SKW20N60 Fast S-IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode • 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability • Very soft, fast recovery anti-parallel EmCon diode Type SKW20N60 VCE IC VCE(sat) Tj 600V 20A 2.4V 150°C C G E Package Ordering Code TO-247AC Q67040-S4242 Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current IC Value 600 Unit V A TC = 25°C 40 TC = 100°C 20 Pulsed collector current, tp limited by Tjmax ICpul s 80 Turn off safe operating area - 80 VCE ≤ 600V, Tj ≤ 150°C IF Diode forward current TC = 25°C 40 TC = 100°C 20 Diode pulsed current, tp limited by Tjmax IFpul s 80 Gate-emitter voltage VGE ±20 V tSC 10 µs Ptot 179 W -55...+150 °C 1) Short circuit withstand time VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C Power dissipation TC = 25°C Tj , Tstg Operating junction and storage temperature 1) Allowed number of short circuits: <1000; time between short circuits: >1s. 1 Mar-00 SKW20N60 Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 0.7 K/W RthJCD 1.3 Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case RthJA Thermal resistance, TO-247AC 40 junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - 1.7 2 2.4 - 2.4 2.9 1.2 1.4 1.8 T j =1 5 0° C - 1.25 1.65 3 4 5 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 5 00 µA Collector-emitter saturation voltage VCE(sat) V G E = 15 V , I C = 20 A T j =2 5 °C T j =1 5 0° C VF Diode forward voltage V V G E = 0V , I F = 2 0 A T j =2 5 °C Gate-emitter threshold voltage VGE(th) I C = 70 0 µA , V C E = V G E Zero gate voltage collector current ICES V C E = 60 0 V, V G E = 0 V µA T j =2 5 °C - - 40 T j =1 5 0° C - - 2500 Gate-emitter leakage current IGES V C E = 0V , V G E =2 0 V - - 100 nA Transconductance gfs V C E = 20 V , I C = 20 A - 14 - S Input capacitance Ciss V C E = 25 V , - 1100 1320 pF Output capacitance Coss V G E = 0V , - 107 128 Reverse transfer capacitance Crss f= 1 MH z - 63 76 Gate charge QGate V C C = 48 0 V, I C =2 0 A - 100 130 nC Dynamic Characteristic V G E = 15 V Internal emitter inductance LE T O - 24 7A C - 13 - nH IC(SC) V G E = 15 V ,t S C ≤ 10 µs V C C ≤ 6 0 0 V, T j ≤ 15 0° C - 200 - A measured 5mm (0.197 in.) from case 1) Short circuit collector current 1) Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Mar-00 SKW20N60 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. Unit IGBT Characteristic Turn-on delay time td(on) T j =2 5 °C , - 36 46 Rise time tr V C C = 40 0 V, I C = 2 0 A, - 30 36 Turn-off delay time td(off) V G E = 0/ 15 V , - 225 270 Fall time tf R G = 16 Ω, - 54 65 Turn-on energy Eon - 0.44 0.53 Turn-off energy Eoff Energy losses include “tail” and diode reverse recovery. - 0.33 0.43 Total switching energy Ets - 0.77 0.96 ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time T j =2 5 °C , - 300 - tS V R = 2 00 V , I F = 2 0 A, - 30 - tF d i F / d t =2 0 0 A/ µs - 270 - trr ns Diode reverse recovery charge Qrr - 490 - nC Diode peak reverse recovery current Irrm - 5.5 - A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 180 - A/µs Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. max. Unit IGBT Characteristic Turn-on delay time td(on) T j =1 5 0° C - 36 46 Rise time tr V C C = 40 0 V, - 30 36 Turn-off delay time td(off) I C = 20 A , - 250 300 Fall time tf V G E = 0/ 15 V , - 63 76 Turn-on energy Eon R G = 16 Ω - 0.67 0.81 Turn-off energy Eoff - 0.49 0.64 Total switching energy Ets Energy losses include “tail” and diode reverse recovery. - 1.12 1.45 trr T j =1 5 0° C - 410 - tS V R = 2 00 V , I F = 2 0 A, - 45 - tF d i F / d t =2 0 0 A/ µs - 365 - ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 1270 - nC Diode peak reverse recovery current Irrm - 8.5 - A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 200 - A/µs 3 Mar-00 SKW20N60 100A 110A tp=4µs Ic 100A 15µs 80A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 90A 70A 60A 50A TC=80°C 40A 30A TC=110°C 20A Ic 10A 50µs 200µs 1ms 1A DC 10A 0A 10Hz 0.1A 100Hz 1kHz 10kHz 1V 100kHz f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 16Ω) 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 200W 50A 180W 40A 140W IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 160W 120W 100W 80W 60W 40W 30A 20A 10A 20W 0W 25°C 50°C 75°C 100°C 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Mar-00 60A 60A 50A 50A 40A 30A 20A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT SKW20N60 VGE=20V 15V 13V 11V 9V 7V 5V 10A 0A 0V 1V 2V 3V 4V 20A 0A 0V 5V 15V 13V 11V 9V 7V 5V Tj=+25°C 60A -55°C +150°C 50A 40A 30A 20A 10A 2V 4V 6V 8V 10V 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 70A IC, COLLECTOR CURRENT 30A VGE=20V 10A VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) 0A 0V 40A VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) 4.0V 3.5V IC = 40A 3.0V 2.5V IC = 20A 2.0V 1.5V 1.0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Mar-00 SKW20N60 td(off) 100ns t, SWITCHING TIMES t, SWITCHING TIMES td(off) tf td(on) 100ns tf td(on) tr tr 10ns 10A 20A 30A 10ns 0Ω 40A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 16Ω) 10Ω 20Ω 30Ω 40Ω 50Ω 60Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 20A) VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5.5V t, SWITCHING TIMES td(off) 100ns tf tr td(on) 10ns 0°C 5.0V 4.5V 4.0V max. 3.5V typ. 3.0V 2.5V min. 2.0V 50°C 100°C 150°C -50°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 20A, RG = 1 6Ω) 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.7mA) 6 Mar-00 SKW20N60 3.0mJ 3.0mJ Ets* *) Eon and Ets include losses due to diode recovery. *) Eon and Ets include losses due to diode recovery. 2.5mJ E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 2.5mJ 2.0mJ Eon* 1.5mJ Eoff 1.0mJ 0.5mJ 0.0mJ 0A 10A 20A 30A 40A 2.0mJ Ets* 1.5mJ 1.0mJ Eon* Eoff 0.5mJ 0.0mJ 0Ω 50A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 16Ω) 10Ω 20Ω 30Ω 40Ω 50Ω 60Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 20A) 1.6mJ *) Eon and Ets include losses due to diode recovery. 1.2mJ 0 Ets* 1.0mJ 0.8mJ Eon* 0.6mJ Eoff 0.4mJ 0.2mJ 0.0mJ 0°C ZthJC, TRANSIENT THERMAL IMPEDANCE E, SWITCHING ENERGY LOSSES 1.4mJ 10 K/W D=0.5 0.2 -1 10 K/W 0.1 0.05 0.02 R,(1/W) 0.1882 0.3214 0.1512 0.0392 -2 10 K/W 0.01 τ, (s)= 0.1137 2.24*10-2 7.86*10-4 9.41*10-5 -3 10 K/W R1 R2 single pulse C 1= τ1/R 1 C 2= τ2/R 2 -4 50°C 100°C 10 K/W 1µs 150°C 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 20A, RG = 1 6Ω) Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Mar-00 SKW20N60 25V Ciss 1nF C, CAPACITANCE VGE, GATE-EMITTER VOLTAGE 20V 15V 120V 480V 10V Crss 5V 0V 0nC 25nC 50nC 10pF 0V 75nC 100nC 125nC QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 20A) 20V 30V IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 350A 20 µ s 15 µ s 10 µ s 5µ s 0µ s 10V 10V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25 µ s tsc, SHORT CIRCUIT WITHSTAND TIME Coss 100pF 11V 12V 13V 14V 300A 250A 200A 150A 100A 50A 0A 10V 15V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C) 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C) 8 Mar-00 SKW20N60 600ns 2500nC IF = 40A 400ns IF = 20A 300ns 200ns IF = 10A 100ns 0ns 100A/µs 300A/µs 500A/µs 700A/µs Qrr, REVERSE RECOVERY CHARGE trr, REVERSE RECOVERY TIME 500ns IF = 20A 1000nC IF = 10A 500nC 300A/µs 500A/µs 700A/µs 900A/µs 1000A/µs IF = 40A 16A IF = 20A IF = 10A 8A 4A 300A/µs 500A/µs 700A/µs OF REVERSE RECOVERY CURRENT d i r r /d t, DIODE PEAK RATE OF FALL 20A Irr, REVERSE RECOVERY CURRENT 1500nC d i F / d t, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 200V, Tj = 125°C) 24A 0A 100A/µs IF = 40A 0nC 100A/µs 900A/µs d i F / d t, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 200V, Tj = 125°C) 12A 2000nC 800A/µs 600A/µs 400A/µs 200A/µs 0A/µs 100A/µs 900A/µs d i F / d t, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C) 300A/µs 500A/µs 700A/µs 900A/ µs diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C) 9 Mar-00 SKW20N60 40A 2.0V 35A I F = 40A VF, FORWARD VOLTAGE IF, FORWARD CURRENT 30A 25A 150°C 20A 100°C 15A 25°C 10A I F = 20A -55°C 5A 0A 0.0V 0.5V 1.0V 1.5V 1.0V 2.0V VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage ZthJCD, TRANSIENT THERMAL IMPEDANCE 1.5V -40°C 0°C 40°C 80°C 120°C Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature 0 10 K/W D=0.5 0.2 0.1 -1 10 K/W 0.05 R,(1/W) 0.358 0.367 0.329 0.216 0.024 0.02 -2 10 K/W 0.01 R1 τ, (s)= 9.02*10-2 9.42*10-3 9.93*10-4 1.19*10-4 1.92*10-5 R2 single pulse C1= τ1/R1 C 2 = τ 2 /R 2 -3 10 K/W 1µs 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T) 10 Mar-00 SKW20N60 dimensions TO-247AC symbol [mm] min max min max A 4.78 5.28 0.1882 0.2079 B 2.29 2.51 0.0902 0.0988 C 1.78 2.29 0.0701 0.0902 D 1.09 1.32 0.0429 0.0520 E 1.73 2.06 0.0681 0.0811 F 2.67 3.18 0.1051 0.1252 G 0.76 max 0.0299 max H 20.80 21.16 0.8189 0.8331 K 15.65 16.15 0.6161 0.6358 L 5.21 5.72 0.2051 0.2252 M 19.81 20.68 0.7799 0.8142 N 3.560 4.930 0.1402 0.1941 ∅P Q 11 [inch] 3.61 6.12 0.1421 6.22 0.2409 0.2449 Mar-00 SKW20N60 i,v tr r =tS +tF diF /dt Qr r =QS +QF tr r IF tS QS Ir r m tF QF 10% Ir r m dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure B. Definition of switching losses 12 Mar-00 SKW20N60 Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2000 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 13 Mar-00 This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.