SKP06N60 SKB06N60 Fast S-IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode • 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability • Very soft, fast recovery anti-parallel EmCon diode Type SKP06N60 VCE IC VCE(sat) Tj 600V 6A 2.3V 150°C SKB06N60 C G E Package Ordering Code TO-220AB Q67040-S4230 TO-263AB Q67040-S4231 Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current IC Value 600 Unit V A TC = 25°C 12 TC = 100°C 6.9 Pulsed collector current, tp limited by Tjmax ICpul s 24 Turn off safe operating area - 24 VCE ≤ 600V, Tj ≤ 150°C IF Diode forward current TC = 25°C 12 TC = 100°C 6 Diode pulsed current, tp limited by Tjmax IFpul s 24 Gate-emitter voltage VGE ±20 V tSC 10 µs Ptot 68 W -55...+150 °C 1) Short circuit withstand time VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C Power dissipation TC = 25°C Tj , Tstg Operating junction and storage temperature 1) Allowed number of short circuits: <1000; time between short circuits: >1s. 1 Mar-00 SKP06N60 SKB06N60 Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 1.85 K/W RthJCD 3.5 Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, RthJA TO-220AB 62 RthJA TO-263AB 40 junction – ambient 1) SMD version, device on PCB Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - 1.7 2.0 2.4 - 2.3 2.8 1.2 1.4 1.8 T j =1 5 0° C - 1.25 1.65 3 4 5 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 5 00 µA Collector-emitter saturation voltage VCE(sat) V G E = 15 V , I C = 6 A T j =2 5 °C T j =1 5 0° C VF Diode forward voltage V V G E = 0V , I F = 6 A T j =2 5 °C Gate-emitter threshold voltage VGE(th) I C = 25 0 µA , V C E = V G E Zero gate voltage collector current ICES V C E = 60 0 V, V G E = 0 V µA T j =2 5 °C - - 20 T j =1 5 0° C - - 700 Gate-emitter leakage current IGES V C E = 0V , V G E =2 0 V - - 100 nA Transconductance gfs V C E = 20 V , I C = 6 A - 4.2 - S Input capacitance Ciss V C E = 25 V , - 350 420 pF Output capacitance Coss V G E = 0V , - 38 46 Reverse transfer capacitance Crss f= 1 MH z - 23 28 Gate charge QGate V C C = 48 0 V, I C =6 A - 32 42 nC Dynamic Characteristic V G E = 15 V Internal emitter inductance LE T O - 22 0A B - 7 - nH IC(SC) V G E = 15 V ,t S C ≤ 10 µs V C C ≤ 6 0 0 V, T j ≤ 15 0° C - 60 - A measured 5mm (0.197 in.) from case 2) Short circuit collector current 1) 2 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70µm thick) copper area for collector connection. PCB is vertical without blown air. 2) Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Mar-00 SKP06N60 SKB06N60 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. Unit IGBT Characteristic Turn-on delay time td(on) T j =2 5 °C , - 25 30 Rise time tr V C C = 40 0 V, I C = 6 A, - 18 22 Turn-off delay time td(off) V G E = 0/ 15 V , - 220 264 Fall time tf R G =50Ω , - 54 65 Turn-on energy Eon - 0.110 0.127 Turn-off energy Eoff Energy losses include “tail” and diode reverse recovery. - 0.105 0.137 Total switching energy Ets - 0.215 0.263 ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time T j =2 5 °C , - 200 - tS V R = 2 00 V , I F = 6 A, - 17 - tF d i F / d t =2 0 0 A/ µs - 183 - trr ns Diode reverse recovery charge Qrr - 200 - nC Diode peak reverse recovery current Irrm - 2.8 - A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 180 - A/µs Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. max. Unit IGBT Characteristic Turn-on delay time td(on) T j =1 5 0° C - 24 29 Rise time tr V C C = 40 0 V, - 17 20 Turn-off delay time td(off) I C = 6 A, - 248 298 Fall time tf V G E = 0/ 15 V , - 70 84 Turn-on energy Eon R G = 50 Ω - 0.167 0.192 Turn-off energy Eoff - 0.153 0.199 Total switching energy Ets Energy losses include “tail” and diode reverse recovery. - 0.320 0.391 trr T j =1 5 0° C - 290 - tS V R = 2 00 V , I F = 6 A, - 27 - tF d i F / d t =2 0 0 A/ µs - 263 - ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 500 - nC Diode peak reverse recovery current Irrm - 5.0 - A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 200 - A/µs 3 Mar-00 SKP06N60 SKB06N60 Ic t p =2 µ s IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 30A 20A T C =80°C 10A T C =110°C 10A 15 µ s 50 µ s 1A 200 µ s Ic 1ms DC 0A 10Hz 0.1A 100Hz 1kHz 10kHz 1V 100kHz f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 50Ω) 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 15A IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 80W 60W 40W 20W 0W 25°C 50°C 75°C 100°C 10A 5A 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Mar-00 SKP06N60 20A 20A 15A 15A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT SKB06N60 VGE=20V 10A 5A 0A 0V 15V 13V 11V 9V 7V 5V 1V 2V 3V 4V Tj=+25°C -55°C +150°C IC, COLLECTOR CURRENT 16A 14A 12A 10A 8A 6A 4A 2A 0A 0V 2V 4V 6V 8V 10V 15V 13V 11V 9V 7V 5V 5A 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) 18A 10A 0A 0V 5V 20A VGE=20V VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) 4.0V IC = 12A 3.5V 3.0V IC = 6A 2.5V 2.0V 1.5V 1.0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Mar-00 SKP06N60 SKB06N60 100ns td(off) t, SWITCHING TIMES t, SWITCHING TIMES t d(off) tf t d(on) tf 100ns t d(on) tr tr 10ns 0A 3A 6A 9A 12A 10ns 0Ω 15A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 50Ω) 50 Ω 100 Ω 150 Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 6A) VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5.5V t, SWITCHING TIMES t d(off) 100ns tf td(on) tr 10ns 0°C 50°C 100°C 5.0V 4.5V 4.0V max. 3.5V typ. 3.0V 2.5V min. 2.0V 150°C -50°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 6A, RG = 50Ω) 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.25mA) 6 Mar-00 SKP06N60 SKB06N60 0.6mJ 0.8mJ *) Eon and Ets include losses due to diode recovery. *) Eon and Ets include losses due to diode recovery. E ts * E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES E ts * 0.6mJ 0.4mJ E on * E off 0.2mJ 0.0mJ 0A 3A 6A 9A 12A 0.4mJ E off E on * 0.2mJ 0.0mJ 0Ω 15A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 50Ω) 50 Ω 100 Ω 150 Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 6A) 0.4mJ D=0.5 E ts * 0.3mJ 0.2mJ E on * E off 0.1mJ 0.0mJ 0°C 0 ZthJC, TRANSIENT THERMAL IMPEDANCE E, SWITCHING ENERGY LOSSES *) Eon and Ets include losses due to diode recovery. 10 K/W 0.2 0.1 0.05 -1 10 K/W 0.02 -2 R,(K/W) 0.705 0.561 0.583 0.01 10 K/W R1 100°C 10 K/W 1µs 150°C R2 single pulse C 1 = τ 1 / R 1 C 2 = τ 2 /R 2 -3 50°C τ, (s)= 0.0341 3.74E-3 3.25E-4 10µs 100µs 1m s 10m s 100m s 1s tp, PULSE WIDTH Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 6A, RG = 50Ω) Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Mar-00 SKP06N60 SKB06N60 1nF 25V C iss 120V 480V C, CAPACITANCE VGE, GATE-EMITTER VOLTAGE 20V 15V 10V 100pF C oss 5V C rss 0V 0nC 15nC 30nC 10pF 0V 45nC QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 6A) 30V 100A IC(sc), SHORT CIRCUIT COLLECTOR CURRENT tsc, SHORT CIRCUIT WITHSTAND TIME 20V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25 µ s 20 µ s 15 µ s 10 µ s 5µ s 0µ s 10V 10V 11V 12V 13V 14V 80A 60A 40A 20A 0A 10V 15V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C) 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C) 8 Mar-00 SKP06N60 500ns 1000nC 400ns 800nC IF = 12A 300ns 200ns IF = 6A IF = 3A 100ns Qrr, REVERSE RECOVERY CHARGE trr, REVERSE RECOVERY TIME SKB06N60 600nC 400nC d i F / d t, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 200V, Tj = 125°C) d i F / d t, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 200V, Tj = 125°C) 500A/µs 6A IF = 6A IF = 3A 4A 2A 0A 50A/µs 150A/µs 250A/µs 350A/µs 450A/µs 550A/µs OF REVERSE RECOVERY CURRENT 10A d i r r /d t, DIODE PEAK RATE OF FALL 600A/µs IF = 12A IF = 3A 200nC 12A 8A IF = 6A 0nC 50A/µs 150A/µs 250A/µs 350A/µs 450A/µs 550A/µs 0ns 50A/µs 150A/µs 250A/µs 350A/µs 450A/µs 550A/µs Irr, REVERSE RECOVERY CURRENT IF = 12A 400A/µs 300A/µs 200A/µs 100A/µs 0A/µs 50A/µs d i F / d t, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C) 150A/µs 250A/µs 350A/µs 450A/µs 550A/µs diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C) 9 Mar-00 SKP06N60 SKB06N60 2.0V 12A VF, FORWARD VOLTAGE IF, FORWARD CURRENT 10A 8A 150°C 6A 100°C 4A 25°C 1.5V I F = 6A -55°C 2A 0A 0.0V 0.5V 1.0V 1.5V 1.0V 2.0V VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage ZthJCD, TRANSIENT THERMAL IMPEDANCE I F = 12A -40°C 0°C 40°C 80°C 120°C Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature D=0.5 0 10 K/W 0.2 0.1 0.05 R,(K/W) 0.523 0.550 0.835 1.592 0.02 -1 10 K/W 0.01 R1 τ, (s)= 7.25*10-2 6.44*10-3 7.13*10-4 7.16*10-5 R2 single pulse C 1 = τ 1 / R 1 C 2 = τ 2 /R 2 -2 10 K/W 1µs 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T) 10 Mar-00 SKP06N60 SKB06N60 dimensions TO-220AB symbol [mm] min [inch] max min max A 9.70 10.30 0.3819 0.4055 B 14.88 15.95 0.5858 0.6280 C 0.65 0.86 0.0256 0.0339 D 3.55 3.89 0.1398 0.1531 E 2.60 3.00 0.1024 0.1181 F 6.00 6.80 0.2362 0.2677 G 13.00 14.00 0.5118 0.5512 H 4.35 4.75 0.1713 0.1870 K 0.38 0.65 0.0150 0.0256 L 0.95 1.32 0.0374 0.0520 M 2.54 typ. 0.1 typ. N 4.30 4.50 0.1693 0.1772 P 1.17 1.40 0.0461 0.0551 T 2.30 2.72 0.0906 0.1071 dimensions TO-263AB (D2Pak) symbol [inch] max min max A 9.80 10.20 0.3858 0.4016 B 0.70 1.30 0.0276 0.0512 C 1.00 1.60 0.0394 0.0630 D 1.03 1.07 0.0406 0.0421 E F G 2.54 typ. 0.65 0.85 5.08 typ. 0.1 typ. 0.0256 0.0335 0.2 typ. H 4.30 4.50 0.1693 0.1772 K 1.17 1.37 0.0461 0.0539 L 9.05 9.45 0.3563 0.3720 M 2.30 2.50 0.0906 0.0984 N 15 typ. 0.5906 typ. P 0.00 0.20 0.0000 0.0079 Q 4.20 5.20 0.1654 0.2047 R 11 [mm] min 8° max 8° max S 2.40 3.00 0.0945 0.1181 T 0.40 0.60 0.0157 0.0236 U 10.80 0.4252 V 1.15 0.0453 W 6.23 0.2453 X 4.60 0.1811 Y 9.40 0.3701 Z 16.15 0.6358 Mar-00 SKP06N60 SKB06N60 i,v tr r =tS +tF diF /dt Qr r =QS +QF tr r IF tS QS Ir r m tF QF 10% Ir r m dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure B. Definition of switching losses 12 Mar-00 SKP06N60 SKB06N60 Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2000 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 13 Mar-00