -4 1.667*10 0.1 0.05 R1 R2 0.02 0.01 C 1 = τ 1 /R 1 C 2 = τ 2 /R 2 single pulse -1 10µs 100µs 1ms 10ms 100ms 1s 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH tp, PULSE WIDTH Figure 21: Diode transient thermal impedance as a function of pulse width (Other Packages) (D = tp / T) Figure 20: IGBT transient thermal impedance as a function of pulse width (Other Packages) (D = tp / T) Power Semiconductors 10 K/W 10µs 9 Rev. 1.2 Apr-04 ILA03N60, ILP03N60 ILB03N60, ILD03N60 ^ 4A 1.7V IF=4A 1.6V VF, FORWARD VOLTAGE IF, FORWARD CURRENT 3A 2A 150°C 100°C 25°C 1A -55°C 1.5V 1.4V 1.3V 0.5V 1.0V 1.1V 0.9V 1.5V VF, FORWARD VOLTAGE Figure 20. Typical diode forward current as a function of forward voltage IF=1A 1.2V 1.0V 0A 0.0V IF=2A IF=0.5A -40°C 0°C 40°C 80°C 120°C Tj, JUNCTION TEMPERATURE Figure 21. Typical diode forward voltage as a function of junction temperature Ciss C, CAPACITANCE 100pF 10pF Coss Crss 0V 10V 20V 30V 40V VCE, COLLECTOR-EMITTER VOLTAGE Figure 19. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) Power Semiconductors 10 Rev. 1.2 Apr-04 ILA03N60, ILP03N60 ILB03N60, ILD03N60 ^ 90 % VG E 10% V GE t VC E 90 % V CE 9 0% VC E 10% V CE td(off) 10 % V CE td(on) tf t tr F igure A. Definition of switching times ½ Lσ I,v tr r=tS+ tF dIF /dt D.U.T (Diode) Qrr =QS+QF IF tS trr Cσ tF U I rrm QS QF 10% Irrm dIrr /dt 90% Irrm t VR RG D.U.T (IGBT) ½ Lσ Figure B . Definition of diodes switching characteristics Power Semiconductors 11 Figure C. Dynamic tes t circuit Rev. 1.2 Apr-04 ILA03N60, ILP03N60 ILB03N60, ILD03N60 ^ dimensions P-TO220-3-31 symbol [mm] [inch] min max min max A 10.37 10.63 0.4084 0.4184 B 15.86 16.12 0.6245 0.6345 C 0.65 0.78 0.0256 0.0306 D 2.95 typ. 0.1160 typ. E 3.15 3.25 0.124 0.128 F 6.05 6.56 0.2384 0.2584 G 13.47 13.73 0.5304 0.5404 H 3.18 3.43 0.125 0.135 K 0.45 0.63 0.0177 0.0247 L 1.23 1.36 0.0484 0.0534 M 2.54 typ. 0.100 typ. N 4.57 4.83 0.1800 0.1900 P 2.57 2.83 0.1013 0.1113 T 2.51 2.62 0.0990 0.1030 Please refer to mounting instructions (application note AN-TO220-3-31-01) dimensions TO-220AB symbol 12 [inch] max min max A 9.70 10.30 0.3819 0.4055 B 14.88 15.95 0.5858 0.6280 C 0.65 0.86 0.0256 0.0339 D 3.55 3.89 0.1398 0.1531 E 2.60 3.00 0.1024 0.1181 F 6.00 6.80 0.2362 0.2677 G 13.00 14.00 0.5118 0.5512 H 4.35 4.75 0.1713 0.1870 K 0.38 0.65 0.0150 0.0256 L 0.95 1.32 0.0374 0.0520 M Power Semiconductors [mm] min 2.54 typ. 0.1 typ. N 4.30 4.50 0.1693 0.1772 P 1.17 1.40 0.0461 0.0551 T 2.30 2.72 0.0906 0.1071 Rev. 1.2 Apr-04 ILA03N60, ILP03N60 ILB03N60, ILD03N60 ^ dimensions TO-263AB (D2Pak) symbol A min max 9.80 10.20 0.3858 0.4016 B 0.70 1.30 0.0276 0.0512 1.00 1.60 0.0394 0.0630 D 1.03 1.07 0.0406 0.0421 F G H 2.54 typ. 0.65 0.85 5.08 typ. 4.30 4.50 0.1 typ. 0.0256 0.0335 0.2 typ. 0.1693 0.1772 K 1.17 1.37 0.0461 0.0539 L 9.05 9.45 0.3563 0.3720 M 2.30 2.50 0.0906 0.0984 N 15 typ. 0.5906 typ. P 0.00 0.20 0.0000 0.0079 Q 4.20 5.20 0.1654 0.2047 R 13 [inch] max C E Power Semiconductors [mm] min 8° max S 2.40 T 0.40 8° max 3.00 0.0945 0.1181 0.60 0.0157 0.0236 U 10.80 0.4252 V 1.15 0.0453 W 6.23 0.2453 X 4.60 0.1811 Y 9.40 0.3701 Z 16.15 0.6358 Rev. 1.2 Apr-04 ILA03N60, ILP03N60 ILB03N60, ILD03N60 ^ dimensions TO-252AA (DPak) symbol [mm] symbol min A 6.40 A 6.40 A B 5.25 B 5.25 B C (0.65) C (0.65) C D 0.63 D 0.63 D 2.19 F 2.19 F G 0.76 G 0.76 G H 0.90 H 0.90 H K 5.97 K 5.97 K E F Power Semiconductors 14 min 2.28 E L 9.40 L 9.40 L M 0.46 M 0.46 M N 0.87 N 0.87 N P 0.51 P 0.51 P R 5.00 R 5.00 R S 4.17 S 4.17 S T 0.26 T 0.26 T U - U - U Rev. 1.2 Apr-04 ILA03N60, ILP03N60 ILB03N60, ILD03N60 ^ Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2003 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 15 Rev. 1.2 Apr-04