INFINEON ILD03N60

ILA03N60, ILP03N60
ILB03N60, ILD03N60
^
LightMOS Power Transistor
C
•
•
•
•
•
•
•
New high voltage technology designed for ZVS-switching in lamp
ballasts
IGBT with integrated reverse diode
4A current rating for reverse diode
Up to 10 times lower gate capacitance than MOSFET
Avalanche rated
150°C operating temperature
FullPak isolates 2.5 kV AC (1 min.)
P-TO-220-3-1
(TO-220AB)
VCE
IC
VCE(sat),Tj=25°C
Tj,max
ILA03N60
600V
3.0A
2.9V
ILP03N60
600V
3.0A
ILB03N60
600V
ILD03N60
600V
Type
G
E
P-TO-263-3-2 (D2-PAK)
(TO-263AB)
P-TO-220-3-31
(TO-220 FullPak)
P-TO-252-3-1 (D-PAK)
(TO-252AA)
Package
Ordering Code
150°C
P-TO-220-3-31
Q67040-S4626
2.9V
150°C
P-TO-220-3-1
Q67040-S4628
3.0A
2.9V
150°C
P-TO-263-3-2
Q67040-S4627
3.0A
2.9V
150°C
P-TO-252-3-1
Q67040-S4625
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCE
DC collector current
IC
TC = 25°C
TC = 100°C
Pulsed collector current, tp limited by Tjmax, tp < 10 ms
Value
ILA03N60
600
4.5
2.2
3
ICpuls
Unit
V
3
A
9
Pulsed collector current, tp limited by Tjmax
Diode forward current
Others
5.5
IF
TC = 25°C
TC = 100°C
Diode pulsed current, tp limited by Tjmax, tp < 10 ms
4
4
2.2
2.5
IFpuls
9
Diode pulsed current, tp limited by Tjmax
5.5
Avalanche energy, single pulse
IC=0.4A, VCE=50V
EAS
0.32
mJ
Gate-emitter voltage
VGE
±30
V
Reverse diode dv/dt
1
dv/dt
V/ns
1
IC ≤ 3A, VCE ≤ 450V, Tjmax ≤ 150°C
Power dissipation (TC = 25°C)
Ptot
Operating junction and storage temperature
Tstg
Soldering temperature
for 10 s (according to JEDEC J-STA-020A)
Ts
16.5
27
-55...+150
D-Pak
255
Others
220
W
°C
1
Reverse diode of transistor is commutated with same device according to figure C. With application
relevant values IC ≤ 1.5A, CSnubber = 1 nF and RG ≥ 50Ω, dv/dt of the reverse diode is within its specification.
Power Semiconductors
1
Rev. 1.2 Apr-04
ILA03N60, ILP03N60
ILB03N60, ILD03N60
^
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
P-TO-220-3-31
Other packages
7.6
K/W
TO-220-3-31
12
junction – case
Other packages
10
Therm. resistance, junction - ambient R t h J A
P-TO-220-3-31
P-TO-220-3-1
65
P-TO-263-3-2
75
Characteristic
IGBT thermal resistance,
RthJC
junction – case
Diode thermal resistance,
SMD version, device on PCB:
RthJCD
4.7
62
RthJA
@ min. footprint
@ 6cm2 cooling area1
50
2
62
P-TO-252-3-1
@ min. footprint
1
40
@ 6cm cooling area
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
typ.
max.
600
-
-
-
850
-
T j = 25° C
-
2.3
2.9
T j = 15 0° C
-
2.7
T j = 25° C
-
1.5
-
T j = 15 0° C
-
1.5
-
T j = 25° C
-
1.5
1.8
T j = 15 0° C
-
1.6
T j = 25° C
-
1.0
-
T j = 15 0° C
-
1.0
-
2.1
3.0
3.9
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0V, I C = 0. 5mA
Collector-emitter avalanche
breakdown voltage
V(BR)CE
V G S = 0V; I C = 0. 4A
Collector-emitter saturation voltage
VCE(sat)
V G E = 1 0V, I C = 3. 0A
V
V G E = 1 0V, I C = 0. 8A
Diode forward voltage
VF
V G E = 0V, I F = 3. 0A
V G E = 0V, I F = 0. 8A
Gate-emitter threshold voltage
VGE(th)
I C = 30 µA ,V C E =V G E
V
V
1
Device on 40mm*40mm*1.5mm epoxy PCB FR4with 6cm2 (one layer, 70µm thick) copper area for drain
connection. PCB is vertical without blown air.
Power Semiconductors
2
Rev. 1.2 Apr-04
ILA03N60, ILP03N60
ILB03N60, ILD03N60
^
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Zero gate voltage collector current
Symbol
ICES
Conditions
continued
Value
min.
typ.
max.
Unit
µA
V C E = 600V , V G E = 0V
T j = 25° C
-
1
20
-
250
T j = 15 0° C
-
Gate-emitter leakage current
IGES
V C E = 0V ,V G E = 2 0V
-
-
100
nA
Transconductance
gfs
V C E = 20V, I C = 3. 0A
-
1.5
-
S
Capacities, Gate Charge, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
V C E = 25V,
-
110
-
6
-
4
-
Input capacitance
Ciss
Output capacitance
Reverse transfer capacitance
Coss
V G E = 0V,
-
Crss
f= 1 M Hz
-
Effective Output Capacitance
(Energy related)
Co(er)
V G E = 0V,
Gate to emitter charge
QGE
Gate to collector charge
QGC
Gate total charge
QG
Gate plateau voltage
Vm
Gate to emitter charge
QGE
Gate to collector charge
QGC
Gate total charge
QG
Gate plateau voltage
Vm
3.7
Unit
pF
pF
V C E = 0V t o 4 80 V
V C E = 400V ,
I C = 3. 0A ,
V G E = 1 0V
V C E = 400V ,
I C = 0. 8A ,
V G E = 1 0V
-
1
-
nC
-
5.5
-
-
8.5
-
-
6.5
-
V
-
0.5
-
nC
-
4.0
-
-
8
-
-
3.5
-
V
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
3
Turn-on energy
Eon
Turn-off energy
Eoff
Turn-off energy
Eoff
3
V C C = 4 00V,
I C = 0. 8A ,
V G E = 0/ 1 0V ,
R G = 6 0Ω ,
C S n u b b e r = 0nF
(C S n u b b e r : S n u bb er
c apac it or )
C S n u b b e r = 1nF
-
15
-
-
35
-
-
100
-
-
100
-
-
12
-
-
20
-
-
8
-
ns
µJ
E o n includes SDP04S60 diode commutation losses
Power Semiconductors
3
Rev. 1.2 Apr-04
ILA03N60, ILP03N60
ILB03N60, ILD03N60
^
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
20
-
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
3
Turn-on energy
Eon
Turn-off energy
Eoff
Turn-off energy
Eoff
V C C = 4 00V,
I C = 0. 8A ,
V G E = 0/ 1 0V ,
R G = 6 0Ω ,
C S n u b b e r = 0n F
(C S n u b b e r : S n u bb er
c apac it or )
C S n u b b e r = 1nF
-
45
-
-
120
-
-
120
-
-
15
-
-
28
-
-
12
-
ns
µJ
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
Unit
Reverse diode Characteristic (switching in half bridge configuration with same transistor according
to figure C)
Reverse recovery time
trr
Reverse recovery charge
Qrr
Peak reverse recovery current
Irrm
Peak rate of fall of reverse recovery
current
di r r / d t
Reverse recovery time
trr
Reverse recovery charge
Qrr
Peak reverse recovery current
Irrm
Peak rate of fall of reverse recovery
current
di r r / d t
Power Semiconductors
V R = 4 00V,
I F = 0. 8A,
V G E = 0/ 1 0V ,
R G = 8 0Ω
V R = 4 00V,
I F = 3A ,
V G E = 0/ 1 0V ,
R G = 8 0Ω
4
-
90
-
ns
-
0.27
-
µC
-
5.5
-
A
-
300
-
A/µs
-
250
-
ns
-
0.75
-
µC
-
8
-
A
-
300
-
A/µs
Rev. 1.2 Apr-04
ILA03N60, ILP03N60
ILB03N60, ILD03N60
^
10A
10A
tp=4µs
tp=4µs
8µs
15µs
1A
50µs
200µs
0,1A
1ms
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
8µs
15µs
1A
50µs
200 µs
1ms
0,1A
DC
DC
0,01A
0,01A
1V
10V
100V
1V
1000V
f, SWITCHING FREQUENCY
Figure 1:
Safe operating area
(FullPak)
(D = 0, TC = 25°C, Tj ≤ 150°C)
10V
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2:
Safe operating area
(Other Packages)
(D = 0, TC = 25°C, Tj ≤ 150°C)
30W
6A
IC, COLLECTOR CURRENT
Other Packages
20W
15W
10W
Ptot,
POWER DISSIPATION
25W
FullPak
4A
Other Packages
Fullpak
2A
5W
0W
25°C
50°C
75°C
100°C
0A
25°C
125°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(Tj ≤ 150°C)
Power Semiconductors
50°C
75°C
100°C
125°C
150°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≤ 10V, Tj ≤ 150°C)
5
Rev. 1.2 Apr-04
ILA03N60, ILP03N60
ILB03N60, ILD03N60
10A
10A
8A
8A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
^
V GE =15V
10V
6A
9V
8V
7V
4A
6V
5V
2A
0A
0V
1V
2V
3V
4V
5V
IC, COLLECTOR CURRENT
6A
4A
2A
4V
6V
8V
10V
12V
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristics
(VCE = 20V)
Power Semiconductors
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
Tj= +25°C
2V
9V
8V
4A
7V
6V
5V
2A
1V
2V
3V
4V
5V
6V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristics
(Tj = 150°C)
+150°C
0A
0V
10V
0A
0V
6V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(Tj = 25°C)
8A
V GE =15V
6A
4.5V
Ic=4A
4.0V
3.5V
3.0V
2.5V
Ic=3A
2.0V
Ic=1A
1.5V
Ic=0.5A
1.0V
-50°C
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(VGE = 10V)
6
Rev. 1.2 Apr-04
ILA03N60, ILP03N60
ILB03N60, ILD03N60
^
td(off)
tf
100ns
100ns
t, SWITCHING TIMES
t, SWITCHING TIMES
tf
tr
td(off)
tr
td(on)
10ns
0.5A
1.0A
1.5A
2.0A
2.5A
td(on)
10ns
20Ω
40Ω
3.0A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+10V, RG = 80Ω,
Dynamic test circuit in Figure E)
60Ω
80Ω
100Ω
120Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+10V, IC = 1A,
Dynamic test circuit in Figure E)
70µJ
*) Eon includes losses
due to diode recovery.
3.2V
E, SWITCHING ENERGY LOSSES
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
80µJ
3.4V
3.0V
2.8V
2.6V
2.4V
2.2V
60µJ
Eoff
50µJ
Eon*
40µJ
30µJ
Eoff, C
=1nF
Snubber
20µJ
10µJ
2.0V
-50°C
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(IC = 30µA)
Power Semiconductors
0µJ
0,5A
1,0A
1,5A
2,0A
2,5A
3,0A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+10V, RG = 80Ω, CSnubber=0/1nF
Dynamic test circuit in Figure E)
7
Rev. 1.2 Apr-04
ILA03N60, ILP03N60
ILB03N60, ILD03N60
^
35µJ
34µJ
32µJ
Eoff
28µJ
26µJ
30µJ
*) Eon includes losses
due to diode recovery.
24µJ
Eon*
22µJ
20µJ
18µJ
16µJ
Eoff, C
=1nF
Snubber
14µJ
E, SWITCHING ENERGY LOSSES
30µJ
25µJ
Eoff
20µJ
15µJ
Eoff, C
40Ω
60Ω
80Ω
100Ω
120Ω
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+10V,
IC = 1A, RG = 80Ω, CSnubber=0/1nF
Dynamic test circuit in Figure E)
14V
14V
12V
12V
120V
480V
VGE, GATE-EMITTER VOLTAGE
VGE, GATE-EMITTER VOLTAGE
=1nF
Snubber
5µJ
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+10V, IC = 1A, CSnubber=0/1nF
Dynamic test circuit in Figure E)
10V
8V
6V
4V
2V
0V
0nC
Eon*
10µJ
12µJ
10µJ
20Ω
*) Eon includes losses
due to diode recovery.
2nC
4nC
6nC
8nC
10nC 12nC
480V
10V
8V
6V
4V
2V
0V
0nC
2nC
4nC
6nC
8nC
10nC 12nC
QGE, GATE CHARGE
QGE, GATE CHARGE
Figure 16. Typical gate charge
(IC = 0.8A)
Power Semiconductors
120V
Figure 17. Typical gate charge
(IC = 3A)
8
Rev. 1.2 Apr-04
ILA03N60, ILP03N60
ILB03N60, ILD03N60
^
1
R,(K/W)
3.46
0.798
0.662
D=0.5
1.84
0.2
0
10 K/W
0.1
ZthJCD, TRANSIENT THERMAL IMPEDANCE
ZthJCT, TRANSIENT THERMAL IMPEDANCE
10 K/W
τ, (s)
3.99
0.368
0.00973
-4
8.52*10
R1
R2
0.05
0.02
-1
10 K/W
C 1 = τ 1 /R 1 C 2 = τ 2 /R 2
0.01
1
10 K/W
R,(K/W)
1.76
2.98
0.620
0.915
D=0.5
0
τ, (s)
5.30
1.59
0.0719
0.00654
0.2
10 K/W
R1
0.1
R2
0.05
C 1 = τ 1 /R 1 C 2 = τ 2 /R 2
0.02
0.01
single pulse
single pulse
-1
10µs 100µs 1ms 10ms 100ms
1s
10s
10 K/W
10µs 100µs 1ms 10ms 100ms
100s
tp, PULSE WIDTH
Figure 18: IGBT transient thermal
impedance as a function of pulse width
(FullPak)
(D = tp / T)
1s
10s
100s
tp, PULSE WIDTH
Figure 19: Diode transient thermal
impedance as a function of pulse width
(FullPak)
(D = tp / T)
1
D=0.5
0
10 K/W
ZthJCD, TRANSIENT THERMAL IMPEDANCE
ZthJCT, TRANSIENT THERMAL IMPEDANCE
10 K/W
0.2
R,(K/W)
1.186
1.856
1.458
0.1
0.05
R1
τ, (s)
0.0466
-3
2.220*10
-4
3.616*10
R2
0.02
-1
10 K/W
0.01
C 1 = τ 1 /R 1 C 2 = τ 2 /R 2
single pulse
R,(K/W)
0.907
1.088
3.762
4.043
D=0.5
0
10 K/W
0.2
τ, (s)
-2
4.532*10
-3
5.957*10
-4
8.797*10
-4
1.667*10
0.1
0.05
R1
R2
0.02
0.01
C 1 = τ 1 /R 1 C 2 = τ 2 /R 2
single pulse
-1
10µs
100µs
1ms
10ms
100ms
1s
100µs
1ms
10ms
100ms
1s
tp, PULSE WIDTH
tp, PULSE WIDTH
Figure 21: Diode transient thermal
impedance as a function of pulse width
(Other Packages)
(D = tp / T)
Figure 20: IGBT transient thermal
impedance as a function of pulse width
(Other Packages)
(D = tp / T)
Power Semiconductors
10 K/W
10µs
9
Rev. 1.2 Apr-04
ILA03N60, ILP03N60
ILB03N60, ILD03N60
^
4A
1.7V
IF=4A
1.6V
VF, FORWARD VOLTAGE
IF, FORWARD CURRENT
3A
2A
150°C
100°C
25°C
1A
-55°C
1.5V
1.4V
1.3V
0.5V
1.0V
1.1V
0.9V
1.5V
VF, FORWARD VOLTAGE
Figure 20. Typical diode forward current as
a function of forward voltage
IF=1A
1.2V
1.0V
0A
0.0V
IF=2A
IF=0.5A
-40°C
0°C
40°C
80°C
120°C
Tj, JUNCTION TEMPERATURE
Figure 21. Typical diode forward voltage as
a function of junction temperature
Ciss
C, CAPACITANCE
100pF
10pF
Coss
Crss
0V
10V
20V
30V
40V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 19. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f = 1MHz)
Power Semiconductors
10
Rev. 1.2 Apr-04
ILA03N60, ILP03N60
ILB03N60, ILD03N60
^
90 % VG E
10% V GE
t
VC E
90 % V CE
9 0% VC E
10% V CE
td(off)
10 % V CE
td(on)
tf
t
tr
F igure A. Definition of switching times
½ Lσ
I,v
tr r=tS+ tF
dIF /dt
D.U.T
(Diode)
Qrr =QS+QF
IF
tS
trr
Cσ
tF
U
I rrm
QS
QF
10% Irrm
dIrr /dt
90% Irrm
t
VR
RG
D.U.T
(IGBT)
½ Lσ
Figure B . Definition of diodes switching characteristics
Power Semiconductors
11
Figure C. Dynamic tes t circuit
Rev. 1.2 Apr-04
ILA03N60, ILP03N60
ILB03N60, ILD03N60
^
dimensions
P-TO220-3-31
symbol
[mm]
[inch]
min
max
min
max
A
10.37
10.63
0.4084
0.4184
B
15.86
16.12
0.6245
0.6345
C
0.65
0.78
0.0256
0.0306
D
2.95 typ.
0.1160 typ.
E
3.15
3.25
0.124
0.128
F
6.05
6.56
0.2384
0.2584
G
13.47
13.73
0.5304
0.5404
H
3.18
3.43
0.125
0.135
K
0.45
0.63
0.0177
0.0247
L
1.23
1.36
0.0484
0.0534
M
2.54 typ.
0.100 typ.
N
4.57
4.83
0.1800
0.1900
P
2.57
2.83
0.1013
0.1113
T
2.51
2.62
0.0990
0.1030
Please refer to mounting instructions (application note AN-TO220-3-31-01)
dimensions
TO-220AB
symbol
12
[inch]
max
min
max
A
9.70
10.30
0.3819
0.4055
B
14.88
15.95
0.5858
0.6280
C
0.65
0.86
0.0256
0.0339
D
3.55
3.89
0.1398
0.1531
E
2.60
3.00
0.1024
0.1181
F
6.00
6.80
0.2362
0.2677
G
13.00
14.00
0.5118
0.5512
H
4.35
4.75
0.1713
0.1870
K
0.38
0.65
0.0150
0.0256
L
0.95
1.32
0.0374
0.0520
M
Power Semiconductors
[mm]
min
2.54 typ.
0.1 typ.
N
4.30
4.50
0.1693
0.1772
P
1.17
1.40
0.0461
0.0551
T
2.30
2.72
0.0906
0.1071
Rev. 1.2 Apr-04
ILA03N60, ILP03N60
ILB03N60, ILD03N60
^
dimensions
TO-263AB (D2Pak)
symbol
A
min
max
9.80
10.20
0.3858
0.4016
B
0.70
1.30
0.0276
0.0512
1.00
1.60
0.0394
0.0630
D
1.03
1.07
0.0406
0.0421
F
G
H
2.54 typ.
0.65
0.85
5.08 typ.
4.30
4.50
0.1 typ.
0.0256
0.0335
0.2 typ.
0.1693
0.1772
K
1.17
1.37
0.0461
0.0539
L
9.05
9.45
0.3563
0.3720
M
2.30
2.50
0.0906
0.0984
N
15 typ.
0.5906 typ.
P
0.00
0.20
0.0000
0.0079
Q
4.20
5.20
0.1654
0.2047
R
13
[inch]
max
C
E
Power Semiconductors
[mm]
min
8° max
S
2.40
T
0.40
8° max
3.00
0.0945
0.1181
0.60
0.0157
0.0236
U
10.80
0.4252
V
1.15
0.0453
W
6.23
0.2453
X
4.60
0.1811
Y
9.40
0.3701
Z
16.15
0.6358
Rev. 1.2 Apr-04
ILA03N60, ILP03N60
ILB03N60, ILD03N60
^
dimensions
TO-252AA (DPak)
symbol
[mm]
symbol
min
A
6.40
A
6.40
A
B
5.25
B
5.25
B
C
(0.65)
C
(0.65)
C
D
0.63
D
0.63
D
2.19
F
2.19
F
G
0.76
G
0.76
G
H
0.90
H
0.90
H
K
5.97
K
5.97
K
E
F
Power Semiconductors
14
min
2.28
E
L
9.40
L
9.40
L
M
0.46
M
0.46
M
N
0.87
N
0.87
N
P
0.51
P
0.51
P
R
5.00
R
5.00
R
S
4.17
S
4.17
S
T
0.26
T
0.26
T
U
-
U
-
U
Rev. 1.2 Apr-04
ILA03N60, ILP03N60
ILB03N60, ILD03N60
^
Published by
Infineon Technologies AG,
Bereich Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 2003
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon
Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or
systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect
human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Power Semiconductors
15
Rev. 1.2 Apr-04